DOI: http://dx.doi.org/10.18185/eufbed.75121

233

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

BAZI BENZOTİYAZOL SCHİFF BAZLARI İÇEREN C₁₂H₁₈ClN₃OS MOLEKÜLÜNÜN GEOMETRİK, ELEKTRONİK VE SPEKTROSKOPİK ÖZELLİKLERİNİN TEORİK OLARAK İNCELENMESİ THE TEORETICAL İNVESTIGATION OF GEOMETRICAL,

ELECTRONIC AND SPECTROSCOPIC PROPERTIES OF SOME SCHIFF BASES C12H18CLN3OS MOLECULE

Selim KAYA^{1*}, Salih Mustafa KARABIDAK¹,Uğur ÇEVİK²

¹Gümüşhane Üniversitesi, Mühendislik ve Doğa Bilimleri Fakültesi, Gümüşhane

² Karadeniz Teknik üniversitesi, Fen Fakültesi, Trabzon

Geliş Tarihi: 25/07/2014 Kabul Tarihi: 16/09/2014

ABSTRACT

In this study electronic and Spectroscopic property of some Schiff bases 2-amino-6-(N-isopropyl) amidino-2-methylbenzothiazole hydrochloride ($C_{12}H_{18}CIN_3OS$) molecule has been investigated by using Gauss-View and Gaussian 03W, Revision 2004 E01, Gaussian, Inc., Wallingford Ct. package program.

The molecular structures of C12H18ClN3OS molecule at ground state have been found by HF, B3LYP and BLYP methods. The stable states of the molecule have been found by using geometrical optimization and the bond length and bond angles were calculated by using 6-31G, 6-31G⁺, 6-31G⁺⁺ and 6-31G⁺⁺(d,p) basic sets. The infrared vibration frequencies and ¹H and ¹³C NMR chemical shift values of these molecules were theoretically calculated. Obtained theoretical values were compared with experimental data.

The most probable full molecular orbital energy states (ϵ HOMO, eV), the least probable empty orbital molecular orbital energy states ((ϵ LUMO, eV) have been investigated using HF and B3LYP and BLYP methods with 6-31G, 6-31/G⁺, 6-31G⁺⁺ and 6-31G⁺⁺(d,p) basic sets at 12 different sets at stable state. The hardness (η) and electro negativity (χ) parameters were determined taking into account these energy values.

It was observed that theoretical and experimental values were in a good agreement within the uncertainty limits.

Key Words: C₁₂H₁₈ClN₃OS, B3LYP, BLYP, , HF, ¹H and ¹³C, Structure Analysis, Vibration Labeling, IR Spectrums

*Sorumlu Yazar: selimkaya@gumushane.edu.tr

ÖZET

Gaussian 03W ve GaussView 3.0 paket programlarıyla Yoğunluk Fonksiyoneli Teorisi (DFT/B3LYP ve DFT/BLYP) ve ab-initio vöntemler içerisinde Hartree-Fock (HF) metodu fonksiyonelleri kullanılarak farklı yapıda benzotiyazol Schiff bazları içeren 2-Amino-6-(N-izopropil) Amidin-2 Metil-benzotiyazol hidroklorik (C12H18ClN3OS) molekülünün yapıları, elektronik ve spektroskopik özellikleri teorik olarak incelendi. C12H18CIN3OS moleküler yapısı taban halde HF ve B3LYP ve BLYP metotları ile 6-31G, 6-31G+, 6-31G++ ve 6-31G++(d,p) temel setleri kullanıldı. Moleküllerin kararlı yapıları bulundu ve yapısal parametreleri bağ uzunlukları, bağ açıları hesaplandı. Bu molekülün, infrared titreşim frekans değerleri ve 1H ve 13C NMR kimyasal kayma değerleri teorik olarak elde edildi. Elde edilen teorik değerler, deneysel verilerle karşılaştırıldı. Ayrıca en yüksek dolu molekül orbital enerjileri (EHOMO, eV), en düşük boş molekül orbital enerjileri (ELUMO, eV) denge durumunda HF ve DFT-B3LYP ve DFT-BLYP metotları ile 6-31G, 6-31G⁺, 6-31G⁺⁺ ve 6-31G⁺⁺(d,p) temel setleri kullanılarak 12 farklı temel sette incelendi. Bu enerjiler dikkate alınarak sertlik (η) ve elektronegatiflik (χ) parametreleri hesaplandı.

Bu çalışmada elde edilen teorik sonuçlar ile deneysel sonuçlar karşılaştırıldığında, hesaplanan sonuçların deneysel sonuçlar ile iyi uyumlu oldukları görüldü.

1.GİRİŞ

Spektroskopi, enerji yüklü parçacıkların ya da fotonların madde ile etkileşmesi ile madde hakkında bilgi edinme tekniğidir. Spektroskopi günümüzde çok geniş uygulama alanına sahiptir. Tıptan ziraate olmak üzere birçok alanda tanı, tedavi ve bazı maddelerin içyapısının çözümlenmesinde kullanılır. Elektromanyetik spektrum bölgesi aşağıda görüldüğü gibi belirli bölgelere ayrılmıştır.

Bölge	Dalgaboyu	Spektroskopi türü
Radyo Dalgaları	300 m - 3 m	NMR
Mikro Dalgalar	30 m - 0,3 m	ESR ve Moleküler Dönme
Kızıl-ötesi	30 µm - 1 µm	Moleküler Dönme ve Titreşim
Görünür-Mor ötesi	1 µm - 30 nm	Elektronik Geçişler (Dış)
X-Işınları	10 nm - 30 pm	Elektronik Geçişler (İç)
Gama-Işınları	30 pm - 0,3 pm	Nükleer Geçişler

Tablo 1. Elektromanyetik spektrum bölgeleri

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

Kaya ve Diğerleri

Bu çalışma, kızıl-ötesi bölgede teorik olarak yapılan bir çalışmadır. Moleküller kızıl-ötesi ışığı soğurduğu zaman molekülü oluşturan bağlar titreşim hareketi yaparlar. Bu hareketten kaynaklanan enerjiden yararlanarak molekülün titreşim modları hakkında bilgiye sahip olunur. Maddelerin özellikleri onları oluşturan moleküllerin özelliklerine, moleküllerin özellikleri (fiziksel ve kimyasal) de yapılarında bulundurdukları atomlar ve atomları bir arada tutan kimyasal bağlara dayanmaktadır. Bir molekülün yapı ve özellikleri belirlenerek onun kimyasal reaksiyon yeteneği ve oluşturduğu maddenin özellikleri hakkında bilgi elde edilir. Bu nedenle moleküllerin yapısının belirlenmesi ve yapı ile özellik arasındaki ilişkilerin araştırılması önemlidir. Kuantum teorisinin geliştirilmesiyle, kuantum mekanik kanunları atom ve moleküllere uygulanmaya başlanmıştır. Prensip olarak, kuantum teorisi ile bir molekülün bütün kimyasal özellikleri hesaplanabilir. Aslında bir bileşiğin yapısı ve kimyası deneysel yöntemlerle belirlenebilir, ancak hesaplama yolu ile öngörünün yapılabilmesi çok yararlıdır ve pek çok uygulama alanı bulmuştur.

Benzotiyazol halka sistemi oluşturma eğilimi yüksektir ve halka kapanması çok çeşitli bileşiklerde kolaylıkla olurken, iyi verimlerde ürün elde edilmektedir. Böylece aromatik aminlerle veya aromatik amin türevleri ile kükürdün yüksek sıcaklıkta reaksiyonundan genellikle yeterli verimlerde Benzotiyazoller elde edilir (Şireci N., 2003).

