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Introduction

Assessments, when purposefully designed, can provide opportunities for
collecting relevant diagnostic information. Interpretations based on such information
then enable educational specialists to take precise remedial actions. Recently
developed formative assessments are expected to provide students and teachers with
detailed feedback on what students are able to do yielding information that can
optimize instruction and learning. In other words, a formative assessment should
identify individual strengths and weaknesses in a particular content, which results in
enhanced teaching and learning environment (DiBello & Stout, 2007). For formative
assessment to fulfil this task, in addition to well-designed assessment methodologies,
various cognitive diagnosis models (CDMs) to extract diagnostic information from
diagnostic assessments are needed. These models are regarded as latent class models,
which can be used to detect mastery and nonmastery of multiple fine-grained skills or
attributes in a particular content domain (de la Torre, 2009).

Although there are several software programs available to estimate CDMs, there
are considerable amounts of benefits of using R for estimation purposes: (1)
Conducting estimation of various CDMs are available in R; (2) Unlike the R packages,
many software programs handle only one type of CDM (e.g.,, MDLTM for general
diagnostic model [GDM; von Davier, 2006], Arpeggio Suite for noncompensatory-
RUM [NC-RUM,; Hartz, 2002], Mplus for log-linear CDM [LCDM; Henson, Templin &
Willse, 2009]); (3) Many software programs are either commercial or only obtained by
contacting to authors; and (4) Syntax preparation for some of these programs may
require substantial effort. Although several R packages available for the CDM
analyses; one of the most comprehensive packages is the GDINA package.

This article aims at explaining the fundamentals of CDMs as well as demonstrating
the various implementations using GDINA package (Ma & de la Torre, 2018). The
current article explains the basics of CDM and provides sufficient details on the
implementations and may be used to guide novice researchers in CDMs related
studies. We start by introducing CDM terminologies, and input and output of a CDM
analysis. This will be followed by presentation of the G-DINA model framework
including several specific CDMs, which can be derived from the G-DINA. A brief
description of the package GDINA will then be provided. The fourth section will
demonstrate how various analyses are conducted using the R package with a graphical
user interface. In the fifth section, the paper summarizes additional features of the
GDINA R package. The final section will provide some concluding remarks.

Input and Output in a CDM Analysis

Two input matrices are needed for a basic specification of a CDM. The first matrix
consists of examinees’ item responses, and may be called response matrix. This matrix
is composed of examinees’ binary (in the simplest form) responses to items on a test.
This is typically an Ix] matrix X, where the element x;; indicates whether examinee i
correctly responded item j (x;; = 1) or not (x;; = 0). The second matrix, which specifies
relationship between each item on a test and content related attributes, is called Q-
matrix (Tatsuoka, 1983). For instance, for a test consisting of j = 1,2, ...,J items and
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measuring k = 1,2, ..., K attributes, the elements of a Ix] Q-matrix are composed of
binary variables, where q; = 1 indicates that examinees must have the kth attribute
to be able to achieve a correct response to jth item. Similarly, element of g =0
indicates that the kth attribute is not required for a successful response to jth item.

The aim of conducting a CDM analysis is to be able to make inferences about
examinees’ mastery status of each of the K attributes. Typically, but not always,
attributes are dichotomous, and the K attributes form 2 attribute patterns, which are

called latent classes and denoted as a, = [ay, ..., a], where [ = 1,...,2%. Each
element a;;, indicates whether members of latent class a; possess kth attribute. At the
end of the analysis, each examinee is assigned with an attribute profile indicating
which specific attributes the examinee has and has not mastered. In addition, the
analysis provides information on (1) proportion of examinees mastered a specific
attribute, and (2) proportion of examinees within each latent class.

Generalized DINA Model Framework

A wide range of saturated and reduced CDMs have been introduced in the
literature. One way of distinguishing these various models pertains to attribute-effects
considered in the response process. In a general (i.e., saturated) model, all main and
interaction effects of measured attributes contribute to the item response function. The
generalized deterministic, noisy and gate model (G-DINA: de la Torre, 2011) is a general
CDM from which, more specific models can be derived. For example, deterministic
input, noisy “and” gate model (DINA: Junker & Sijtsma, 2001), deterministic input, noisy
“or” gate model (DINO: Templin & Henson, 2006), and Additive-CDM (ACDM: de la
Torre, 2011) are derived from the G-DINA model.

