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Abstract: In this paper, a viscous incompressible fluid flow in a wavy-naiform rigid tube with permeable wall by taking in to
account the influence of slip velocity at the wall is studids assumed that the exchange of fluid across the wall obtyirg's
hypothesis, that is, the rate of flow per unit area throughatale surface is proportional to the difference between tresgure of the
fluid within and outside the wall. The nonlinear governingi&tipns of motion are linearized by perturbation method $suaning
J (ratio of inlet width to wavelength) as a small parameter tredresulting equations are solved by numerical methods.€fflects
of permeability parametem(, slope parametek], slip coefficient €) and Reynolds numbeR{) on the velocity profiles, pressure
and flow rate are presented graphically. Results concethmgelocity, pressure and flow rate, indicate that the sigh @ermeability
parameters influence the flow field significantly. Discussiare made from physiological point of view.
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1 Introduction

For several decades there has been an effort to underseamdetthanism of kidney in terms of mathematical models.
Kidney, one of the excretory organs in human body, perform tajor functions, they excrete end products of body
metabolism and control concentrations of most of the ctuie of body fluids. The basic functional unit of kidney is

nephron. Each kidney contains over a million tiny units gbmens, all similar in structure and function. Each nephron
functions independently and in most instances it is suffici® study the function of nephron to understand the
mechanism of kidney in terms of mathematical models.

In nephrons, the portion after the Bowman capsule is caltegimal convoluted tubule. It is the place where most of the
wanted substances, like water, glucose and electrolyteseabsorbed back into the plasma and unwanted substances
pass into urine. The proximal renal tubules are permeableiaghe place where most of the reabsorption is taking
place. It is therefore suitable to consider a mathematicadleh for renal flow with non-uniform tube of varying
cross-section with slip velocity at the wall.

Study of viscous fluid flow in tubes of varying cross sectiothvgermeable wall is significant because of its application
to both physiological and engineering flow problems. The ftdvfluid in a renal tubule has been studied by different
authors. Maceyd] formulated the problem as the flow of an incompressibleadiscfluid through a circular tube with
linear rate of reabsorption at the wall. Whereas, KelmBnfgund that the bulk flow in the proximal tubule decays
exponentially with the axial distance. Then, Mace} [ised this condition to solve the equations of motion and
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mentioned that the longitudinal velocity profile is parabalnd the drop in mean pressure is proportional to the mean
axial flow. Marshall and Trowbridgel] and Palatt et.alq] used physical conditions existing at the rigid permeabheet
instead of prescribing the flux at the wall as a function oabdistance.

In all the above studies researchers considered the reimaletas cylindrical tube of uniform cross-section, while in
general such tubles may not have uniform cross-sectiomfiraut their length. Radhakrishnamacharya etphjade

an attempt to understand the flow through the renal tubuleumysg the hydrodynamical aspects of an incompressible
viscous fluid in a circular tube of varying cross-sectionhwiéabsorption at the wall. Chandra and Prasgamalyzed
flow in a rigid tube of slowly varying cross-section with abisiog wall by considering the exchange of fluid across the
boundary obey's Starling’s hypothesis. Chaturani and Baatha $] considered fluid flow through a
diverging/converging tube with variable wall permeapiliRecently, Muthu and Tesfahui 3] studied the effects of
slope parameter and reabsorption coefficient on the flow iaf fitua symmetric channel with varying cross section.

In all the above studies the boundary condition at the walken as no-slip condition. The no-slip boundary condition
is one of the cornerstones on which the mechanics of the wssliquids is built. However, there are situations whers thi
assumption does not hold]]. The effect of slip at the wall is quite significant as illteted by ElshahedLp]. So that we
need to study the effect of slip parameter on a flow in renalleg

On the other hand, various authors studied a blood flow in @l@gpunder Starling hypothesis by considering the blood
vessel as a straight tube. Oka and Murdtd] [studied a hydrodynamical theory of the steady slow motibivlood
through a capillary with permeable wall, where it is assurtied the exchange of fluid across the capillary wall obeys
Starling’s hypothesis, that is, the rate of flow per unit atte@ugh the wall surface is proportional to the difference
between the pressure of the fluid within and outside of thdlaap

Mariamma and Majhi15] extended Okas’s model to non-linear case and consideesstéfady laminar flow of blood as
a homogeneous Newtonian fluid in tube with permeable wadih&thed 12] extended the work of Mariamma et al by
taking the influence of slip velocity at the membrane surfatewever, straight tube assumption is an idealization.
Hence, in this analysis we study the renal flow under Stahiyygpthesis for non-uniform nature of the proximal tubule
with slip velocity at the wall.