Günümüzde tedavi amacıyla tüketilen ilaçlar arasında antimikrobiyal etkili olanların ilk sıralarda yer aldığı görülmektedir. Ancak kullanılan ilaçlara karsı mikroorganizmaların rezistans kazanması veya istenilmeyen yan etkilerinin bulunması kullanım alanlarını kısıtlamaktadır. Benzotiyazol bileşiklerinin mevcut bakteriler ve bunların izolatlarına karsı mikrobiyolojik aktiviteleri araştırılmaktadır. Benzotiyazol bileşiklerinin bazı türevlerinin standart ilaçlardan dahi etkili olduğu bilinmektedir. Benzotiyazol türevleri antiviral, antibakteriyel, antimikrobiyal ve fungusidal (mantarları yok etme) aktiviteye sahip oldukları için büyük ilgi alanına sahip bileşiklerdir. Ayrıca antiallerjik, ateş düşürücü ve sakinleştirici olarak, boyalar içerisinde ara reaktif olarak, bitki koruyucusu olarak, histamin H2 antagonisti olarak ve fotoğrafik hassaslaştırıcı olarak kullanılırlar (Selim, M.A vd., 2000)

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

Örneğin, ilaç biliminde (farmakoloji) yeni ilaçların geliştirilmesinde yaygın olarak kullanılmaktadır. Bilgisayar kullanarak sentezden önce ilaçların yapıları hakkında önbilgi elde edilir, ilaçta istenen özellikler belirlenir ve bu özelliklere uygun sentezler gerçekleştirilir. (Chengvd., 2001)

Moleküllerin yapısını anlamak için genelde modeller üzerinde çalışılır. Bazı modeller sadece kararlı molekülleri değil, aynı zamanda kısa ömürlü, kararsız ara ürünleri ve geçiş hallerini modellemekde kullanılır. Bilgisayar yardımıyla kimya hesaplamaları içinde moleküllerin yapılarını ve bunların reaktivitelerini inceleyen iki alan vardır: moleküler mekanik ve elektronik yapı kuramı. Elektronik yapı kuramı içinde yarı deneysel moleküler orbital yöntemleri ve ab-inito yöntemleri yer alır. Her ikisi de temel hesaplamaları gerçekleştirir. Molekül modelleme programları sayesinde moleküller bilgisayar ekranında döndürülerek değişik açılardan görülebilir, geometrileri ve izomerik yapıları belirlenebilir, enerjileri tayin edilebilir, IR, UV, NMR spektrumları çizilebilir.(Dimoglo, ve Kandemirli, 2005)

Bu çalışmada Gauss-View (Frisch vd., Gaussian 03W, Revision 2004 E01) moleküler görüntüleme programı ve bilgisayarda Gaussian 03 (Foresman, 1996) paket programı kullanılarak bazı benzotiyazol Schiff bazlarını içeren C12H18ClN3OSmolekülünün yapıları, elektronik ve spektroskopik özellikleri teorik olarak incelendi. C12H18ClN3OS moleküler yapısı taban halde HF ve B3LYP ve BLYP metotları ile 6-31G, 6-31G⁺, 6-31G⁺⁺ ve 6-31G⁺⁺(d,p) temel setleri kullanılarak moleküllerin geometrik kararlı durumu bulundu ve yapısal uzunlukları, parametreleri bağ bağ açıları hesaplandı. Bu moleküllerin, infrared titreşim frekans değerleri ve 1H ve 13C NMR kimyasal kayma değerleri teorik olarak elde edildi. Elde edilen teorik değerler, deneysel verilerle karşılaştırıldı. Moleküllerin en yüksek dolu molekül orbital enerjileri (ɛHOMO, eV), en düşük boş molekül orbital enerjileri (ELUMO, eV) denge durumunda HF ve B3LYP ve BLYP metotları ile 6-31G, 6-31G⁺, 6-31G⁺⁺ ve 6-31G⁺⁺(d,p) temel setleri kullanılarak on iki farklı temel sette incelendi. Bu enerjiler dikkate alınarak sertlik (n) ve elektronegatiflik (χ) parametreleri tanımlandı.

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

2.MATERYAL VE HESAPLAMA METOTLARI

Bu çalışmada moleküler mekanik, yarı-deneysel ve *ab-initio* yöntemlerini içeren, çok sayıda teori ve temel set seçeneğine sahip olan oldukça kapsamlı bir program olan Gaussian 03W (Frisch vd., Gaussian 03W, Revision 2004 E01) paket programı kullanılmıştır.

Gaussian 03W (Frisch vd., Gaussian 03W, Revision 2004 E01) programı ile atom ve moleküllerin enerjileri hesaplanabilir, geometrik optimizasyonları yapılabilir ve enerjiye bağlı olan titreşim frekansları, kuvvet sabitleri ve dipol momentleri hesaplanabilir.

GaussView programı ise, bir molekülün üç boyutlu tasarımını yaparak molekülün özelliklerinin görsel olarak tanımlanmasına, bu değerler üzerinde değişiklik yapılabilmesine ve giriş dataları oluşturarak hesaplamaların başlatılmasına imkan veren, Gaussian paket programlarına dâhil edilmiş olan bir grafik ara yüzüdür (Foresman,1996).

Bu program molekülleri görsel hale getirip onları istediğimiz gibi döndürmemize, hareket ettirmemize, moleküllerde değişiklik yapmamıza ve Gaussian programında çalışılmış bir molekül için hesaplanmış olan sonuçları grafiksel olarak incelememize olanak sağlar. Bu sonuçlar; optimize edilmiş moleküler yapılar, moleküler orbitaller, elektrostatik potansiyel yüzeyi, atomik yükler, IR, Raman, NMR, VCD spektrumları, titreşim frekanslarına bağlı normal mod animasyonları gibi sıralanabilir.

 $C_{12}H_{18}CIN_3OS$ molekülünün en yüksek dolu molekül orbital enerjileri (ϵ HOMO) ve en düşük boş molekül orbital enerjileri (ϵ LUMO), HF ve DFT-B3LYP ve DFT-BLYP metotları ile 6-31G, 6-31G+, 6-31G++ ve 6-31G++(d,p) temel setleri kullanılarak elde edilmiştir. $C_{12}H_{18}CIN_3OS$ molekülü için NMR değerinin hesaplanmasında GIAO (Gauge Including Atomic Orbital-Ayar içeren atomik orbital) yöntemi kullanılmıştır.

3.BULGULAR VE TARTIŞMA

3.1. C₁₂H₁₈ClN₃OS Molekülünün En Uygun Geometrileri

C₁₂H₁₈ClN₃OS molekülün molekül yapısı taban halde HF ve DFT/B3LYP ve DFT/BLYP metotları ile 6-31G, 6-31G⁺, 6-31G⁺⁺ ve 6-31G⁺⁺(d,p) temel setleri kullanılarak optimize edildi. Molekülün atomlarını tanımlayan bağ uzunlukları ve bağ açıları temel halde elde edildi. Bir maddenin spektrumu en iyi gaz fazında iken alınır. Madde sıvı halde iken molekül yakınında bulunan başka moleküllerden etkilenebilir. . Örneğin aseton molekülünün ((CH₃)₂-C=O) gaz halindeki titreşim frekansı 1738 cm⁻¹, sıvı haldeki aynı titreşimin frekansı 1715 cm^{-1'}de gözlenmiştir.

Bu çalışmada elde edilen tüm sonuçlar gaz fazında hesaplandığından deneysel sonuçların teorik sonuçlara uyması için setler sırayla HF metodunda 0,89, B3LYP metodunda 0,96 ve BLYP metodunda ise 0,94 uyum faktörleri ile çarpıldı.

 $C_{12}H_{18}ClN_3OS$ molekülün şematik gösterimi **Şekil 1**'de deneysel ve teorik geometrik yapısı ise **Şekil 2**'te gösterilmiştir.

