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Abstract: In this paper, the differential transform method is extended by providing a new theorem to two-dimensional Volterra integral
equations with proportional delays. The method is useful for both linear and nonlinear equations. If solutions of governing equations
can be expanded for Taylor series, then the method gives opportunity determine coefficients Taylor series, i.e. the exact solutions are
obtained in series form. In illustrate examples the method applying to a few type equations.
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1 Introduction

In 1897 by Vito Volterra [1] considered integral equations which limits of integration variable and limits represents a

proportional delays vanishing att = 0. Volterra preceded the analysis of the existence and uniqueness of the solution. In

1927 and 1937 papers, on population dynamics Volterra studied integro-differential equations with delays. We can see

plenty of monographs and papers devoted for Volterra functional equations and their applications. For example, the

nonlinear Volterra integral and integro-differential equations with delays are described models in epidemiology and

population growth [2,3,4,5,6,7,8].

There are many authors has studied numerical analysis of Volterra integral and integro-differential equations, for

example, the collocation methods for Volterra integral andintegro-differential equations with proportional delayswere

first studied in detail in Brunner [9], Zhang [11], Takama [10], Bellen [12]. Yüzbaşı [13] has applied Laguerre

polynomials for pantograph-type Volterra integro-differential equations. The systems of Volterra integral equations with

variable coefficients has been solving by Bessel polinomials in [14]. In addition, the homotopy perturbation method [15],

the variational iteration method [16], the Galerkin method [17], the Adomian decomposition method [18] and theirs

various modified methods has been used for solving above mentioned equations.

In this paper, we consider the two-dimensional Volterra integral equations with proportional delays the following forms:

u(x, t) = f (x, t)+g(x, t) , (1)
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r1t
∫

0

r2x
∫

0
h(y,z)u(py,qz)dydz

r1t
∫

0

r2x
∫

0

u(py,qz)
v(y,z) dydz

1
v(x,t)

r1t
∫

0

r2x
∫

0
u(py,qz)dydz,

wherer1, r2, p,q∈ (0,1], h, f , v are given functions.

The rest of this paper is arranged as follows. In section 2, the fundamental relations and two theorems are given for

two-dimensional differential transform method. In Section 3, we extend the differential transform method by the new

theorem for two-dimensional Volterra integral equations with proportional delays. We apply this method to some

two-dimensional Volterra integral equations with proportional delays in Section 4. Section 5 concludes this study with a

brief summary.

2 Two-dimensional differential transform

The differential transform method is presented by Pukhov [19] and Zhou [20] in study of electric circuits. The main idea

of method is transformed the given functional equations to difference equations, and by using initial conditions calculate

the values of derivatives of functions at given point. In recent years, the method have been applying a large class of

problems, in particular, Tari et al. [21,22] and Jang [23] are applied for two-dimensional Volterra integro-differential

equations.

Suppose a functionu(x, t) is analytic in the given domainD and(x0, t0) ∈ D.

Definition 1. The two-dimensional differential transform of function u(x, t) at (x0, t0) is defined as following

U (n,m) =
1

n!m!

[

∂ n+mu(x, t)
∂xn∂ tm

]

x=x0
t=t0

, (2)

Definition 2. Differential inverse transform of U(n,m) is defined as

u(x, t) =
∞

∑
n=0

∞

∑
m=0

U (n,m)(x− x0)
n (t − t0)

m. (3)

From the definitions differential transform and differential inverse transform it is easy to obtain the following theorems.

Theorem 1.Assume that U(n,m) and Ui(n,m)(i = 1,2) are the two-dimensional differential transforms of the functions

u(x, t) and ui(x, t) at (0,0) respectively, then

If u(x, t) = au1(x, t)±bu2(x, t), then U(n,m) = aU1(n,m)±bU2(n,m), a and b are real numbers.

If u(x, t) = u1(x, t)u2(x, t), then U(n,m) =
m
∑

l=0

n
∑

k=0
U1(k, l)U2(n− k,m− l).

If u(x, t) = ∂ k+l v(x,t)
∂ kx∂ l t

, then U(n,m) = (n+1)(n+2)...(n+ k)(m+1)(m+2)...(m+ l)V(n+ k,m+ l).

