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Abstract: In this paper, a viscous incompressible fluid flow in a wavy non-uniform rigid tube with permeable wall by taking in to
account the influence of slip velocity at the wall is studied.It is assumed that the exchange of fluid across the wall obeys Starling’s
hypothesis, that is, the rate of flow per unit area through thewall surface is proportional to the difference between the pressure of the
fluid within and outside the wall. The nonlinear governing equations of motion are linearized by perturbation method by assuming
δ (ratio of inlet width to wavelength) as a small parameter andthe resulting equations are solved by numerical methods. The effects
of permeability parameter (α), slope parameter (k), slip coefficient (ξ ) and Reynolds number (Re) on the velocity profiles, pressure
and flow rate are presented graphically. Results concerningthe velocity, pressure and flow rate, indicate that the slip and permeability
parameters influence the flow field significantly. Discussions are made from physiological point of view.
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1 Introduction

For several decades there has been an effort to understand the mechanism of kidney in terms of mathematical models.

Kidney, one of the excretory organs in human body, perform two major functions, they excrete end products of body

metabolism and control concentrations of most of the constitutes of body fluids. The basic functional unit of kidney is

nephron. Each kidney contains over a million tiny units of nephrons, all similar in structure and function. Each nephron

functions independently and in most instances it is sufficient to study the function of nephron to understand the

mechanism of kidney in terms of mathematical models.

In nephrons, the portion after the Bowman capsule is called proximal convoluted tubule. It is the place where most of the

wanted substances, like water, glucose and electrolytes are reabsorbed back into the plasma and unwanted substances

pass into urine. The proximal renal tubules are permeable asit is the place where most of the reabsorption is taking

place. It is therefore suitable to consider a mathematical model for renal flow with non-uniform tube of varying

cross-section with slip velocity at the wall.

Study of viscous fluid flow in tubes of varying cross section with permeable wall is significant because of its application

to both physiological and engineering flow problems. The flowof fluid in a renal tubule has been studied by different

authors. Macey [2] formulated the problem as the flow of an incompressible viscous fluid through a circular tube with

linear rate of reabsorption at the wall. Whereas, Kelman [1] found that the bulk flow in the proximal tubule decays

exponentially with the axial distance. Then, Macey [3] used this condition to solve the equations of motion and
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mentioned that the longitudinal velocity profile is parabolic and the drop in mean pressure is proportional to the mean

axial flow. Marshall and Trowbridge [4] and Palatt et.al [5] used physical conditions existing at the rigid permeable tube

instead of prescribing the flux at the wall as a function of axial distance.

In all the above studies researchers considered the renal tubule as cylindrical tube of uniform cross-section, while in

general such tubles may not have uniform cross-section throughout their length. Radhakrishnamacharya et al [6] made

an attempt to understand the flow through the renal tubule by studying the hydrodynamical aspects of an incompressible

viscous fluid in a circular tube of varying cross-section with reabsorption at the wall. Chandra and Prasad [7] analyzed

flow in a rigid tube of slowly varying cross-section with absorbing wall by considering the exchange of fluid across the

boundary obey’s Starling’s hypothesis. Chaturani and Ranganatha [8] considered fluid flow through a

diverging/converging tube with variable wall permeability. Recently, Muthu and Tesfahun [13] studied the effects of

slope parameter and reabsorption coefficient on the flow of fluid in a symmetric channel with varying cross section.

In all the above studies the boundary condition at the wall istaken as no-slip condition. The no-slip boundary condition

is one of the cornerstones on which the mechanics of the viscous liquids is built. However, there are situations where this

assumption does not hold [11]. The effect of slip at the wall is quite significant as illustrated by Elshahed [12]. So that we

need to study the effect of slip parameter on a flow in renal tubules.

On the other hand, various authors studied a blood flow in a capillary under Starling hypothesis by considering the blood

vessel as a straight tube. Oka and Murata [14] studied a hydrodynamical theory of the steady slow motion of blood

through a capillary with permeable wall, where it is assumedthat the exchange of fluid across the capillary wall obeys

Starling’s hypothesis, that is, the rate of flow per unit areathrough the wall surface is proportional to the difference

between the pressure of the fluid within and outside of the capillary.

Mariamma and Majhi [15] extended Okas’s model to non-linear case and considered the steady laminar flow of blood as

a homogeneous Newtonian fluid in tube with permeable wall. Elshahed [12] extended the work of Mariamma et al by

taking the influence of slip velocity at the membrane surface. However, straight tube assumption is an idealization.