Şekil 1. 2-Amino-6-(N-izopropil) Amidin-2 Metil-benzotiyazol hidroklorik (C₁₂H₁₈ClN₃OS) molekülünün şematik gösterimi

Øcli

Deneysel geometrik yapısı

HF-6-31 G++(d,p) Teorik Geometrik yapısı

Şekil 2. $C_{12}H_{18}ClN_3OS$ molekülünün deneysel ve teorik geometrik yapısı

Tablo.2 : C₁₂H₁₈ClN₃OS molekülünün bağ uzunluklarının (Á) deneysel ve HF, B3LYP, BLYP metotları ile hesaplanan değerler ile karşılaştırılması

Uygulanan	Metotlar	HF			
Bağ uzunlukları (Å)	Deneysel [*]	6-31G	6-31G-+	6-31G-++	6-31G-++(d-p)
S1-C2	1,745	1,833	1,832	1,832	1,761
S1-C8	1,731	1,807	1,804	1,804	1,745
N3-C2	1,299	1,271	1,272	1,272	1,270
N3-C9	1,394	1,398	1,399	1,398	1,385
C2-C10	1,498	1,484	1,486	1,487	1,497
C4-C9	1,391	1,387	1,388	1,388	1,393
C4-C5	1,381	1,380	1,381	1,380	1,377
C5-C6	1,405	1,400	1,400	1,400	1,402
C6-C7	1,392	1,390	1,390	1,390	1,386
C7-C8	1,395	1,377	1,380	1,380	1,385
C8-C9	1,407	1,393	1,393	1,393	1,395
C6-C11	1,485	1,481	1,481	1,481	1,484
N1-C11	1,318	1,327	1,328	1,329	1,328
N2-C11	1,316	1,306	1,307	1,307	1,300
N2-C12	1,475	1,477	1,477	1,477	1,473
C12-C13	1,516	1,530	1,530	1,530	1,527
C12-C14	1,515	1,528	1,528	1,529	1,527

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

Kaya ve Diğerleri

Tablo.2 : C₁₂H₁₈ClN₃OS molekülünün bağ uzunluklarının (Á) deneysel ve HF, B3LYP, BLYP metotları ile hesaplanan değerler ile karşılaştırılması

Uygulanan	B3LYP				
Bağ uzunlukları (Å)	Deneysel [*]	6-31G	6-31G	6-31G-+	6-31G-++
S1-C2	1,745	1,833	1,857	1,864	1,863
S1-C8	1,731	1,807	1,812	1,812	1,812
N3-C2	1,299	1,271	1,300	1,296	1,296
N3-C9	1,394	1,398	1,399	1,402	1,402
C2-C10	1,498	1,484	1,489	1,489	1,489
C4-C9	1,391	1,387	1,403	1,402	1,402
C4-C5	1,381	1,380	1,390	1,392	1,392
C5-C6	1,405	1,400	1,417	1,414	1,414
C6-C7	1,392	1,390	1,406	1,404	1,404
C7-C8	1,395	1,377	1,391	1,392	1,392
C8-C9	1,407	1,393	1,416	1,417	1,416
C6-C11	1,485	1,481	1,480	1,480	1,480
N1-C11	1,318	1,327	1,355	1,344	1,344
N2-C11	1,316	1,306	1,316	1,326	1,326
N2-C12	1,475	1,477	1,492	1,491	1,490
C12-C13	1,516	1,530	1,535	1,539	1,536
C12-C14	1,515	1,528	1,540	1,533	1,533

Tablo.2 .**Devamı :** C₁₂H₁₈ClN₃OS molekülünün bağ uzunluklarının (Á) deneysel ve HF, B3LYP, BLYP metotları ile hesaplanan değerler ile karşılaştırılması

Uygulanan Metotlar		BLYP				
Bağ uzunlukları (Å)	Deneysel [*]	6-31G	6-31G-+	6-31G-++	6-31G- **(d-p)	
S1-C2	1,745	1,745	1,880	1,870	1,876	
S1-C8	1,731	1,731	1,845	1,840	1,840	
N3-C2	1,299	1,299	1,303	1,302	1,304	
N3-C9	1,394	1,394	1,404	1,402	1,403	
C2-C10	1,498	1,498	1,495	1,496	1,496	
C4-C9	1,391	1,391	1,408	1,409	1,409	
C4-C5	1,381	1,381	1,402	1,404	1,404	
C5-C6	1,405	1,405	1,427	1,428	1,427	
C6-C7	1,392	1,392	1,412	1,418	1,418	
C7-C8	1,395	1,395	1,398	1,400	1,400	
C8-C9	1,407	1,407	1,420	1,421	1,419	
C6-C11	1,485	1,485	1,505	1,505	1,503	
N1-C11	1,318	1,318	1,360	1,362	1,361	
N2-C11	1,316	1,316	1,315	1,317	1,316	
N2-C12	1,475	1,475	1,498	1,502	1,498	
C12-C13	1,516	1,516	1,538	1,537	1,545	
C12-C14	1,515	1,515	1,540	1,539	1,540	

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

Kava	ve	Diğer	leri
1 \(1 \(1 \(1 \(1 \(1 \)))	vv	Diger	$\iota \iota \iota$

Tablo 3 : C ₁₂ H ₁₈ ClN ₃ OS molekülünün bağ açılarının (°) deneysel ve
HF, B3LYP,BLYP metotları ile hesaplanan değerler ile
karşılaştırılması

Uygulan	an Metotlar	HF			
Bağ açıları	Deneysel [**] [54] [55] [10]	6- 31G	6-31G- +	6-31G- ++	6-31G- ++(d-p)
C10-C2-N3	123,9 [*]	125,2	125,4	125,3	123,9
C10-C2-S1	120,1 [*]	120,5	120,3	120,4	120,4
C2-S1-C8	89,3	87,1	87,2	87,2	88,6
C2-N3-C9	110,5	113,9	113,8	113,9	111,7
N3-C2-S1	116,0	114,3	114,2	114,3	115,7
N3-C9-C8	115,1	115,2	115,5	115,2	115,1
N3-C9-C4	125,2	124,5	124,5	124,5	124,7
C4-C9-C8	119,9	120,3	120,3	120,4	120,0
C9-C8-S1	109,3	109,5	109,5	109,5	108,9
C9-C4-C5	119,0	119,1	119,0	119,0	119,1
C4-C5-C6	120,8	120,2	120,2	120,2	120,2
C5-C6-C7	121,2	121,0	120,9	120,9	121,1
C6-C7-C8	117,4	118,1	118,1	118,2	118,0
C7-C8-C9	121,7	121,3	121,2	121,2	121,3
C7-C8-S1	129,0	129,1	129,3	129,3	129,7
C7-C6-C11	120,0	118,7	118,8	118,8	118,8
C5-C6-C11	118,8	120,2	120,2	120,2	120,0
C6-C11-N1	118,4	118,0	118,1	118,0	118,6
C6-C11-N2	118,6	119,5	119,7	119,7	119,0
N1-C11-N2	123,1	122,2	122,0	122,1	122,0
C11-N2-C12	124,5	126,7	126,6	126,6	127,3
N2-C12-C13	109,8	111,7	111,9	111,9	111,7
N2-C12-C14	108,2	107,6	107,7	107,7	107,8
C13-C12-C14	112,3	112,0	111,9	112,0	112,2

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

Uygulana	n Metotlar	B3LYP					
Bağ açıları	Deneysel [**] [54] [55] [10]	6-31G	6-31G	6-31G	6-31G		
C10-C2-N3	123,9 [*]	125,2	125,2	125,2	125,2		
C10-C2-S1	120,1 [*]	119,9	119,9	119,9	119,9		
C2-S1-C8	89,3	86,8	86,8	86,8	86,8		
C2-N3-C9	110,5	112,8	112,8	112,8	112,8		
N3-C2-S1	116,0	114,8	114,8	114,8	114,8		
N3-C9-C8	115,1	115,7	115,7	115,7	115,7		
N3-C9-C4	125,2	124,7	124,7	124,7	124,7		
C4-C9-C8	119,9	119,7	119,7	119,7	119,7		
C9-C8-S1	109,3	109,8	109,8	109,8	109,8		
C9-C4-C5	119,0	119,0	119,0	119,0	119,0		
C4-C5-C6	120,8	120,6	120,6	120,6	120,6		
C5-C6-C7	121,2	121,1	121,1	121,1	121,1		
C6-C7-C8	117,4	117,4	117,4	117,4	117,4		
C7-C8-C9	121,7	122,2	122,2	122,2	122,2		
C7-C8-S1	129,0	127,9	127,9	127,9	127,9		
C7-C6-C11	120,0	119,1	119,1	119,1	119,1		
C5-C6-C11	118,8	119,7	119,7	119,7	119,7		
C6-C11-N1	118,4	117,0	117,0	117,0	117,0		
C6-C11-N2	118,6	120,8	120,8	120,8	120,8		
N1-C11-N2	123,1	122,0	122,0	122,0	122,0		
C11-N2-C12	124,5	125,3	125,3	125,3	125,3		
N2-C12-C13	109,8	109,5	109,5	109,5	109,5		
N2-C12-C14	108,2	108,5	108,5	108,5	108,5		
C13- C12-C14	112,3	112.5	112.5	112.5	112.5		