If u(x, t) =
t
∫

0

x
∫

0
v(y,z)dydz, then U(n,0) =U(0,m) = 0, U(n,m) = 1

nmV(n−1,m−1).

Theorem 2.Assume that U(n,m) and Ui(n,m)(i = 1,2) are the two-dimensional differential transforms of the functions

u(x, t) and ui(x, t) at (0,0) respectively, p,q, pi ,qi ∈ (0,1], then
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If u(x, t) = v(px,qt), then U(n,m) = pnqmV(n,m).

If u(x, t) = u1(p1x,q1t)u2(p2x,q2t), then

U(n,m) =
m
∑

l=0

n
∑

k=0
pk

1pl
2qn−l

1 qm−l
2 U1(k, l)U2(n− k,m− l).

If u(x, t) = ∂ k+l v(px,qt)
∂ kx∂ l t

, then U(n,m) = (n+1)(n+2)...(n+ k)(m+1)(m+2)...(m+ l)pn+kqm+lV(n+ k,m+ l).

The proofs of Theorems 1-2 can be found in [21,24].

3 Main results

In this section, we present the differential transform relations that can be used for solving two-dimensional Volterra

integral equations with proportional delays.

Theorem 3.Assume that F(n,m),U(n,m) and V(n,m) are the two-dimensional differential transforms of the functions

f (x, t),u(x, t) and v(x, t) at (0,0) respectively, p,q, r1, r2 ∈ (0,1], then:

(a) If f (x, t) =
r1t
∫

0

r2x
∫

0
u(py,qz)dydz, then F(n,0) = F(0,m) = 0, F(n,m) = 1

nmqm−1pn−1rn
2rm

1 U(n−1,m−1).

(b) If f (x, t) =
r1t
∫

0

r2x
∫

0

u(py,qz)
v(y,z) dydz, then U(n,m) = 1

pnqm

m
∑

l=0

n
∑

k=0
rk−n−1
2 r l−m−1

1 (n− k+1)(m− l +1)V(k, l)F(n− k+1,m−

l +1).

(c) If f (x, t) = 1
v(x,t)

r1t
∫

0

r2x
∫

0
u(py,qz)dydz, then

m
∑

l=0

n
∑

k=0
V(k, l)F(n− k,m− l) = 1

nmr1(r1q)mr2(r2p)nU(n−1,m−1)

Proof. (a) From definition differential transform we haveF(n,0) = F(0,m) = 0, (n,m= 0,1,2, ...). Since

∂ 2 f (x, t)
∂ (r2x)∂ (r1t)

= u(pr2x,qr1t),

from Theorem 1-2 we have

1
r1r2

(n+1)(m+1)F(n+1,m+1)= (pr2)
n(qr1)

mU(n,m).

(b) Analogously to part(a), F(n,0) = F(0,m) = 0,(n,m= 0,1,2, ...). Since

u(r2px, r1qt) =
1

r1r2
v(r2x, r1t)

∂ 2 f (x, t)
∂x∂ t

,

using differential transform of multiplication of functions and Theorem 2, we have the following:

(r2p)n(r1q)mU(n,m) =
1

r1r2

m

∑
l=0

n

∑
k=0

rk
2r l

1(n− k+1)(m− l+1)V(k, l)F(n− k+1,m− l+1), (n,m= 1,2, ...).

(c) Sinsev(x, t) f (x, t) =
r1t
∫

0

r2x
∫

0
u(py,qz)dydz, using differential transform for multiplication of functions from Theorem

1 and two-dimensional integral with proportional delays from Theorem 3(a), we get necessary equation.

By using this theorem proved for solving two-dimensional integral equations, two-dimensional integral equations will be

solve usefully.
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4 Illustrate examples

In this section, using differential transform and relations in Theorem 3, we get solutions in series form of integral equations

(1).

Example 1.Let us consider linear two-dimensional Volterra integral equation with proportional delays given by

u(x, t) = xt+2xt2−
1
8

x2t2
−

1
6

x2t3+

t
∫

0

x
∫

0

u(
y
2
,z)dydz.

For this problem,f (x, t) =
t
∫

0

x
∫

0
u( y

2,z)dydzandg(x, t) = xt+2xt2− 1
8x2t2

−
1
6x2t3.

