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ABSTRACT. The Weibull distribution is one of the most popular distributions
in analyzing the lifetime data. In this study, we consider the Bayes estimators
of the scale and shape parameters of Weibull distribution under the assump-
tions of Gamma priors and squared error loss function. While computing the
Bayes estimates for a Weibull distribution, the continuous conjugate joint prior
distribution of the shape and scale parameters does not exist and the closed
form expressions of the Bayes estimators cannot be obtained.

In this study first we will consider the Bayesian inference of the scale pa-
rameter under the assumption that the shape parameter is known. We will
assume that the scale parameter has a Gamma prior. Under these assumptions
Bayes estimate can be obtained in explicit form. When both the parameters
are unknown, the Bayes estimates cannot be obtained in closed form. In this
case, we will assume that the scale parameter has the Gamma prior, and the
shape parameter also has the Gamma prior and they are independently dis-
tributed. We will use the Lindley approximation to obtain the approximate
Bayes estimators.

Under these assumptions, we will compute approximate Bayes estimators
and compare with the maximum likelihood estimators by Monte Carlo simu-
lations.

1. INTRODUCTION

The Weibull distribution has been widely studied since its introduction in 1951
[1]. The distribution is frequently used to model survival, reliability, wind speed
and other data. The Weibull distribution is characterized by two parameters, one
is the shape parameter () and the other is the scale parameter (7).

If X ~ Weibull(5,) then its density function is defined as [2,3]:

- ,6’7965_16_”6 , x>0
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The distribution function can also be derived and is defined as:

F(zly,8) = P(X <) = {

[ and ~ are non-negative.

0 , x<0
1—e‘7$ﬁ, x>0

For different values of the scale parameter (v), the graphs
density function of Weibull distribution are shown in Figure 1.
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FIGURE 1. Weibull density curve with various values of v ,5 = 2

For different values of the shape parameter (), the graphs of the probability
density function of Weibull distribution are shown in Figure 2.
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2. PARAMETER ESTIMATION

2.1. Maximum Likelihood Estimation. Maximum-likelihood estimation (MLE)

is one of the most common parameter estimation methods for statistical models.
Suppose that X1, X, ..., X, are independent and identically distributed Weibull(3, 7)

random variables, where the parameters are assumed unknown. To estimate the

parameters § and 7y the maximum likelihood method is employed. The likelihood

function of X1, Xo,..., X, can be constructed from Equation as

n n s
L(’Y,ﬁ|l’1,l’2,,.’ﬂn):Hf(l'z):Hﬁ’y.’bZﬁ 16 i
i=1

i=1

Tl 2 3]

i=1

Taking natural logarithm for both sides yields
In(L) =nln(B)+ nin (v -1 Z Inx; — 'yz x; (4)

and differentiating In L (v, 8) with respect to 8 and v respectively and equating to
zero we obtain the estimating equations as follows

ot (2) S -

dlnL
anﬁ B <n> +Zl”xl *VZIZ Inz; = 0. (6)

From (5) we obtain estimator of v as,
n

T >lict z:f "

and on substitution of (7) in (6) we obtain

w53ty = P i I 0

n g
i=1 D1 Ti

Equation (8) can be solved numerically for 3. When 3 is obtained, the value of 3
follows from (7). In this study we have used Newton Raphson Method to obtain £.
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3. BAYES ESTIMATORS

3.1. Shape Parameter Known. First we consider the shape parameter of Weibull
distribution is known and we want to estimate scale parameter. In this case, the
prior distribution of the scale parameter may be taken Gamma distribution with
probability density function,

b* 1 _
7T(7|a7b) = F (a)’ya 16 b’Y Y 7 > 0 (9)

with the hyperparameters a > 0 and b > 0.
Posterior distribution of ~, given the likelihood in and the hyperparameters
a and b,

he
P(.T,ﬁ,’y) = L(f (Jj|ﬁ,f}/)) X 7-(-(/-}/|a’b): B’ﬂ,yn (l Ix[j—l) 6_’}/} P - (a),ya—l
ba n n+a— — _ El
- T (a)ﬁ e (Hxﬁ 1) e
%) pa n ) o o )
Pla) = / Pl@fmdy =g (a)ﬁ (Hg”ﬁ 1)/0 et e gy

to= 40 2P +b) —dt= dy(> 2 +0)
pa T Hxﬁfl) /oo (t/zxﬁ+b)n+a_l e*t(l/zxﬁer)dt
0

= T B8

0
=8 Hmﬁ—l)(l/zxﬂ+b)"+“r(n+a)

b* n . n+a—1 -1 — 2P +b
P(ylx) = P@fy) __ t@l 7 ([T ety
Plo) 56" [+ (/X% +0)""T (n+a)
% e~ V(X240 (28 4 )"~ Gamma( nta, 328 +b)
is Gamma (n+a, Y.;_, ;? +b). Therefore, the Bayes estimate of v under the
squared error loss function becomes