Tablo 2.Devamı. C₁₂H₁₈ClN₃OS molekülünün bağ açılarının (°) deneysel ve HF, B3LYP,BLYP metotları ile hesaplanan değerler ile karşılaştırılması

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

Rugu UL Diguiur	Kaya	ve	Diğeri	leri
-----------------	------	----	--------	------

Tablo 3: C₁₂H₁₈ClN₃OS molekülünün bağ açılarının (°) deneysel ve HF, B3LYP,BLYP metotları ile hesaplanan değerler ile karşılaştırılması

Uygulanan M	etotlar	otlar BLYP					
Bağ açıları	6-31G	6-31G-+	6-31G-++	6-31G-++(d-p)			
C10-C2-N3	123,9	126,2	126,4	126,2			
C10-C2-S1	120,1	121,5	121,4	121,3			
C2-S1-C8	89,3	87,4	87,5	87,5			
C2-N3-C9	110,5	113,5	113,4	113,4			
N3-C2-S1	116,0	112,7	112,2	112,2			
N3-C9-C8	115,1	113,9	113,9	113,8			
N3-C9-C4	125,2	125,9	126,0	125,8			
C4-C9-C8	119,9	120,1	120,0	120,1			
C9-C8-S1	109,3	109,9	109,9	110,0			
C9-C4-C5	119,0	118,3	118,4	118,4			
C4-C5-C6	120,8	121,7	121,6	121,5			
C5-C6-C7	121,2	119,9	119,8	119,9			
C6-C7-C8	117,4	118,1	118,2	118,1			
C7-C8-C9	121,7	121,9	121,9	121,6			
C7-C8-S1	129,0	128,1	128,1	128,4			
C7-C6-C11	120,0	119,7	119,9	119,1			
C5-C6-C11	118,8	120,1	120,2	120,1			
C6-C11-N1	118,4	115,2	114,8	115,2			
C6-C11-N2	118,6	119,2	119,2	119,0			
N1-C11-N2	123,1	125,2	125,1	125,1			
C11-N2-C12	124,5	121,8	122,0	121,9			
N2-C12-C13	109,8	109,5	109,7	109,9			
N2-C12-C14	108,2	108,2	108,7	108,4			
C13- C12-C14	112,3	111,5	111,6	111,8			

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

C12H18ClN3OS molekülü için HF, DFT/B3YLP ve DFT/BYLP metotları kullanılarak hidrojen bağlarına bakıldı. C12H18ClN3OS molekülü için literatürde N2-H-O bağının bağ uzunluğu 2,887 Å, bağ açısı ise 159,9°, O-H-Cl bağının bağ uzunluğu 3,213 Å, bağ açısı ise vd.,2003). 167,6° verildi (Caleta Yapılan calışmada olarak C12H18CIN3OS molekülü için sadece HF metodunda N2-H-O hidrojen bağının bağ uzunluğu 2,84 Å, bağ açısı ise 160,10°, O-H-Cl hidrojen bağının bağ uzunluğu 3,22 Å, bağ açısı ise 162,26° olarak elde edildi. C12H18ClN3OS molekülü için HF,B3LYP ve BLYP metodu ile 6-31G, 6-31G+,6-31G++ ve 6-31G++(d,p) temel setleri kullanılarak elde edilen tüm setlerdeki teorik geometrik veriler mevcut deneysel verilerle iyi uyum içindedir. Genel olarak C₁₂H₁₈ClN₃OS molekülünde HF,B3LYP ve BLYP vöntemlerinde kullanılan toplam 12 set için bağ uzunluklarında deneysel ve teorik değerler arasında değerlendirme yapılmıştır. HF metodundaki 4 set için uyumluluk R²=0,99, B3LYP metodundaki 4 set için uyumluluk R2=0,99 bulunmuştur. BLYP metodunda ise 4 set için uyumluluk R2=0,98 olarak elde edilmiştir. Yapılan değerlendirme sonucunda bağ uzunluklarında deneysel sonuçlara en uyumlu lineer regresyon denklemi $B3LYP/6-31 G^{++}(d,p)$ setinde elde edilmiştir. Bağ açılarında yapılan değerlendirmede HF metodundaki 4 set için uyumluluk R²=0,98, B3LYP metodundaki 4 set için uyumluluk R²=0,98 bulunmuştur. BLYP metodunda ise 4 set için uyumluluk R²=0,96 olarak elde edildi. Bağ açılarında en uyumlu lineer regresyon denklemi HF-6-31 $G^{++}(d,p)$ setinde rastlandı.

Şekil 3. C₁₂H₁₈ClN₃OS molekülünün bağ uzunluklarının deneysel verilere en uygun B3LYP/6-31G⁺⁺(d,p) seti ile lineer gösterimi

Titreşim modlarının	HF					
işaretlenmesi	6-31G	6-31G+	6-31G++	6-31G++(d,p)		
𝒴 H₂O asimetrik gerilme	3652	3660	3652	3760		
<i>V</i> N-H ₂ asimetrik gerilme	3532	3532	3532	3495		
<i>v</i> N-H ₂ asimetrik gerilme	3423	3420	3420	3465		
ν H ₂ O asimetrik gerilme	3300	3279	3272	3392		
<i>v</i> N-H ₂ asimetrik gerilme	3183	3230	3227	3350		
V C-H bağ gerilmesi	3042	3037	3037	3019		
v C-H bağ gerilmesi	3026	3022	3022	3006		
∨ C-H bağ gerilmesi	3024	3018	3018	3003		
V C-H₃ bağ gerilmesi	2953	2948	2947	2945		
∨ C-H₃ bağ gerilmesi	2946	2940	2939	2936		
√ C-H₂ ve C-H3 bağ gerilmesi	2925	2919	2918	2911		
V C-H₂ ve C-H3 bağ gerilmesi	2917	2911	2910	2904		
V C-H₂ ve C-H3 bağ gerilmesi	2914	2910	2909	2902		
<i>v</i> C-H asimetrik gerilme	2912	2909	2908	2897		
ν C-H asimetrik gerilme	2864	2859	2858	2883		
<i>V</i> C-H ₃ simetrik gerilme	2854	2852	2852	2847		
<i>V</i> C-H ₃ simetrik gerilme	2851	2847	2846	2841		
ρ_r C-H ₃ -sallanma	2845	2842	2842	2834		
δ_s N-H ₂ makaslama	1673	1666	1664	1636		
γ N-H ₂ açı bükülmesi ν C-N bağ gerilmesi	1633	1622	1621	1619		

Tablo 4. C₁₂H₁₈ClN₃OS molekülünün teorik titreşim frekanslarının (cm⁻¹) HF, B3LYP ve BLYP yöntemleri ile karşılaştırılması.

