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Abstract: This paper obtains the solitary wave solutions of two défeérforms of Boussinesq equations that model the study of
shallow water waves in lakes and ocean beaches. The decitimposethod using He’s polynomials is applied to solve tbgagning
equations. The travelling wave hypothesis is also utiliwesolve the generalized case of coupled Boussinesq egeatiad, thus, an
exact soliton solution is obtained. The results are alspatied by numerical simulations.
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1 Introduction

In recent years, remarkable developments have taken ptatteeistudy of nonlinear evolutionary partial differential
equations. It is realized that many such equations pospesgssolutions in the form of pulses which retain theirsdsa
and velocities after interacting with each other. Such tsahg are called solitons. Many equations admitting snlito
solutions are as follows: sine Gordon and double sine Goedprations, Schrodinger equation, and KDV, MKDV, and
complex modified KDV equations many research works have Heae on these equations. Most of the current research
is directed to solve coupled nonlinear systems analyjicatid numerically. Solitons are of great interest in many
physical areas, as, for example, in dislocation theory g$tals, plasma and fluid dynamics, magneto hydrodynamics,
laser and fiber optics, and the study of the water waves. Mamgarch works on Boussinesq equation have been
developed analytical solution of this equation was studligsnany authors [1-32], such as the construction of soliton
solutions using the bilinear form [4], multiple soliton atibns for the GB equation using a simplified version of Hirot
method [27] and decomposition method [28]. Constructiorsafton solutions and periodic solution of Boussinesq
equation by modified decomposition method are given in [29, 8 variational iteration method is developed for GB
equation [31]. A solitary wave solution of the Boussinesgatgpn with power law nonlinearity is derived in [32]. Many
numerical methods have been developed for solving the Bmss equation, suchas Petrov-Galerkin method [19].
Mohebbi and Asgari [26] also have solved the GB equationguaifourth order time stepping schemes with combination
of discrete Fourier transform. Split step Fourier methoal$s used to solve Boussinesg-type equations.

2 Decomposition method using He's polynomials

To illustrate the basic concept of modified decompositiothoe, we consider the following general differential edorat

L(u)+N(u)=g(x) 1)
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where L is the liner operator and N is the nonlinear operatdrg(x) is the homogeneous term. According to the ADM
we construct the

Unt1=Un— L H{N(u) + 9 (%)}, )

wherel; 1 = fé dt,. The embedding parametpre (0, 1] can be considered as an Expanding parameters. The homotopy
perturbation method uses the homotopy paraneter an expanding parameter to obtain

U=zop”unzuwpul+pZUz+p3U3+---- ©)
n=

If p— 1, the approximate solution of the form,

[

f=Ilimu= Zouny. (4)

p—1

It is well known that series (4) is convergent for most of the&s and also the rate of convergence is dependent on L (u).
We assume that (4) has a unique solution. The comparisoileqgidwers ofp give solutions of various orders. In sum,
according to, He’s considers the solutiafx), of the homotopy equation in a serieswés follows.

u(x) = Z)p”un = Uo+ pur + puz + pUz + -,

n=

and the method consider the nonlinear téttu), as
N(W= 5 P"Hn = Ho+pHy + PHz+ p°Ha+ -,

n=

whereH, are so called He’s polynomials which can be calculated bygie formula
Hn (Uo, Uz, Uz, ....) 1dn[N(mpiu)] n=0,1,23 (5)
n{Yo,Y1,42,...) = —7 =" i =Y, 1,4,9,....
n! gp" i; b0

The successive approximatiop.1,n > 0 of the solution of u will be obtained by selective functign Consequently the
solution is given byu = limp_e Up.