7= E(y)=

(a)
ba

I (a)
ba

(a)

n+a
Z:’l:le +b

3.2. Shape Parameter Unknown. When both parameters of the Weibull distri-
bution are considered as random variables, Soland (1969) states that the Weibull
distribution does not have a conjugate continuous joint prior distribution [2]. He
has suggested use of mixed prior distributions, discrete for the shape parameter,
continious for scale parameter. In [4], many different prior distributions have been
proposed (Inverted Gamma- Compound Inverted Gamma, Discrete mass function -

(10)

K
o ([T W/ a0 [ et et = T a)
n(
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Compound Inverted Gamma, Uniform distribution - Compound Inverted Gamma,
respectively for the shape and scale parameter). In [3] a Gamma prior on scale
parameter and no specific prior on shape parameter is assumed. In [5], the Gamma
prior on both the scale and shape parameters have been considered for censored
data from Weibull distribution.

In this study we assume that, both the shape and scale parameters are unknown
and they are independent of each other. Independent priors for parameters are
taken as following,

m(8) = 7 (Blam) = st e >0 (1)
_ _ p2® q2—1 _,—p27y
m(v) = 7 (Vg2 p2) = T e ; v>0 (12)

respectively. Joint prior distribution for v and (3 are being,

m(7,8) = %Wﬂﬁq“lew —{(p15+p27)} - (13)

Here, the hyper parameters ¢1,p1 and ¢z, p2 are assumed to be known real numbers.
The joint posterior density function of v and 5 can be written as

_ W(W,ﬂ)L(’Y7ﬁ|Z’1,ZE2,...,xn)
A EICNO G e For B
(z,8,7)

ﬂ-('}/vﬁlxl,l‘g,...’mn): W

q q _ —1 n — n
PR L e {(p1 )} [T 2 ean {—y i, o + o)
jfrp(;jl){?&ﬂ@ LB L ewp — {(p1B+p2y)} By TTimy 2~ %p{—v Y }dVdﬂ

(15)
= / / m(z,B,7y)dvdp
P17 pyt o0 " 1 e
S e < - (n+qg)/ e Pfpntnl $f_1<n> ds
I' (q)T (g2) 0 21;[1 >ict xf +p2
(16)

,_YnJrqz 1/8n+ql—1 Hl 11_5 16—7 (Z? 1 Z+p2)e P13

n+q
I (ntq2) [y~ €™ Lt | 1515/3 1(ﬁ) “dp
(17)

Tr(’)/aﬁ | xlax%"'vwn) =

And marginal posterior distribution for v and £,

7T(6|$17.'I}2,...,$n) :/ﬂ-<7aﬁ | $1,$2,...7$n)d’7
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gt (T 2l ™) en? (/S o +p2) ™)
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19)
Under the squared error loss function the Bayes estimator of v and £,
n+q,
n+q, n /_3—1) —p18 (%)
B =E@p)= /7 (Hm A iy @) +pa T v (20)
fﬂnJﬂh*l (Hn x(jil) e—Plﬁ(%) o dﬁ
=1 =1 w?"'p?
and
o e (Mol ) em? gt e (Srlim)ggay
T=E() — :
D (akg) J 870 (I ol ) (1) (S0 of +p2))" ™ a8
(21)

It can be seen that cannot be reduced to a closed form and numerical approx-
imations are needed. There exist many tecniques to produce such approximations.
In this study, we have used the Lindley’s approximation to obtain the approximate
Bayes estimators.

3.3. Lindley’s approximation. Lindley (1980) considered an approximation for
the ratio of integrals of the form [6],

_ Jw®)eap{L©)}d
(7 () exp{L(0)}dO
where 0 = (01,05, ...,0,) is the parameter, L () is the logarithm of the likelihood

function, 7 () is joint prior distribution of 8. w (6) is function of 8 and let w (9) =
u (@) 7 (9) we have the posterior expectation,

Ju(9)exp{L (0)+ G ()} do
Jexp{L () +G(0)}db

(22)

IZE(’U,(@) |.’1?17.’1?2,...,.’L‘n):

(23)

where G (0) = logn () .
Lindley’s expansion of leads to

I = E(u(d)|x1,29,...,2,)
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1 p P 1 p p p p
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U a0, i P
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For two parameters p = 2 Lindley’s approximation can be written as follows;

u(@)Ba N =FE(u()|z1,2z2,...,Tp)

Ul, U2 Z Z Ui j + 2uzgj Oij + = Z Z Z Z lmkozgaklul (24)

=1 j=1 =1 j=1 k=1 I=1
where @1 and 4o are MLE of u; and we. Lindley’s approximation of (17 can be
written as follows,