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

Titreşim modlarının	HF					
işaretlenmesi	6-31G	6-31G+	6-31G++	6-31G++(d,p)		
$ ho_r$ C-H-sallanma uC-N bağ gerilmesi	1621	1612	1612	1607		
$\delta_{_S}\mathrm{H}_2\mathrm{O}$ makaslama	1604	1590	1590	1592		
V C-C bağ gerilmesi	1587	1578	1578	1568		
v C-C bağ gerilmesi	1569	1563	1563	1550		
$ ho_r$ C-H-sallanma	1548	1536	1535	1499		
$ ho_r$ C-H-sallanma	1481	1476	1476	1457		
$ ho_r$ C-H-sallanma	1475	1471	1470	1453		
v C-C bağ gerilmesi	1467	1463	1463	1442		
$ ho_r$ C-H-sallanma	1466	1461	1461	1434		
$ ho_r$ C-H-sallanma	1457	1452	1452	1431		
$ ho_r$ C-H-sallanma	1452	1449	1450	1424		
$ ho_r$ C-H-sallanma	1450	1447	1447	1422		
ρ_r C-H-sallanma	1426	1421	1420	1397		
$ ho_r$ C-H-sallanma	1411	1407	1407	1386		
v C-C bağ gerilmesi	1406	1401	1401	1375		
<i>v</i> C-C bağ gerilmesi	1403	1399	1398	1373		

Tablo 5: C₁₂H₁₈ClN₃OS molekülünün teorik titreşim frekanslarının (cm⁻¹) HF, B3LYP ve BLYP yöntemleri ile karşılaştırılması.

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

Tablo 7: C ₁₂ H ₁₈ ClN ₃ OS molekülünün teorik titreşim frekanslarının	
(cm-1) HF, B3LYP ve BLYP yöntemleri ile karşılaştırılması.	

Titresim modlarının	HF					
işaretlenmesi	6-31G	6-31G+	6-31G ⁺⁺	6-31G ⁺⁺ (d,p)		
u C-C bağ gerilmesi $ ho_r$ C-H-sallanma	1389	1382	1381	1366		
δ_{s} C-H makaslama	1355	1349	1349	1319		
$ ho_r$ C-H-sallanma	1334	1331	1331	1310		
<i>v</i> C-C bağ gerilmesi	1290	1287	1287	1263		
<i>V</i> C-C asimetrik gerilme	1233	1228	1228	1231		
<i>v</i> C-C bağ gerilmesi	1217	1213	1214	1180		
$ ho_r$ C-H-sallanma δ_s C-H makaslama	1185	1180	1180	1158		
u C-C bağ gerilmesi $ ho_r$ C-H-sallanma	1167	1164	1164	1151		
$ ho_r$ C-H-sallanma	1151	1147	1147	1140		
$\omega\mathrm{NH_2}$ dalgalanma $ ho_r\mathrm{C} ext{-H-sallanma}$	1146	1142	1142	1127		
$artheta$ C-H dalgalanma $ ho_r$ C-H-sallanma	1132	1129	1129	1108		

The Teoretical Investigation Of Geometrical, Electronic And Spectroscopic Properties

Titreşim modlarının	B3LYP					
işaretlenmesi	6-31G	6-31G+	6-31G++	6-31G ⁺⁺ (d,p)		
V H ₂ O asimetrik gerilme	3613	3632	3626	3728		
V N-H₂ asimetrik gerilme	3600	3565	3565	3592		
𝒴 № N-H₂ asimetrik gerilme	3481	3444	3444	3471		
V H ₂ O asimetrik gerilme	3112	3117	3115	3289		
𝒴 N-H₂ asimetrik gerilme	3075	3110	3110	3090		
V C-H bağ gerilmesi	3038	3097	3097	3073		
V C-H bağ gerilmesi	3038	3004	3086	3066		
V C−H bağ gerilmesi	3012	3003	3031	3028		
V C-H₃ bağ gerilmesi	3009	2996	3031	3017		
V C-H₃ bağ gerilmesi	2997	3004	3004	3009		
V C-H₂ ve C-H3 bağ gerilmesi	2994	3003	3002	3002		
V C-H₂ ve C-H3 bağ gerilmesi	2976	2996	2995	2987		
V C-H₂ ve C-H3 bağ gerilmesi	2940	2990	2989	2984		
V C-H asimetrik gerilme	2934	2930	2930	2929		
V C-H asimetrik gerilme	2920	2930	2930	2927		
V C-H ₃ simetrik gerilme	2882	2926	2926	2920		
V C-H ₃ simetrik gerilme	2785	2912	2908	2904		
$ ho_r$ C-H ₃ -sallanma	2592	2907	2906	2515		
$\delta_{s}^{}$ N-H $_{2}$ makaslama	1649	1658	1657	1631		
$\gamma ~ \overline{ m N-H_2}$ açı bükülmesi u C-N bağ gerilmesi	1636	1602	1601	1588		

Tablo 6:C₁₂H₁₈ClN₃OS molekülünün teorik titreşim frekanslarının (cm⁻¹) HF, B3LYP ve BLYP yöntemleri ile karşılaştırılması.

Kaya ve Diğerleri

Tablo 7: C ₁₂ H ₁₈ ClN ₃ OS molekülünün teorik titreşim frekanslarını	n
(cm ⁻¹) HF, B3LYP ve BLYP yöntemleri ile karşılaştırılması.	

Titresim modlarının	B3LYP						
işaretlenmesi	6-31G	6-31G+	6-31G++	6-31G++(d,p)			
$ ho_r$ C-H-sallanma V C-N bağ gerilmesi	1596	1593	1593	1581			
$\delta_{_{S}}\mathrm{H}_{2}\mathrm{O}$ makaslama	1579	1565	1564	1576			
V C-C bağ gerilmesi	1558	1557	1556	1528			
V C-C bağ gerilmesi	1544	1545	1545	1510			
$ ho_r$ C-H-sallanma	1524	1528	1528	1489			
$ ho_r$ C-H-sallanma	1495	1489	1488	1458			
$ ho_r$ C-H-sallanma	1483	1479	1478	1446			
V C-C bağ gerilmesi	1475	1470	1470	1440			
$ ho_r$ C-H-sallanma	1467	1466	1465	1437			
$ ho_r$ C-H-sallanma	1459	1454	1454	1425			
$ ho_r$ C-H-sallanma	1459	1451	1451	1422			
$ ho_r$ C-H-sallanma	1455	1451	1450	1418			
$ ho_r$ C-H-sallanma	1422	1409	1408	1389			
$ ho_r$ C-H-sallanma	1408	1401	1400	1377			
<i>v</i> C-C bağ gerilmesi	1405	1397	1396	1357			
<i>v</i> C-C bağ gerilmesi	1400	1392	1392	1356			

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

Titreşim modlarının	B3LYP					
işaretlenmesi	6-31G	6-31G+	6-31G++	6-31G ⁺⁺ (d,p)		
V C-C bağ gerilmesi $ ho_r$ C-H-sallanma	1374	1311	1379	1347		
δ_s C-H makaslama	1352	1276	1353	1318		
$ ho_r$ C-H-sallanma	1324	1221	1319	1307		
v C-C bağ gerilmesi	1315	1311	1310	1287		
∨ C-C asimetrik gerilme	1294	1276	1276	1263		
∨ C-C bağ gerilmesi	1237	1221	1221	1241		
$ ho_r$ C-H-sallanma δ_s C-H makaslama	1207	1179	1179	1153		
$ u$ C-C bağ gerilmesi $ ho_r$ C-H-sallanma	1182	1166	1166	1149		
$ ho_r$ C-H-sallanma	1161	1141	1141	1137		
$artheta$ NH2 dalgalanma $ ho_r$ C-H-sallanma	1141	1135	1135	1113		
ω C-H dalgalanma $ ho_r$ C-H-sallanma	1131	1130	1129	1102		

Tablo 8: C₁₂H₁₈ClN₃OS molekülünün teorik titreşim frekanslarının (cm⁻¹) HF, B3LYP ve BLYP yöntemleri ile karşılaştırılması.