Within the G-DINA model framework, a baseline probability (the probability of
success when an examinee has not mastered any required attributes for item j), main
effect terms (change in the success probability when a required attribute is mastered)
and possible interaction terms (change in the success probability when more than one
attribute is mastered) are specified. To derive the A-CDM, DINA model and DINO
model from the G-DINA model, one needs to place specific constraints on the G-DINA
item response function. Specifically, to obtain the A-CDM, all interaction terms in the
G-DINA model item response function are set to zero. Likewise, to derive the DINA
model, all item parameters but the baseline and highest order interaction are set to
zero. Finally, to obtain the DINO model, the main and interaction effects are
constrained to be equal with alternating signs. Above constraints result in ;" + 1 item
parameters for the A-CDM and just two item parameters for the DINA and DINO
models.

As explained in de la Torre (2011), in the specification of general CDMs, several
link functions may be used. In saturated forms, the G-DINA model can be expressed
using the identity link, logit link, and log link, all of which provide identical model-data
fit. Additive models of log-linear CDM and log CDM models are the linear logistic model
(LLM; Maris, 1999) and the reduced reparametrized unified model (R-RUM; Hartz, 2002),
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respectively. Although ACDM, LLM, and R-RUM have the same number of item
parameters, unlike their general models, they do not provide identical model-data fit
as they assume different underlying processes. For details on saturated and reduced
models and their parameter estimations, readers may refer to de la Torre (2011).

GDINA Package

The package ‘GDINA’ composed of a set of psychometric tools for cognitive
diagnosis modeling. It has the capability of handling both dichotomous and
polytomous response data. The G-DINA model, the sequential G-DINA (Ma & de la
Torre, 2016) and many CDMs subsumed by these two can be estimated using this
package. More specifically, in addition to the models subsumed by the G-DINA model,
(i.e., the DINA, DINO, A-CDM, LLM, R-RUM), multiple-strategy DINA model [de la
Torre & Douglas, 2008], many extensions of the G-DINA model such as the sequential
G-DINA model for ordinal and nominal data [Ma & de la Torre, 2016], polytomous G-
DINA model for polytomous attributes [Chen & de la Torre, 2013], multiple group G-
DINA model for individuals from multiple groups [Ma, Terzi, Lee & de la Torre, 2017],
and diagnostic tree model for polytomous response data with multiple strategies [Ma,
2018] can also be handled by the GDINA package. Marginal maximum likelihood
estimation with expectation-maximization algorithm (MMLE/EM) is used for item
parameter estimation. This package allows user to assign different CDMs to different
items in a single test. It is also flexible in terms of handling independent, saturated,
higher-order, and structured joint attribute distributions. Offering a graphical user
interface is a notable feature of the package. Along with providing person and item
parameter estimates and model-fit statistics, this package allows users to conduct
various analyses including Q-matrix validation, item-fit evaluation, item and test-level
model comparisons, and differential item functioning.

Demonstrations

To be able to follow the demonstrations below, R software (R 3.5.0 or higher
version) along with R studio (a graphic user interface for R) need to be downloaded
from https://cran.r-project.org/ and https://rstudio/com, respectively. After
installing R and Rstudio, the GDINA package (version 2.2.0) with its all dependencies
must be installed. Then, command > library(GDINA) is run to start working with the
GDINA package. To help nonprogrammer users, we intend to apply the main
functions of the package using Shiny, which is a web application framework that is
used to build interactive web applications directly from R. To use Shiny with the
GDINA function, one need to run the command > startGDINA(). Then the GDINA
graphical user interface (GUI) opens in a new window.
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Reading Input Data

Table 1
Generating Q-matrix

Item A1 A2 A3 A4 A5 A6 Item A1 A2 A3 A4 A5 A6
1 1 0 0 0 0 0 10 0 0 0 1 1 0
2 0 1 0 0 0 0 11 0 0 0 0 1 1
3 0 0 1 0 0 0 12 1 0 0 0 0 1
4 0 0 0 1 0 0 13 1 1 1 0 0 0
5 0 0 0 0 1 0 14 0 1 1 1 0 0
6 0 0 0 0 0 1 15 0 0 1 1 1 0
7 1 1 0 0 0 0 16 0 0 0 1 1 1
8 0 1 1 0 0 0 17 1 0 0 0 1 1
9 0 0 1 1 0 0 18 1 1 0 0 0 1