The objective of the present paper is to understand the floough renal tubule by studying the hydrodynamical aspect
of an incompressible viscous fluid in a rigid tube of varyimgss-section with reabsorption at the wall by considering a
slip velocity at the wall of the tube. The fluid exchange asith& wall obeys Starling hypothesis. That is, the rate of flow
per unit area through the wall surface is proportional to difteerence between the pressure of the fluid within and
outside the wall. The boundary of the tube wall varies with is taken as

n(x) =d+kix+ asin(zTnX) (1)

whered is the radius of the tube at the inlet ¢a&= 0 ), k; is a constant whose magnitude depends on the length of the
tube exit and inlet dimensions and which is assumed teldg a is the amplitude and is the wave length, it is shown in
figure 1 below.
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Fig. 1: Geometry of 3 dimensional renal tubule.

2 Mathematical formulation of the problem

An incompressible fluid flow through a tube with slowly vargioross-section is considered and it is given by equation
(1). The tube is long enough to neglect the initial and end &sféthe motion of the fluid is assumed to be laminar and

steady. The governing equations of such fluid motion arengiye

%%(rv)—k% =0 2
ax or p Ox ax2 = 9r2 ror
ax or p or X2 9r2 r2 ror

whereu andv are the velocity components along thandr axes respectively is the pressurgg density of the fluid and
V= % is kinematic viscosity. In this case the boundary conddiare

(&) The regularity condition requires

v=0 and %:0 at r=0. (5)

(b) The tangential velocity at the wall is not zero (slip citiwah). That is,
V.tgvzf%/%(v-t@) at r=n(x). (6)
wheref is slip parametery is the specific permeability of the porous mediunis the unit tangent vector at the

wall andv is velocity vector.
(c) Fluid exchange across the wall is given by Starling's [ahat is,

Vel = a(p—pec) At 1=n(x) )

whereny is the unit normal at the wally is the measure of permeability of the wall angd; ) is net external

pressure acting on the wall which is taken to be a constant.
(d) Further, we specify the average pressure at the two exsd-gections of the tube as

P=pn at x=0 and p=pox at x=A. 8)
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To non-dimensionalize the governing equation we use theviolg non-dimensional quantities

_X T N ,_ 2y
X/_)\’ T T TG
e 2mdAv o — apA? o — 2md*p oL = 271d* Pext

Q a3’ AUQo’ * AuQo

whereQp is the flux across the cross-sectiorxat 0, equations?) - (4) are transformed to the non-dimensional form as
(after dropping the primes)

10 Jdu
Fd—y(rv)wLafO 9)
ou du]  dp, 0% d%u  1du
Red {“&*Vﬂ St et rar (10)
dv  ov] _ dp (32v o>v. v 10v
31,9V IV _ 2| 52 — =
Red [udx+vdr] or +0 [6 a2 Yo (11)
d Qo
whered = X andRe = >y . And the boundary condition$) - (8) become
v=0 and %:0 at r=0 (12)
dn du dn dv .
2dn 52 _ _
u+o = E( X ar ) at r=n(x) =1+ kx+ £sin(2mnx) (13)
v—z—Zu:a(p—pM) <1+62(?:|?<> ) at r=n(x)=1+kx+ €esin(2mnx) (14)
p=pn at x=0 and p=pox at x=1 (15)

a kl)\
Whereefd k= — q f*,;d

The parameteR; is the Reynolds number anilis the wave-number (the ratio of inlet width to the waveléngt is
amplitude ratio (the ratio of amplitude to the inlet widtk)s slope parameter arfdis the slip coefficient.