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

Kaya ve Diğerleri

Titreşim modlarının	BLYP						
işaretlenmesi	6-31G	6-31G+	6-31G++	6-31G ⁺⁺ (d,p)			
V H ₂ O asimetrik gerilme	3408	3427	3421	3505			
<i>v</i> N-H ₂ asimetrik gerilme	3377	3379	3362	3377			
V N-H ₂ asimetrik gerilme	3298	3313	3306	3263			
∨ H₂O asimetrik gerilme	2973	2971	2980	3092			
V N-H2 asimetrik gerilme	2964	2965	2965	2905			
∨ C-H bağ gerilmesi	2957	2958	2971	2888			
V C-H bağ gerilmesi	2898	2896	2896	2882			
V C-H bağ gerilmesi	2883	2869	2874	2847			
V C-H₃ bağ gerilmesi	2876	2864	2863	2836			
V C-H₃ bağ gerilmesi	2872	2856	2855	2828			
V C-H₂ ve C-H3 bağ gerilmesi	2871	2852	2851	2822			
V C-H₂ ve C-H3 bağ gerilmesi	2854	2849	2848	2808			
V C-H₂ ve C-H3 bağ gerilmesi	2846	2849	2848	2805			
V C-H asimetrik gerilme	2800	2798	2797	2753			
∨ C-H asimetrik gerilme	2796	2791	2791	2751			
V C-H ₃ simetrik gerilme	2787	2786	2787	2745			
V C-H₃ simetrik gerilme	2641	2639	2637	2730			
$ ho_r$ C-H ₃ -sallanma	2491	2494	2487	2364			
$\delta_{_s}$ N-H2 makaslama	1659	1658	1655	1633			
 γ N-H₂ açı bükülmesi ν C-N bağ gerilmesi 	1613	1609	1611	1593			

Tablo 9: C₁₂H₁₈ClN₃OS molekülünün teorik titreşim frekanslarının (cm⁻¹) HF, B3LYP ve BLYP yöntemleri ile karşılaştırılması.

	BLYP					
Titreşim modlarının işaretlenmesi	6-31G	6-31G+	6-31G ⁺⁺	6-31G ⁺⁺ (d,p)		
ρ_r C-H-sallanma	1597	1593	1592	1587		
<i>v</i> C-N bağ gerilmesi						
δ_s H2O makaslama	1541	1550	1550	1481		
v C-C bağ gerilmesi	1502	1493	1491	1436		
v C-C bağ gerilmesi	1476	1477	1481	1420		
$ ho_r$ C-H-sallanma	1459	1467	1466	1399		
ρ_r C-H-sallanma	1446	1448	1449	1370		
$ ho_r$ C-H-sallanma	1437	1438	1439	1359		
v C-C bağ gerilmesi	1423	1420	1419	1353		
$ ho_r$ C-H-sallanma	1411	1409	1406	1351		
$ ho_r$ C-H-sallanma	1398	1404	1402	1340		
$ ho_r$ C-H-sallanma	1392	1396	1393	1337		
$ ho_r$ C-H-sallanma	1390	1390	1389	1333		
ρ_r C-H-sallanma	1378	1381	1380	1305		
$ ho_r$ C-H-sallanma	1369	1370	1365	1295		
v C-C bağ gerilmesi	1332	1331	1332	1276		
v C-C bağ gerilmesi	1328	1331	1330	1275		

Tablo 10: C₁₂H₁₈ClN₃OS molekülünün teorik titreşim frekanslarının (cm⁻¹) HF, B3LYP ve BLYP yöntemleri ile karşılaştırılması.

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

Kava	ve	Diğeri	leri
1	vv	Digon	011

Titreşim modlarının	BLYP					
işaretlenmesi	6-31G	6-31G+	6-31G++	6-31G++(d,p)		
<i>V</i> C-C bağ gerilmesi $ ho_r$ C-H-sallanma	1327	1321	1318	1266		
δ_{s} C-H makaslama	1312	1314	1313	1239		
$ ho_r$ C-H-sallanma	1284	1288	1286	1229		
V C-C bağ gerilmesi	1257	1259	1259	1210		
<i>v</i> C-C asimetrik gerilme	1235	1236	1242	1187		
V C-C bağ gerilmesi	1229	1230	1235	1167		
$ ho_r$ C-H-sallanma δ_s C-H makaslama	1216	1225	1211	1084		
u C-C bağ gerilmesi $ \rho_r$ C-H-sallanma	1148	1163	1158	1080		
$ ho_r$ C-H-sallanma	1109	1116	1113	1069		
ω NH ₂ dalgalanma $ ho_r$ C-H-sallanma	1078	1078	1077	1046		
ω C-H dalgalanma $ ho_r$ C-H-sallanma	1069	1073	1074	1036		

Tablo 11: C₁₂H₁₈ClN₃OS molekülünün teorik titreşim frekanslarının (cm⁻¹) HF, B3LYP ve BLYP yöntemleri ile karşılaştırılması.

 $C_{12}H_{18}ClN_3OS$ molekülü için deneysel olarak literatürde 1615-1655 cm⁻¹ aralığında karakteristik simetrik ve antisimetrik C-N gerilmesi gözlendi [9]. Benzer 2-metilbenzotiyazol (C₈H₇NS) molekülü için C-N gerilmesi 1615-1670 aralığında gözlendi [URL-1]. Tablo 7'ye bakıldığında C₁₂H₁₈ClN₃OS molekülü için teorik olarak C=N gerilmesi 1580-1640 cm⁻¹ civarında gözlendi. C₁₂H₁₈ClN₃OS molekülü için C-N gerilmesi HF metodu için 1600-1635 cm⁻¹, B3LYP metodu için 1580-1640 cm⁻¹ ve BLYP metodunda ise 1585-1615 cm⁻¹ civarında gözlendi. Bu verilere bakılarak bir değerlendirme yapıldığında literatürdeki deneysel verilere en uyumlu sonucu veren metodun HF metodu olduğu görüldü.

3.1.C₁₂H₁₈ClN₃OS Molekülünün HOMO ve LUMO Enerjileri

 $C_{12}H_{18}CIN_3OS$ molekülü için aynı metot ve aynı temel setler kullanılarak HOMO ve LUMO enerjileri elde edildi. $C_{12}H_{18}CIN_3OS$ molekülü için teorik olarak hesaplanan HOMO ve LUMO enerjileri, sertlik parametresi (ŋ) ve elektronegatiflik (χ) değerleri tablo 5' de verildi. $C_{12}H_{18}CIN_3OS$ molekülünün HF/6-31G, B3LYP/6-31G ve BLYP/6-31G modellerinde HOMO ve LUMO gösterimleri Şekil 5' te verilmiştir.

Şekil 4. C₁₂H₁₈ClN₃OS molekülünün HF/6-31G, B3LYP/6-31G ve BLYP/6-31G modellerinde HOMO ve LUMO gösterimleri

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

HOMO ve LUMO enerjileri, sertlik parametresi ve elektronegatiflik								
C ₁₂ H ₁₈ ClN ₃ OS Molekülü için Teorik Olarak Hesaplanan HOMO ve								
		I		Enerji	leri	.1		
_		 н	6-31G	Set1 116	e Hesaj	planan R3I	VP	
Par							11	•
ametreler	6-31G	6-31G⁺	6-31G++	5-31G++ (d,p)	6-31G	6-31G+	6-31G++	5-31G++ (d,p)
номо	-0,313	-0,313	-0,313	-0,322	-0,311	-0,311	-0,311	-0,321
LUMO	-0,203	-0,204	-0,204	-0,211	-0,202	-0,204	-0,204	-0,211
∆ε= ε H OMO- εLUMO	-0,110	-0,109	-0,109	-0,11	-0,109	-0,107	-0,107	-0,11
Sertlik parametresi	0,0550	0,0545	0,0545	0,0555	0,0545	0,0535	0,0535	0,0550
Elektronegatiflik	0,2580	0,2585	0,2585	0,2665	0,2565	0,2575	0,2575	0,266