Hence, in this analysis we study the renal flow under Starlinghypothesis for non-uniform nature of the proximal tubule

with slip velocity at the wall.

The objective of the present paper is to understand the flow through renal tubule by studying the hydrodynamical aspect

of an incompressible viscous fluid in a rigid tube of varying cross-section with reabsorption at the wall by considering a

slip velocity at the wall of the tube. The fluid exchange across the wall obeys Starling hypothesis. That is, the rate of flow

per unit area through the wall surface is proportional to thedifference between the pressure of the fluid within and

outside the wall. The boundary of the tube wall varies withx. It is taken as

η(x) = d+ k1x+ asin(
2πx
λ

) (1)

whered is the radius of the tube at the inlet (atx = 0 ), k1 is a constant whose magnitude depends on the length of the
tube exit and inlet dimensions and which is assumed to be≪ 1, a is the amplitude andλ is the wave length, it is shown in
figure 1 below.
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Fig. 1: Geometry of 3 dimensional renal tubule.

2 Mathematical formulation of the problem

An incompressible fluid flow through a tube with slowly varying cross-section is considered and it is given by equation
(1). The tube is long enough to neglect the initial and end effects. The motion of the fluid is assumed to be laminar and
steady. The governing equations of such fluid motion are given by

1
r

∂
∂ r

(rv)+
∂u
∂x

= 0 (2)

u
∂u
∂x

+ v
∂u
∂ r

=−
1
ρ

∂ p
∂x

+ν
(

∂ 2u
∂x2 +

∂ 2u
∂ r2 +

1
r

∂u
∂ r

)

(3)

u
∂v
∂x

+ v
∂v
∂ r

=−
1
ρ

∂ p
∂ r

+ν
(

∂ 2v
∂x2 +

∂ 2v
∂ r2 −

v
r2 +

1
r

∂v
∂ r

)

(4)

whereu andv are the velocity components along thex andr axes respectively,p is the pressure,ρ density of the fluid and
ν = µ

ρ is kinematic viscosity. In this case the boundary conditions are

(a) The regularity condition requires

v = 0 and
∂u
∂ r

= 0 at r = 0. (5)

(b) The tangential velocity at the wall is not zero (slip condition). That is,

v · ˆtw =−
√γ
β

∂
∂ r

(v · ˆtw) at r = η(x). (6)

whereβ is slip parameter,γ is the specific permeability of the porous medium,ˆtw is the unit tangent vector at the
wall andv is velocity vector.

(c) Fluid exchange across the wall is given by Starling’s law. That is,

v · n̂w = α(p− pext) at r = η(x) (7)

where ˆnw is the unit normal at the wall,α is the measure of permeability of the wall and (pext ) is net external
pressure acting on the wall which is taken to be a constant.

(d) Further, we specify the average pressure at the two end cross-sections of the tube as

p̄ = pin at x = 0 and ¯p = pout at x = λ . (8)
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To non-dimensionalize the governing equation we use the following non-dimensional quantities

x′ =
x
λ
, r′ =

r
d
, η ′ =

η
d
, u′ =

2πd2u
Q0

v′ =
2πdλ v

Q0
, α ′ =

αµλ 2

d3 , p′ =
2πd4p
λ µQ0

, p′ext =
2πd4pext

λ µQ0

whereQ0 is the flux across the cross-section atx = 0, equations (2) - (4) are transformed to the non-dimensional form as
(after dropping the primes)

1
r

∂
∂y

(rv)+
∂u
∂x

= 0 (9)

Reδ
[

u
∂u
∂x

+ v
∂u
∂ r

]

=−
∂ p
∂x

+ δ 2 ∂ 2u
∂x2 +

∂ 2u
∂ r2 +

1
r

∂u
∂ r

(10)

Reδ 3
[

u
∂v
∂x

+ v
∂v
∂ r

]

=−
∂ p
∂ r

+ δ 2
[

δ 2 ∂ 2v
∂x2 +

∂ 2v
∂ r2 −

v
r2 +

1
r

∂v
∂ r

]

(11)

whereδ =
d
λ

andRe =
Q0

2πdν
. And the boundary conditions (5) - (8) become

v = 0 and
∂u
∂ r

= 0 at r = 0 (12)

u+ δ 2dη
dx

v =−ξ
(

∂u
∂ r

+ δ 2 dη
dx

∂v
∂ r

)

at r = η(x) = 1+ kx+ ε sin(2πx) (13)

v−
dη
dx

u = α(p− pext)

(

1+ δ 2
(

dη
dx

)2
)

1
2

at r = η(x) = 1+ kx+ ε sin(2πx) (14)

p̄ = pin at x = 0 and ¯p = pout at x = 1. (15)

whereε =
a
d

, k =
k1λ
d

andξ =
√γ
β d .