3 Solving the gover ning equations
In the present analysis, assuming the wave nurber1 (long wavelength approximation), we shall seek a soluion
equations9) - (15) in the form of a power series in terms dfas

(u,V, p) = (Uo, Vo, Po) + O(Us, V1, P1) + ... (16)

Substituting equationl@) in equations §) - (15) and collecting coefficients of various like powers &f we get the
following sets of equations.

Zerosorder case.

10 dUo . dZUO 10U0 . dpo dpo _
rar Mo =% G e “ax ar ° an
The boundary conditions are
V=0 and %:o at r=0 (18)
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au d
uO:—«Sa—r0 and VO*d—ZUOZG(pO*pM) at r=n(x (19)
Ppo=pin at x=0 and py=pox at x=1 (20)
First order case.
10 dup 0%u; 10u;  dp dug Jdug op1
rar WG =0 G T Tk TRtV | 5 =0 (1)
The boundary conditions are
vi=0 and %:O at r=0 (22)
or
Ju d
ulszd—rl and vlfd—?(ulzapl at r=n(x (23)
pp1=0 at x=0 and p;=0 at x=1 (24)

Here we can proceed to higher orderdoHowever, since we are looking for an approximate analytiolution for the
problem, we consider up to first order of equations. From ggu#l7) and the conditionsl@) and (L8), we get that

_dpo [l o o2 1
Uo =~ 4(r n) Zén (25)

Integrating the equation of continuity{) and using the boundary conditioh8) along with the expression af from
(25), we get
d?po r dpor dn

- _ —(r2_9pn2_ Ll

Further, using the conditiorl) and the expression fapp from (26), we get the equation governing the zeroth order

pressurey as follows :

d?po  (,dn n+3& \ dpo 16a
haid > )2 T (po— 27

X2 ( dx n2+4fn) dax ~ oy agn Po~ Ped) 27)

Now, equation 27) with boundary condition Z0) forms a two point boundary value problem, which is solved

numerically.

Similarly, from equationZ1) together with the boundary conditiord3j - (24) and with the help of equation2%) and
(26), we get the expressions fof andv; as follows :

_1ldp

U — Re dpo
17 47dx

d?po
2 e MM Y MO 6 _ 4 2 _
(r Al)+2304 Ix [de (2r°+ Ay —Agr+ Aqrc —As—Ag) +1

dn dpo

X dx (A7r? — Ag—Ag) (28)

whereA; = n?+28n, Ay = —2n°+9n°(n + 28), As = 9n(n + 28), Ay = 36n?(n + 28 )%, As = 36n*(n + 28)?,
As = &(12n°—36n*(n+2&) +72n3(n + 2&)?), A7 = 720 (n%+3n& + 2E2), Ag = T2n3(n?+3n& + 2&2),
Ag = 144n?(n?+3n& +282).

7i[d2p1(27%1>72%%}7 Rer {[(dzpo)z dpo d®po

e @po 6 opd 2 ap
1™ 16l ae dx dxJ 2304x 1211\ a2 VT }(3r + 6A2 — 2Aar® + 3A4r° — 6As — 6A)
dpo d? Po /.dA2 20A3 20dA4 dAs dAg dpo dpo dn  dpo d2r; 5
dx dx? (6 ax P ax T ax Cax O dX)+3dx [2 0 dx T dx a2 ) AT~ 2Re— 2A)
dn ,dpo\2[ ,dA; _dAg _dAg
35 ) P o e Zadl) (29)
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and using the expressiod) and the boundary conditio28), we get the equation governing the first order pressure as :

d2p1_ 16 [idAl_}d_l‘l( 2 )}%4_&
¢ nn?-2A) 16 ax  adx T Vdx T nZ-2a) ™
_ R qn
= 144{‘](!]2—2A1) |:12(Bl+52+ B3+ B4) + Bs+ BG} (30)

where

d?po\* | dpo d°po
Bi= ( )* —3 | (3n°+6A —2A3n* + 3A4n? — 6As — 6A6)

dx2 dx dxd
. dpo d2 Po dA, 4dA3 2dA4 dA5 dA6
Bo=x o \Oax 2T ax M e Cax Cax
_( ~dpo d?po dn dpo\” d?n 2
B3<GWW&+3 ox ) de ) AT 2Re—2A)

dx ) dx dx dx dx

_dn dpo d?po 2 4 2
BS*&WW(ZU +A2— A3+ AN —As— Asg)

_(dpo\?/dn\? .,
BG_(W) (&) (A7n°—Ag—Ag).