3 Numerical applications

In this section, we apply the decomposition method usingsHiblynomials for solving Boussinesq and coupled
Boussinesq equations.
Example 1. Consider the cubic KDV Boussinesq equation

Ut — U+ 2(U°) = Uooex = O 6)

with subject to initial condition
1
U(X,O)—;,L&(X,O)—*P. (7)
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According to the above procedure

1 1 . . ) ) 3 00
U(X;t):;—ﬁt‘i‘pl_t Lt {nzopn(Unxx)—zz pn(u )nxx+r]zopn(Un)ooo()}, (8)
_ 1 1 -1, -1 - n - n - n
u(xt) = X et TPl {nzop (Unc) —anop (Hn (W) + 5 " (Unoood) ¢ »
Equating the like power componentsmfwe get

0.yt 1,
p~: O*X 2

ptup = LML {uow — 2Ho + Uooo}
t2 t3 18a* 845 t2 3
=——Q—W+m:ﬁ_ﬁ+m”te”ns’
P?tp = Ly e {Un — 2H1 + Upoo} s
t4 6
:gfﬁJrsmallterms,

and so on, summing all components of u, we get

u(x,t) =up+up+uz+---,

_1 1t+t2 t3+t4 t6+sma|lter
Tx X8 xS X s,
1

X+t

Fig. 1: behavior ofu(x,t) with —40<x <40 and—5<t <5.
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Example 2. Consider the coupled Boussinesq equations

Ut + Vx + Uuy = 0,

Vi + (VU), + Uk = O, 9
with subject to initial conditions

u(x,0) = % + 2ktanh (kx),

v(x,0) = 2k?sech? (kx) . (10)

According to the above procedure

u(xt) = %+2ktanh (kx) — thl{ ip” (Vi) + i)p”(ununx)} ,

v(x,t) = 2k?sech? (kx) — pLt~ {Z)p (W), Z) (unxxx)}, (11)

u(th):%—FZktanh —pL~ {;p Vinx) + p" (Hn )},

v(x,t) = 2k?sech? (kx) — pL ™ { Zop (unxxx)} , (12)
whereH,, and M are nonlinear terms, equating like power components of gete

PO up = % + 2ktanh (kx)
p° : Vo = 2k?sech? (kx) ,
p':up = —LH {vox+ Ho},
= 4k3sech? (kx) tanh(kx) t — 2A ksech? (kx) t — 4k®sech? (kx) tanh(kx)t,
= —2Aksech? (kx)t,
pt vy = —Li 1 {Mo + Uox}
= —4k*sech® (kx) t 4- 44 k?sech? (kx) tanh(kx) t + 8k*sech? (kx)t — 8k*sech* (kx) t — 8k*sech? (kx) t 4 12k*sech* (kx)t,
= 4A k?sech? (kx) tanh(kx)t.

and so on, summing all components of u and v, we get

u(xt) = % + 2ktanh (kx) — 2A ksech? (kx)t —

A
u(xt) = X + 2ktanh (kx — At).

v(x,t) = 2k?sech? (kx) + 4A k?sech? (kx) tanh(kx) t 4 ..
v(x,t) = 2k?sech? (kx — At).

)

(© 2017 BISKA Bilisim Technology



NTMSCI 5, No. 4, 58-64 (2017) www.ntmsci.com BISKA 62

Fig. 2: Behavior of u(x,t) with—-10<x<10and 0<t <l andk=1,A =0.5.

Fig. 3: Behavior of v(x, t) with—10<x<10and 0<t <1 andk=1,A =0.5.

4 Conclusion

There are two main goals that we aimed for this work. The fgdbishow the power of the modified decomposition
method using He’s polynomials and its significant featuiidge second is to employ this method to obtain rational
solutions of nonlinear dispersive equations. It is obvidhat the method gives rapid convergent successive
approximations without any restrictive assumptions ongfarmation that may change the physical behavior of the
problem. Moreover, the decomposition method reduces #eeddicalculations by not requiring the tedious working. The
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cubic Boussinesqg and coupled Boussinesq equations wengiree@ for rational solutions only and soliton solution are
obtained. The desired solutions were obtained rapidly arddirect way.
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