The parameterRe is the Reynolds number andδ is the wave-number (the ratio of inlet width to the wavelength). ε is
amplitude ratio (the ratio of amplitude to the inlet width),k is slope parameter andξ is the slip coefficient.

3 Solving the governing equations

In the present analysis, assuming the wave numberδ ≪ 1 (long wavelength approximation), we shall seek a solutionfor
equations (9) - (15) in the form of a power series in terms ofδ as

(u,v, p) = (u0,v0, p0)+ δ (u1,v1, p1)+ ..... (16)

Substituting equation (16) in equations (9) - (15) and collecting coefficients of various like powers ofδ , we get the
following sets of equations.

Zeros order case.
1
r

∂
∂ r

(rv0)+
∂u0

∂x
= 0,

∂ 2u0

∂ r2 +
1
r

∂u0

∂ r
=

∂ p0

∂x
,

∂ p0

∂ r
= 0 (17)

The boundary conditions are

v0 = 0 and
∂u0

∂ r
= 0 at r = 0 (18)
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u0 =−ξ
∂u0

∂ r
and v0−

dη
dx

u0 = α(p0− pext) at r = η(x) (19)

p̄0 = pin at x = 0 and ¯p0 = pout at x = 1. (20)

First order case.

1
r

∂
∂ r

(rv1)+
∂u1

∂x
= 0,

∂ 2u1

∂ r2 +
1
r

∂u1

∂ r
=

∂ p1

∂x
+Re

[

u0
∂u0

∂x
+ v0

∂u0

∂ r

]

,

∂ p1

∂ r
= 0 (21)

The boundary conditions are

v1 = 0 and
∂u1

∂ r
= 0 at r = 0 (22)

u1 =−ξ
∂u1

∂ r
and v1−

dη
dx

u1 = α p1 at r = η(x) (23)

p̄1 = 0 at x = 0 and ¯p1 = 0 at x = 1. (24)

Here we can proceed to higher orders ofδ . However, since we are looking for an approximate analytical solution for the
problem, we consider up to first order of equations. From equation (17) and the conditions (19) and (18), we get that

u0 =
d p0

dx

[

1
4
(r2−η2)−

1
2

ξ η
]

(25)

Integrating the equation of continuity (17) and using the boundary condition (18) along with the expression ofu0 from
(25), we get

v0 =−
d2p0

dx2

r
16

(r2−2η2−4ξ η)+
d p0

dx
r
4

dη
dx

(η + ξ ). (26)

Further, using the condition (19) and the expression forv0 from (26), we get the equation governing the zeroth order
pressurep0 as follows :

d2p0

dx2 +

(

4
dη
dx

η +3ξ
η2+4ξ η

)

d p0

dx
=

16α
η3+4ξ η

(p0− pext) (27)

Now, equation (27) with boundary condition (20) forms a two point boundary value problem, which is solved
numerically.

Similarly, from equation (21) together with the boundary conditions (23) - (24) and with the help of equations (25) and
(26), we get the expressions foru1 andv1 as follows :

u1 =
1
4

d p1

dx
(r2−A1)+

Re

2304
d p0

dx

[d2p0

dx2 (2r6+A2−A3r4+A4r2−A5−A6)+η
dη
dx

d p0

dx
(A7r2−A8−A9)

]

(28)

whereA1 = η2+2ξ η , A2 =−2η6+9η5(η +2ξ ), A3 = 9η(η +2ξ ), A4 = 36η2(η +2ξ )2, A5 = 36η4(η +2ξ )2,
A6 = ξ (12η5−36η4(η +2ξ )+72η3(η +2ξ )2), A7 = 72η(η2+3ηξ +2ξ 2), A8 = 72η3(η2+3ηξ +2ξ 2),
A9 = 144ξ η2(η2+3ηξ +2ξ 2).

v1 =
−r
16

[d2p1

dx2 (r2−2A1)−2
dA1

dx
d p1

dx

]

−
Rer

2304×12

{[

(d2p0

dx2

)2
+

d p0

dx
d3p0

dx3

]

(3r6+6A2−2A3r4+3A4r2−6A5−6A6)

+
d p0

dx
d2p0

dx2

(

6
dA2

dx
−2r4dA3

dx
+3r2 dA4

dx
−6

dA5

dx
−6

dA6

dx

)