Hence, equation3Q) with boundary conditionZ4) forms a two point boundary value problem, which is solvehgis
numerical methods.

2
B43<dPo> dn <n2%2d;"‘82%>

The non-dimensional volumetric flow rafgup to first order is given by

3 2 ~2
__mPdp 1dps a 2p L Re QR0 fm2EPors 6 o o0 o 2 ga
Q=-"8 " (”J“z”"‘s[s ax 1= 21°A0) + 65 dx{12 e (3'7 +6Az = 23" +3Aan" — 6As 6A6)
n?dpodn )
5 de g (AT — 28— 2A0) | (31)

4 Results and discussion

The main objective of this analysis is to study the behavioian incompressible fluid flow through a tube of
converging/diverging and slowly varying cross-sectiohvwabsorbing wall by considering slip velocity at the watl. |
may be recalled thdt characterize the slope of the converging/diverging wavil. vika= 0.1 represents diverging tube,
k = 0 represents a normal (sinusoidal tube) &rd—0.1 represents a converging tulzeanda represent amplitude and
permeability parameter of wavy wall, respectively.

The effects of these parameters on the radial velagityr ), pressureff) and flow rate Q) quantities are discussed. In all
our numerical calculations, the following parameters arediase = 0.1 andd = 0.1. The values ofi, and poy; are
taken as 15 and 5, respectively. In this analysis, we otdainenerical solution of equation&7) and B0) governing the
zeroth and first order pressure valugg @nd p;), and used these values to get the velocity profile and floe, rat
consequently.

4.1 Pressure p

The pressure is calculated for different valuekoR,, ¢ anda. Fig. 2(a) displays the effect of slope paramdtdo
pressure. We can notice thptis less for the divergent tube than the normal or convergdmgd, and it is more for

(© 2017 BISKA Bilisim Technology
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convergent tube than the normal/divergent tubes. This ¢alme as the space for movement decreases, the velocity
decreases which results in more pressure. As shown, in By, @hen the permeability parameterincreases, the

pressure decreases. This can justify the natural phenamtabas most of the fluid goes out in a greater amount, the
pressure is very less.

Fig. 3(a) shows the influence of Reynolds numBeion p. As Re increases, pressure increases. The slip coefficént (
has a significant influence on the pressure as illustratedign3fb). It can be observed that as the slip coefficient
increases the pressure also increases hugely.

(a) Distribution of pressurép) with x. ( Re = 0.05, (b) Distribution of pressurép) with x. ( Re = 0.05,
a =0.005,¢ =0.15. £ =015k=0.1.
Fig. 2
14 14 :

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
X X
(a) Distribution of pressurép) with x. (k=0.1, a = 0.5, (b) Distribution of pressuré¢p) with x. (k=0.1,a = 0.5,
&=0.15 Re =0.05.
Fig. 3
4.2 The velocity v

In this section, we discuss the effects of the slope paranfiéteslip coefficient §) and permeability parametea) on
the radial velocity. Also, we look into the behavior of thdoaty at different cross sections of the tube.

(© 2017 BISKA Bilisim Technology
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The effect of slope parameté) (on the radial velocity is shown in Fig. 4(a). Aslecreases, that is, as the tube changes
from diverging to normal then to converging tube, the radédbcity decreases. Because as the space for the movement
become close the flow speed of the fluid decreases.

Fig. 4(b) shows the behavior of the velocity as the fluid passeough the tube at different locationsyofAs the fluid
passes from the entrance to exit, the radial velocity deeeadNaturally, since the outflow of the fluid decreases with x
the radial velocity has a lesser value at the exit than theaeogé. Moreover, it attains the maximum at the p6ind.6
(whena is small) at the entrance and it shifts towards the boundahesexit.