Tablo 12. C₁₂H₁₈ClN₃OS molekülü için teorik olarak hesaplanan

Kaya ve Diğerleri

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

Tablo 13: C₁₂H₁₈ClN₃OS molekülü için teorik olarak hesaplanan HOMO ve LUMO enerjileri, sertlik parametresi ve elektronegatiflik C12H18ClN3OS Molekülü için Teorik Olarak Hesaplanan HOMO ve LUMO Enerjileri 6-31G Seti ile Hesaplanan Parametreler HF 6-31G++ 6-31G++ (d,p) 6-31G+ 6-31G [OH -0,3 -0,3 £,0--0,3

MO	13	13	13	22
LUMO	-0,203	-0,204	-0,204	-0,211
∆ε= ε H OMO- εLUMO	-0,110	-0,109	-0,109	-0,11
Sertlik parametresi	0,0550	0,0545	0,0545	0,0555
Elektro- negatiflik	0,2580	0,2585	0,2585	0,2665

3.2.C₁₂H₁₈ClN₃OS Molekülünün ¹³C ve ¹H Kimyasal Kaymaları

Moleküllerin NMR değerinin hesaplanmasında GIAO (Gauge Including Atomic Orbital-Ayar içeren atomik orbital) yöntemi kullanılmıştır C₁₂H₁₈ClN₃OS molekülü için teorik olarak hesaplanan

Kaya ve Diğerleri

¹³C-NMR değerleri ve ¹H-NMR değerlerinin deneysel değerler ile kıyaslanması sırasıyla tablo 6 ve tablo 7 de verilmiştir.

Uygulana n Metotlar		HF			B3LYP			BLYP		
¹³ C NMR	Deneyse 1 (ppm)	6-31G	6-31G+	6-31G++	6-31G	6-31G+	6-31G++	6-31G	6-31G+	6-31G++
C2	171,6	180,1	179,8	190,0	168,9	167,8	170,4	164,7	166,3	163,4
	4	6	4	5	2	2	3	3	4	3
1 C1	161,5	174,9	177,1	163,2	139,4	158,0	140,4	137,2	138,8	141,7
	8	0	3	4	5	9	8	7	4	5
C8	155,7	163,4	162,7	147,1	139,1	156,6	138,9	140,4	140,4	131,0
	3	1	7	8	7	6	8	7	8	2
C9	135,3	151,3	151,2	149,5	133,1	141,7	134,1	133,0	134,4	126,0
	7	9	2	9	7	5	2	8	4	5
C6	126,2	132,1	132,2	135,2	122,9	140,9	123,5	123,5	124,2	119,5
	6	4	7	4	5	2	0	9	8	0
C4	125,5 3	127,1	126,4 0	123,4 7	112,1 4	130,0 2	112,5 8	112,8 1	113,5 0	119,2 6
C7	123,2	122,1	122,1	129,3	111,5	126,5	111,9	111,1	111,9	112,8
	7	3	3	6	4	8	7	0	0	9
C5	121,9	120,9	121,2	126,5	111,0	124,5	110,6	110,9	111,1	100,7
	6	0	8	3	3	4	6	8	1	2
2 C1	45,38	40,61	40,53	42,58	43,98	52,29	44,91	49,86	50,88	46,67
4 <u>C</u> 1	21,43	19,10	18,71	18,70	15,39	21,62	18,96	18,99	18,62	18,12
3 C1	20,23	17,71	17,32	18,11	14,95	19,33	16,75	17,11	15,78	17,20
0 C1	20,23	16,81	14,94	16,97	14,34	19,12	15,47	16,01	15,49	15,95

Tablo 14. Teorik Olarak Hesaplanan ¹³C-NMR değerlerinin deneysel değerler ile kıyaslanması

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

Şekil 5. C₁₂H₁₈ClN₃OS molekülünü için hesaplanan ¹³C-NMR değerlerinin deneysel verilere en uygun HF/6-31G seti ile lineer gösterimi

Kau	а	ve	D	iŏ	eri	leri
11119	n	vv	$\boldsymbol{\nu}$	νx	c_{II}	u_{i}

Tablo 15. Teorik Olarak Hesaplanan ¹ H-NMR değerlerinin deneysel
değerler ile kıyaslanması

Uygulanar Metotlar		HF			DF	T-B3L	YP	DFT BLYP		
¹ H NMR	Deneysel (ppm)	6-31G	6-31G+	6-31G++	6-31G	6-31G+	6-31G++	6-31G	6-31G+	6-31G++
H8	8,06	9,68	10,17	10,13	9,53	9,40	9,39	8,46	8,74	9,39
H36	89,68	9,03	9,43	9,46	9,26	9,41	9,45	9,46	9,62	9,45
H7	8,48	7,56	7,75	7,75	8,79	8,57	8,58	8,44	8,64	8,58
H31	7,77	7,54	7,81	7,80	7,27	7,56	7,63	7,80	7,37	7,63
H19	9,56	5,65	5,66	5,63	5,23	5,66	5,63	5,78	5,65	5,64
H18	9,56	5,31	5,46	5,48	5,09	5,47	5,51	5,48	5,47	5,51
H21	4,08	3,19	3,38	3,37	3,03	3,21	3,18	3,29	3,17	3,18
H13	2,84	2,97	2,99	2,97	2,57	2,90	2,88	2,87	2,77	2,88
H30	2,84	2,18	2,22	2,22	2,31	3,29	2,22	2,26	2,27	2,23
H14	2,84	2,24	2,27	2,26	2,26	2,23	2,33	2,23	2,26	2,22
H29	1,26	1,54	1,60	1,62	1,13	1,22	1,22	1,22	1,20	1,22
H25	1,26	1,46	1,58	1,58	1,12	1,28	1,26	1,21	1,29	1,26
H28	1,26	1,40	1,53	1,54	1,11	1,28	1,26	1,19	1,28	1,26
H26	1,26	1,33	1,41	1,39	1,09	1,07	1,07	1,08	1,06	1,06
H27	1,26	1,12	1,19	1,15	0,93	0,94	0,94	1,05	1,02	0,94
H24	1,26	1,03	1,03	1,03	1,03	0,99	0,98	1,03	1,02	0,98

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

Şekil 6. C₁₂H₁₈ClN₃OS molekülünü için hesaplanan ¹H-NMR değerlerinin deneysel verilere en uygun DFT/BLYP/6-31G seti ile lineer gösterimi

4.SONUÇLAR

C₁₂H₁₈ClN₃OS ve C₁₁H₁₅ClN₄S moleküllerinin moleküler yapısı taban halde (boşlukta) HF ve B3LYP ve BLYP metotları ile 6-31G, 6-31G+, 6-31G++ ve 6-31G++(d,p) temel setleri kullanılarak moleküllerin kararlı yapıları geometrik optimizasyonu yapılarak bulundu ve yapısal parametreleri bağ uzunlukları, bağ açıları hesaplandı. Optimize edilmiş geometrik yapısına ait bağ uzunlukları için denevsel değerler ile hesaplanan değerler arasında genel olarak uyumlu sonuç elde edilmiştir. C12H18CIN3OS molekülü için HF yönteminde kullanılan 4 set sonucu bağ uzunluklarında ve bağ açılarında deneysel sonuçlara en uyumlu lineer regresyon denklemi HF/6-31 G++(d,p) setinde rastlanmıştır. C12H18ClN3OS Molekülü için B3LYP yönteminde kullanılan 4 set sonucu bağ uzunluklarında ve bağ açılarında deneysel sonuçlara en uyumlu lineer regresyon denklemi B3LYP/6-31G⁺⁺(d,p) setinde rastlanmıştır. C₁₂H₁₈ClN₃OS molekülü için BLYP yönteminde kullanılan 4 set sonucu bağ uzunluklarında ve bağ açılarında deneysel sonuçlara en uyumlu lineer regresyon denklemi BLYP/6-31G++(d,p) setinde rastlanmıştır. Genel olarak C12H18ClN3OS molekülünde HF, B3YLP ve BYLP yöntemlerinde kullanılan toplam 12 set için deneysel ve teorik değerler arasında vapılan değerlendirme sonucunda bağ uzunluklarında deneysel sonuçlara en uyumlu lineer regresyon denklemi B3LYP/6-31G++(d,p) setinde, bağ açılarında ise HF/6-31G++(d,p) setinde rastlanmıştır. C12H18ClN3OS molekülü için 3700-2800 cm⁻¹ frekans aralığında gerilme hareketi, 2800-1600 cm⁻¹ frekans aralığında makaslama, açı bükülmesi ve sallanma hareketi, 1600-400 cm⁻¹ frekans aralığında ise makaslama, gerilme, sallanma açı bükülmesi, dalgalanma, kıvırma hareketleri gözlemlenmiştir. C₁₂H₁₈ClN₃OS molekülü için en yüksek dolu molekül orbital enerjileri (EHOMO) ve en düşük boş molekül orbital enerjileri (ELUMO), HF ve B3LYP ve BLYP metotlari ile 6-31G, 6-31G⁺, 6-31G⁺⁺ ve 6-31G⁺⁺(d,p) temel setleri kullanılarak elde edilmiştir. Optimize edilmiş C12H18ClN3OS molekülü için 3 farklı metot ve 3 farklı temel setler kullanılarak NMR değerleri elde edilmiştir. Moleküllerin NMR değerinin hesaplanmasında GIAO (Gauge Including Atomic Orbital-Ayar içeren atomik orbital) yöntemi kullanılmıştır. Genel olarak C12H18ClN3OS molekülünde HF, B3LYP ve BYLP yöntemlerinde kullanılan toplam 9 set için NMR değerleri incelenmiştir. Deneysel ve