+3
d p0

dx

[

2
d2p0

dx2

dη
dx

+
d p0

dx
d2η
dx2

]

(A7r2−2A8−2A9)

+3
dη
dx

(d p0

dx

)2
[

r2 dA7

dx
−2

dA8

dx
−2

dA9

dx

]}

(29)
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and using the expression (29) and the boundary condition (23), we get the equation governing the first order pressure as :

d2p1

dx2 −
16

η(η2−2A1)

[ η
16

dA1

dx
−

1
4

dη
dx

(η2−A1)
]d p1

dx
+

16α
η(η2−2A1)

p1

=
−Re

144η(η2−2A1)

[ η
12

(B1+B2+B3+B4)+B5+B6

]

(30)

where

B1 =

(

(

d2p0

dx2

)2

+
d p0

dx
d3p0

dx3

)

(3η6+6A2−2A3η4+3A4η2−6A5−6A6)

B2 =
d p0

dx
d2p0

dx2

(

6
dA2

dx
−2η4dA3

dx
+3η2 dA4

dx
−6

dA5

dx
−6

dA6

dx

)

B3 =

(

6
d p0

dx
d2p0

dx2

dη
dx

+3

(

d p0

dx

)2 d2η
dx2

)

(A7η2−2A8−2A9)

B4 = 3

(

dP0

dx

)2 dη
dx

(

η2 dA7

dx
−2

dA8

dx
−2

dA9

dx

)

B5 =
dη
dx

d p0

dx
d2p0

dx2 (2η2+A2−A3η4+A4η2−A5−A6)

B6 =

(

d p0

dx

)2(dη
dx

)2

(A7η2−A8−A9).

Hence, equation (30) with boundary condition (24) forms a two point boundary value problem, which is solved using
numerical methods.

The non-dimensional volumetric flow rateQ up to first order is given by

Q =−
πη3

8
d p0

dx
(η + ξ )+πδ

[1
8

d p1

dx
(η4−2η2A1)+

Re

1152
d p0

dx

{η2

12
d2p0

dx2

(

3η6+6A2−2A3η4+3A4η2−6A5−6A6

)

+
η2

2
d p0

dx
dη
dx

(

A7η2−2A8−2A9

)}]

(31)

4 Results and discussion

The main objective of this analysis is to study the behaviourof an incompressible fluid flow through a tube of
converging/diverging and slowly varying cross-section with absorbing wall by considering slip velocity at the wall. It
may be recalled thatk characterize the slope of the converging/diverging wavy wall. k = 0.1 represents diverging tube,
k = 0 represents a normal (sinusoidal tube) andk =−0.1 represents a converging tube.ε andα represent amplitude and
permeability parameter of wavy wall, respectively.

The effects of these parameters on the radial velocityv(x,r), pressure (p) and flow rate (Q) quantities are discussed. In all
our numerical calculations, the following parameters are fixed asε = 0.1 andδ = 0.1. The values ofpin and pout are
taken as 15 and 5, respectively. In this analysis, we obtained numerical solution of equations (27) and (30) governing the
zeroth and first order pressure values (p0 and p1), and used these values to get the velocity profile and flow rate,
consequently.

4.1 Pressure p

The pressure is calculated for different values ofk, Re, ξ andα. Fig. 2(a) displays the effect of slope parameterk to
pressure. We can notice thatp is less for the divergent tube than the normal or convergent tubes, and it is more for
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convergent tube than the normal/divergent tubes. This is because as the space for movement decreases, the velocity
decreases which results in more pressure. As shown, in Fig. 2(b), when the permeability parameterα increases, the
pressure decreases. This can justify the natural phenomenon that as most of the fluid goes out in a greater amount, the
pressure is very less.

Fig. 3(a) shows the influence of Reynolds numberRe on p. As Re increases, pressure increases. The slip coefficient (ξ )
has a significant influence on the pressure as illustrated on Fig. 3(b). It can be observed that as the slip coefficient
increases the pressure also increases hugely.

(a) Distribution of pressure(p) with x. ( Re = 0.05,
α = 0.005,ξ = 0.15.

(b) Distribution of pressure(p) with x. ( Re = 0.05,
ξ = 0.15,k = 0.1.

Fig. 2

(a) Distribution of pressure(p) with x. ( k = 0.1, α = 0.5,
ξ = 0.15.

(b) Distribution of pressure(p) with x. ( k = 0.1, α = 0.5,
Re = 0.05.