Fig. 4(c) shows the influence of slip coefficierdt)(on radial velocity. It is of interest to note that the effedtslip
coefficient is to increase the radial velocity at the boupdahe effect of permeability parameteris presented in the
Fig. 5(a-c). It can be observed from these figures that Breases, the radial velocity of the flow increases for adles
of k ( converging, normal, and diverging tubes).

12 T T T
12 T T T
- 1r B ]
; S x=02
08 [ x=0.3 X2 g
| r S
r | 0.6 - .
| o4 r e x=0.1
02 - ,,,,’/,’f” L - -
0 1 1 1 1 1 1 1 1
0 1 2 3 4 S 6 7 8 9
9
v
(a) Distribution of radial velocity(v) with r. (Re = 0.05,a = (b) Distribution of radial velocity(v) with r. (Re = 0.05,a =
0.5,x=0.1,& =0.15) 05, =0.15k=0.1.)

10

(c) Distribution of radial velocity(v) with r. ( Re = 0.05,a0 = 0.5,x =
0.1,k=0.1)

Fig. 4
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(a) Distribution of radial velocity(v) with r. (Re =0.05,k=0.1,x=0.1).

1.2 T

k=0.0

o=0.05

0.8 -
0.6 - .
04

02 ,,~“"7"' =

=0.05

2 4 6 8 10 12 14

(c) Distribution of radial velocity(v) with r. (Re = 0.05,k=-0.1,x=0.1).

Fig. 5
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4.3 Flowrate Q

The effect of slope parametek)(on flow rateQ is shown in Fig. 6(a). Ak increases, the flow rate increases. We
observed that an increasekror the change of the tube from converging to diverging tubesgases the velocity which

in turn results in more flow rate. Fig. 6(b) illustrates thieef of permeability parametea( on the flow rateQ versusx.

As shown, an increase im, produces an increase in flow ra@eup to half of the tube and the reverse becomes true to the
other half of the tube. This is because if the tube has higmepability, most of the fluid will reabsorbed at the entrance
of the tube so that we will have a less flow rate at the exit.

Fig. 7(a) displays the influence of Reynolds numBeron Q. The value of the flow rat€ increases aRe increases.
Naturally, an increase iRe increases the inertial effect which in turn results in moosvflate. Fig. 7(b) displays the
influence of slip coefficient 0. As shown, an increase in the slip coefficief} {hcreases the flow rate considerably.

0 | 1 1 1
0 0.2 0.4 0.6 0.8 1

X
(a) Distribution of flow rate{Q) with x. (Re = 0.05,
a =005, =015).

25 = T T

_10 I | I |
0 0.2 0.4 0.6 0.8 1

X
(b) Distribution of flow rate(Q) with x. ( Re = 0.05,
£=015k=0.1).

Fig. 6
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7.5 T

4 | I | |
0 0.2 0.4 0.6 0.8 1

X
(a) Distribution of flow rate(Q) with x. (k= 0.1,
& =0.15a=0.05).

3 I ! I !
0 0.2 0.4 0.6 0.8 1

X
(b) Distribution of flow rate(Q) with x. (k= 0.1, a = 0.05,Re = 0.05).

Fig. 7

5 Conclusions

In this study, a discussion of an incompressible fluid flow ingid tube of slowly varying converging/diverging wall

has been presented with possible applications to the flovuiaf ifh renal tubules. The main contribution of this study is

to show the effect of slip velocity at the boundary as it is distussed in literature particularly to the renal flow. The
reabsorption coefficierdr and the slope parametkrave the same effect on the radial velocity. As they increthse
velocity also increase. Itis also of interest to note thatdfiect of slip coefficienf is to increase the radial velocity at the
boundary. When the permeability parameatencreases, the pressure decreases. This can justify thehplhenomenon

that as most of the fluid goes out in a greater amount, the yme$s very less. The effect of slip coefficieftis to
increase the pressure and flow ratds less for the divergent tube than the normal or convergédrgd, and it is more

for convergent tube than the normal/divergent tubes. Ehikie to the fact that as the space for movement decreases, the
velocity decreases which results in more pressure.
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