Using differential transform of equation, we have the following

U(n,m) =
1

nm2n−1U(n−1,m−1)+ δ (n−1,m−1)+2δ (n−1,m−2)−
1
8

δ (n−2,m−2)−
1
6

δ (n−2,m−3),

where δ is Kroneker symbol andδ (n,m) = δ (n)δ (m). U(n,0) = U(0,m) = 0(n,m = 0,1,2, ...), U(1,1) = 1,

U(1,2) = 2, In other casesU(n,m) = 0.

Using equation(3) we get the exact solutionu(x, t) = xt+2xt2.

Example 2.We consider the following two-dimensional Volterra integral equation with proportional delays where

u(x, t) = ex+t
−

3t
4
(1−e−

2
3x)+

1
2 t
∫

0

x
∫

0

u( y
3,z)

ey+z dydz.

This problem is given byf (x, t) =

1
2t
∫

0

x
∫

0

u( y
3 ,z)

ey+z dydzandg(x, t) = ex+t
−

3t
4 (1− e−

2
3x) in (1). Now, applying differential

transform to given equation and using Theorem 3, we have

U(n,m) = F(n,m)+
1

n!m!
−

3
4

δ (n,m−1)+
3
4
(−

2
3
)n 1

n!
δ (m−1). (4)

Solving recurrence equations(4), we obtain

U(0,0) = F(0,0)+1+0+0 U(0,2) = F(0,2)+
1
2!

−0+0

U(1,0) = F(1,0)+1+0−0 U(1,2) = F(1,2)+
1
2!

U(0,1) = F(0,1)+1−
3
4
+

3
4

U(2,1) = F(2,1)+
1
2!

+
1
2

1
3

U(1,1) = F(1,1)+1+0−
1
2

U(2,2) = F(2,2)+
1
2!

1
2!

U(2,0) = F(2,0)+
1
2!

−0+0 U(3,1) = F(3,1)+
1

3!2!
+

3
4

(

−
2
3

)3 1
3!

...
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whereF(n,m) define from Theorem 3

F(n,0) = F(0,m) = 0 and U(n−1,m−1) = 3n−12m
m

∑
l=0

n

∑
k=0

1
2l l !k!

(n− k)(m− l)F(n− k,m− l).

Using equation(3), we get

u(x, t) = 1+ x+ t+ xt+
1
2!

t2+
1
2!

x2+
1

1!2!
xt2+

1
2!1!

x2t +
1

2!2!
x2t2+ ...

which is the Taylor series of functionu(x, t) = ex+t and exact solution of Example 2.

Example 3.Consider the following two-dimensional integral equationwith proportional delays

u(x, t) = cos(x+ t)−8sin
x
12

sin
t
4
)+

1
cos( x

12+
t
4)

t/2
∫

0

x/3
∫

0

u(
y
2
,z)dzdy.

The exact solution of the problem isu(x, t) = cos(x+ t).

Now, using differential transform of last equation, we have

U(n,m) = F(n,m)+
1

n!m!
cos

π
2
(n+m)−

8
n!m!12n4msin

nπ
2

sin
mπ
2

(5)

whereF(n,m) define from following relations:

F(n,0) = F(0,m) = 0 (6)
m

∑
l=0

n

∑
k=0

cosπ
2 (n+m)

k!l !12k4l F(n− k,m− l) =
1

nm3n2n+m−1U(n−1,m−1). (7)

Using(5) we have the following relations:

U (0,0) = F(0,0)+1−0 U (2,0) = F(2,0)−
1
2
−0

U (0,1) = F(0,1)+0−0 U (1,1) = F(1,2)+0−0

U (1,0) = F(1,0)+0−0 U (2,1) = F(2,1)+0−0

U (1,1) = F(1,1)−1−
8

12∗4
U (2,2) = F(2,2)+

1
4
−0

U (0,2) = F(0,2)−
1
2
−0 ...

Using relations(6−7) from Theorem 3 and equation(3), we gain

u(x, t) = 1− xt−
1
2

t2
−

1
2

x2+
1
4

x2t2+ ...

which is the Taylor series of exact solution of Example 3.
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5 Conclusions

In this study, the differential transform method has been presented for solving two-dimensional Volterra integral equations.

A new theorem is introduced with its proof, and as application some examples are carried out. If solution of equation is

polinomial function, then method gives the exact solution,in other cases, the rapidly converging series solution.
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