Pt g - P2 q2—1,—p27
, = e X == e
96,7 r ((Jl)ﬁ T (q2)
pl(h pQQ2

_ q1—1,_,q2—1_—p1B—p2y 0 0
Pl @’ 7 ¢ 0=

G(B,v) = logg(B,7) = qlogpr + gologps — logT' (¢1) —logl' (q1)
+(q1 — 1 )logB +(g2 — 1 )logy — p18—p2y
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g2 = d = — P2
2 Y
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logL
Ly —W: %+Zloga¢ —’nyﬁlnx

d*logL (3,7) d (n
L12 == — | =+ ogr — 7y T~ inx = r~nx



BAYES ESTIMATOR FOR PARAMETERS IN WEIBULL DISTRIBUTION
PlogL (8,7) _ d ; )
g (-t ) == 3 e ()
d’logL (B,7) S 3o 2
L121 = W = dﬁ < " Inx ) = — X (lnx)

_ dlogL(B,y)  d? d (n s\ _
b ="l5ir = dbdy (dv (7 % )) -0

dlogL (B,7) _n 5
L = _— = - — T
2 dvy Z
d*logL (3,7)
L = —— = 2°Inz
21 7 Z
d*logL (B,)
L 2O 9
221 d2dp
d*logL (3,7)
Lo = — 080y =
vdBdry

d3logL d
Lo = m =7 (_;2 —vzxﬁ(lnx) 2) = —Zwﬁ(lnx) 2

y
_ d’logL(B,y) _ 2n
- d73 - 73
d?logL (8, n
Ly = sl By) __n_ 23 () ?
g
d3logL (3, 2n
Llll — M — 73 _'YZIB(IHLE) 3
dp
d*logL (3,7) 5
Ly = W Z(E Inx
_ d?logL (8,7) n
B dv? 72
o _[Ln L]
Y| Lai Loy

D [ Lo —le}

1671



1672 ESIN KOKSAL BABACAN AND SAMET KAYA

Uv=-"
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V= —Zmﬁlnx
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Let U(ﬂ,’y) = ﬂ then 1, Uy =Ujpa=Us1 =U;; = Uy =0

SI<NIS
SIES

~ ~ 1
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5Bayes = B+T( ﬂ _p1>+T< v _p2>
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(3wt ) (G ra(F) )+ (B -0 Stimn xS Y

4. SIMULATION STUDY

In this section, the performances of the maximum likelihood and Bayes estima-
tors of the shape and the scale parameters of Weibull distribution are compared
with respect to the the mean square error (MSE) criteria.

We assume that both parameters are unknown and both the shape and scale
parameters have independent Gamma priors. We compute approximated Bayes
estimates using Lindley’s approximation. We also compute the maximum likeli-
hood estimates and we compare the Bayes estimates with the maximum likelihood
estimates.

In simulation study, for comparing the performances of the estimators, we have
generated random data from Weibull distribution based on Monte Carlo simulation
study of 1000 replications for different sample sizes n=50,100,150 and different pa-
rameter values. We used mean of the squared error for comparing criteria calculated
as,
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SI%° (B~ By) + (v —70)°

MSE =
1000

The resuts are summarized in Table 1.
Table 1. Simulated mean, MSE values for the estimators of f=1 and y=1,1.5,2.

MLE LINDLEY

Parameter
Values

n B ¥ MSE B ¥ MSE

so | 10053 | 10264 | (0368 09993 | 1.1094 | 0.5531

A= |100| 10014 | 10102 | 00186 1.0005 10458 | 03538
=1
150 | 10012 | 1o0s2 | o014 1.00046 | 10197 | 0.0115
50 | 09953 | 15453 | 0.0434 L0113 | 15709 | 0.0459
13:: 5 |100| Looll | 15256 | 00189 1.0091 15382 | 00197
150 1.0001 1.5138 0.0128 1.0055 1.5221 0.0131

50 0.9958 2.0440 0.0586 1.0137 20704 | 0.0619

‘gf U 00| 09984 | 20209 | 0.0305 10074 | 20429 | 0.0316

150 | 0.9999 2.0186 0.0186 1.0059 20272 | 0.0190

5. CONCLUSION

In this study, we consider the estimating the parameters of Weibull distribution.
We want to estimate the parameters by Bayesian method. It is observed that the
Bayesian estimator of parameters cannot be obtained under explicit form and nu-
merical integration is required. We used Lindley’s approximation and compared the
approximate Bayesian estimators under Gamma priors to the maximum likelihood
estimators through a simulation study.

In simulation study we see that as sample size increases, both maximum likeli-
hood estimation and Bayes estimation have a decrease in MSE. The results show
that Lindley’s approximation works well. We can say that these two methods give
similar results for parameter estimates.
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