EÜFBED - Fen Bilimleri Enstitüsü Dergisi Cilt-Sayı: 7-2 Yıl: 2014 233-266

teorik değerler arasında yapılan değerlendirme sonucunda ¹³C-NMR ve ¹H-NMR değerleri için deneysel sonuçlara en uyumlu lineer regresyon denklemi sırasıyla HF/6-31G ve BLYP -6-31 G setinde rastlanmıştır. HF teorisiyle elde edilen sonuçlara göre deneysel değerlerden olan sapma miktarının daha az olduğu gözlendi. Bunun sebebi; Hartree ve Fock tarafından verilen SCF metodunun anlık elektron-elektron etkileşmelerini gözardı etmesidir. Teorik ve deneysel sonuçların hata sınırları içinde uyumlu oldukları görülmektedir.

KAYNAKLAR

- Cheng, L. T., Tam, W., Stevenson, S., H., Meredith, G.R., Rikken, G. ve Marder, S.R., Experimental Investigation of Organic Molecular Nonlinear Optical Polarizabilities. 1. Methods and Results on Benzene and Stilbene Derivatives, <u>J. Phys. Chem.</u>, 95 (2001) 10631-10643.
- Dimoglo, A. ve Kandemirli, F., Moleküler Orbital Teorisinin Prensipleri ve Uygulamaları Ders Notu, Gebze, Kocaeli, 2005.
- Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Lı, X., Knox, J.E., Hratchain H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cami, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzales, C. ve Pople, J.A., Gaussian 03W,

Revision 2004 E01, Gaussian, Inc., Wallingford Ct.

- Foresman, B. J., Exploring Chemistry with Electronic Structure Methods, Second Edition, Gaussian Inc., 1996 261s.
- Canto-Cavalheiro, M.M., Echevarria, A., De Souza, M.A.S., Cysne-Finkelstein, L., Torres, M.A.D. ve Leon, L.L., Effect on Amidine Derivatives on Leishmania Amazonensis Axenic Amastigotes, <u>Arzneimittel-Forschung</u>, 50 (2000) 925–928.
- De Zwart, M.A.H., Van der Goot, H. ve Timmerman, H., Synthesis and Copper-Dependent Antimycoplasmal Activity of 1-amino-3-(2pyridyl) Isoquinoline Derivatives. 2. Amidines, J. Med. Chem., 32 (1989) 487–493.
- Caleta, I., Cetina, M., Hergold-Brundic, Antonija., Nagl., Ante. ve Karminski-Zamola, G., Synthesis and Crystal Structure Determination of 6-(*N*-Isopropyl)Amidino-2-Methylbenzothiazole Hydrochloride Monohydrate and 2-Amino-6-(*N*-Isopropyl)Amidinobenzothiazole Hydrochloride, <u>Structural</u> <u>Chemistry.</u>, 14 (2003) 587-595.
- Caleta, I., Grdiša, M., Mrvoš-Sermek, D., Cetina, M., Tralic-Kulenovic, V., Pavelic, K.ve Karminski-Zamola, G., Synthesis, Crystal Structure and Antiproliferative Evaluation of Some New Substituted Benzothiazoles and Styrylbenzothiazoles, <u>IL FARMACO</u>, 59 (2004) 297–305.
- Racane, L., Kulenovic, V. T., Mihalic, Zlatko., Pavlovic, G. ve Karminski-Zamola, G., Synthesis of New Amidino-Substituted 2-Aminothiophenoles: Mild Basic Ring Opening of Benzothiazole, <u>Tetrahedron</u>, 64 (2008) 11594-11602.
- Başoğlu, A., 4-Aminomorfolin Molekülünün Titreşim Frekanslarının İncelenmesi, Yüksek Lisans Tezi, Sakarya Üniversitesi., Fen Bilimleri Enstitüsü, Sakarya, 2002.
- Günay, N., Bromo ve Kloro Kumarin Karboksilatların Geometrik ve Spektroskopik Özelliklerinin Teorik Olarak İncelenmesi, Yüksek Lisans Tezi, Kocaeli Üniversitesi., Fen Bilimleri Enstitüsü, Kocaeli, 2009.

- Avcı, D., Heteroatom İçeren Bazı Aromatik Moleküllerin Lineer Olmayan Optik ve Spektroskopik Özelliklerinin Teorik Olarak İncelenmesi, Doktora Tezi, Sakarya Üniversitesi., Fen Bilimleri Enstitüsü, Sakarya, 2009.
- Sekerci, M., Atalay, Y., Yakuphanoğlu, F., Avcı, D. ve Başoglu, A., A Theoretical Study on 1-(thiophen-2-yl-methyl)-2-(thiophen-2-yl)-1H-Benzimidazole, <u>Spectrochimica Acta Part A</u>, 67 (2007) 503–50.
- Izgi, T., Alver, O., Parlak, C., Aytekin, M.T. ve Senyel M. FT-IR and NMR Investigation of 2-(1-cyclohexenyl) Ethylamine: A Combined eExperimental and Theoretical Study, <u>Spectrochimica Acta Part A</u>, 68 (2007) 55–62.
- Atalay, Y., Yakuphanoglu, F., Sekerci, M., Avcı, D. ve Basoglu, A., Theoretical Studies of Molecular Structure and Vibrational Spectra of 2-amino-5-phenyl-1,3,4-thiadiazole, <u>Spectrochimica Acta Part A</u>, 64 (2006) 68–72.
- Atalay, Y. ve Avcı, D., Theoretical Studies of Molecular structure and vibrational Spectra of Melaminium Citrate, <u>Spectrochimica Acta</u> <u>Part A</u>, 67 (2007) 327–333.
- Selim,M.A., Raslan M.A, Khalil M.A. ve Sayed S.M., Synthesis and Reactivity of 2-(2,2-Dicyano-1-methylvinyl)benzothiazole in Heterocyclic Synthesis: Convenient Route to Some Pyridazinone, Hydrazonoethyl, Thiophene, Phathalic Anhydride and Benzene DerivativesIncorporating a Benzothiazole Moiety J.Chim. Chem. Soc., 47 (2000) 527-533.
- Şireci N., Benzimidazol, Benzoksazol ve Benzotiyazol Türevlerinin Fosforillenmesi, Doktora Tezi, İnönü Üniversitesi, Fen Bilimleri Enstitüsü, Malatya, 2003.
- URL-1 <u>http://riodb01.ibase.aist.go.jp/sdbs/cgi-</u> <u>bin/direct_frame_top.cgi</u>.Spectral Database for Organic Compounds, SDBS'.11 Temmuz 2012.