Fig. 3

4.2 The velocity v

In this section, we discuss the effects of the slope parameter (k), slip coefficient (ξ ) and permeability parameter (α) on

the radial velocity. Also, we look into the behavior of the velocity at different cross sections of the tube.
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The effect of slope parameter (k) on the radial velocity is shown in Fig. 4(a). Ask decreases, that is, as the tube changes

from diverging to normal then to converging tube, the radialvelocity decreases. Because as the space for the movement

become close the flow speed of the fluid decreases.

Fig. 4(b) shows the behavior of the velocity as the fluid passes through the tube at different locations ofx. As the fluid

passes from the entrance to exit, the radial velocity decreases. Naturally, since the outflow of the fluid decreases with x,

the radial velocity has a lesser value at the exit than the entrance. Moreover, it attains the maximum at the point∼= 0.6

(whenα is small) at the entrance and it shifts towards the boundary at the exit.

Fig. 4(c) shows the influence of slip coefficient (ξ ) on radial velocity. It is of interest to note that the effectof slip

coefficient is to increase the radial velocity at the boundary. The effect of permeability parameterα is presented in the

Fig. 5(a-c). It can be observed from these figures that asα increases, the radial velocity of the flow increases for all cases

of k ( converging, normal, and diverging tubes).

(a) Distribution of radial velocity(v) with r. (Re = 0.05,α =
0.5,x = 0.1,ξ = 0.15.)

(b) Distribution of radial velocity(v) with r. ( Re = 0.05,α =
0.5,ξ = 0.15,k = 0.1. )

(c) Distribution of radial velocity(v) with r. ( Re = 0.05,α = 0.5,x =
0.1,k = 0.1.)

Fig. 4

c© 2017 BISKA Bilisim Technology
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(a) Distribution of radial velocity(v) with r. ( Re = 0.05,k = 0.1, x = 0.1 ).

(b) Distribution of radial velocity(v) with r. ( Re = 0.05,k = 0.0, x = 0.1 ).

(c) Distribution of radial velocity(v) with r. ( Re = 0.05,k =−0.1, x = 0.1 ).

Fig. 5
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4.3 Flow rate Q

The effect of slope parameter (k) on flow rateQ is shown in Fig. 6(a). Ask increases, the flow rate increases. We

observed that an increase ink or the change of the tube from converging to diverging tube, increases the velocity which

in turn results in more flow rate. Fig. 6(b) illustrates the effect of permeability parameter (α) on the flow rateQ versusx.

As shown, an increase inα, produces an increase in flow rateQ up to half of the tube and the reverse becomes true to the

other half of the tube. This is because if the tube has high permeability, most of the fluid will reabsorbed at the entrance

of the tube so that we will have a less flow rate at the exit.

Fig. 7(a) displays the influence of Reynolds numberRe on Q. The value of the flow rateQ increases asRe increases.

Naturally, an increase inRe increases the inertial effect which in turn results in more flow rate. Fig. 7(b) displays the

influence of slip coefficient onQ. As shown, an increase in the slip coefficient (ξ ) increases the flow rate considerably.

(a) Distribution of flow rate(Q) with x. ( Re = 0.05,
α = 0.05,ξ = 0.15 ).

(b) Distribution of flow rate(Q) with x. ( Re = 0.05,
ξ = 0.15,k = 0.1 ).

Fig. 6
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(a) Distribution of flow rate(Q) with x. ( k = 0.1,
ξ = 0.15,α = 0.05 ).

(b) Distribution of flow rate(Q) with x. ( k = 0.1, α = 0.05,Re = 0.05 ).

Fig. 7

5 Conclusions

In this study, a discussion of an incompressible fluid flow in arigid tube of slowly varying converging/diverging wall

has been presented with possible applications to the flow of fluid in renal tubules. The main contribution of this study is

to show the effect of slip velocity at the boundary as it is notdiscussed in literature particularly to the renal flow. The

reabsorption coefficientα and the slope parameterk have the same effect on the radial velocity. As they increase, the

velocity also increase. It is also of interest to note that the effect of slip coefficientξ is to increase the radial velocity at the

boundary. When the permeability parameterα increases, the pressure decreases. This can justify the natural phenomenon

that as most of the fluid goes out in a greater amount, the pressure is very less. The effect of slip coefficientξ is to

increase the pressure and flow rate.p is less for the divergent tube than the normal or convergent tubes, and it is more

for convergent tube than the normal/divergent tubes. This is due to the fact that as the space for movement decreases, the

velocity decreases which results in more pressure.
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