For simulation purposes, given a uniformly distributed attribute patterns, we
generated a response data set based on the GDINA, ACDM, and DINA models. To
generate the data, we used a hypothetical Q-matrix given in Table 1. Eighteen items
requiring one, two, or three attributes constitute the Q-matrix measuring a total of six
attributes. Thus, in the data generation, 1000 attribute patterns from 26 possible
attribute patterns were drawn from a uniform distribution. Then, based on this
sample, response data were generated following the DINA model, additive model,
and G-DINA model. Responses for items with multiple attributes distributed among
the three generating models. More specifically, items seven to 14 followed the DINA
model, items 15 and 16 followed the ACDM, and last two items followed the G-DINA
model. For the data generation purposes, lower and upper bound of probability
corrects were drawn from a random uniform distribution of U(.05, .20). Then, final
response data involved 1000 examinees” binary responses to 18 items. The R code used
for data generation is given in Figure 1.

1| @ [Jsourceonsave | Q A+ £~ SHRun | B | (#Souree +| =
1 Tibrary(GDINA) A
2 setwd('C:/users/akbay/Desktop/GDINA_R") # location of the saved files
3 Q<-read.table("g_matrix.txt", header = FALSE, sep = "")
4 #0 is the generating Q-matrix
5 N<-1000 # N is the number of examinees
6 K<-ncol(Q) # K is the number of attributes
7 sg.parm<-round(runif(2*nrow(qQ) ,min = .03, max = .15), digits = 3)
8 sg<-matrix(sg.parm, nrow = nrow(qQ))
9 # sg is the generating guessing and s1ip parameters
10 models<-c("DINA","DINA","DINA","DINA","DINA","DINA", "DINA","DINA",
11 "DINA","DINA","DINA","DINA", "DINA","DINA","ACDM","ACDM", "GDINA","GDINA")
12 #models is the generating CoM for each item
a3}

14 set.seed(12345)
15 a<-simGDINA(N, Q, gs.parm = sg, delta.parm = NULL, catprob.parm = NULL,

16 model = models,sequential = FALSE, gs.args = 1ist(type = "equal”,
7 mono. constraint = TRUE), delta.args = list(design.matrix = NULL,
18 Tinkfunc = NULL), att.dist = "uniform”, tem.names = NULL, digits = 2)
19
20 data<-extract(a, what = "dat") # extracting the generated data
21 Att_true<-extract(a, what = "attribute”) # extracting the generaed attribute profiles v
27
1612 (Top Level) ~ R Script

Figure 1. R Code for Data Generation
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To read the input data (i.e., response data and Q-matrix) by the GUI, we need to
go to the input tab and select our files from the folder where they are kept. There are
three panels in this window. In the upper panel, shown in Figure 2, input files are read.
Data in the input files need to be separated with one of the following: Tab, comma,
semicolon, or space. If our input file has header, Header box must be checked. The
remaining two panels (not given in the figure) are used to check whether the data are
read properly. Specifically, middle and lower panels show the first six rows of the
response data and the Q-matrix, respectively.

Upload response matrix Upload Q-matrix

e < T )

Upload complete Upload complete.
[ Header [ Header
Separator Separator

Tab O Comma () Semicolon @ Space Tab () Comma () Semicolon @ Space

Figure 2. Upper Panel of the Input Tab.
Model Estimation

In many cases, item parameters along with examinees’ attribute patterns are not
known. In this situation, item parameters and examinee attribute profiles are
estimated together. To fulfill this, GDINA package employs marginal maximum
likelihood estimation (MMLE) through expectation-maximization (EM) algorithm.
The Estimation Settings tab of the GUI provide us with several lists and options to select
from. This tab is given in Figure 3. First, we need to select a CDM to fit among the eight
available models: GDINA, logit GDINA, log GDINA, DINA, DINO, ACDM, LLM, and
RRUM. There is a ninth option here, which allows user to specify a vector of models
(comma delimited without quotation mark).

GDINA GUI =

Select a single COM for all items Joint attribute distribution: <=
del

GDINA ® sa 0

neralized determi

Or choose "To be specified...” above and
quotation marks) o GDINA molel
'DINA [Determiisic npus,aiy and gae] model

 [Determinisic mgues, iy o gate] model

GDINADINALLM,

7 temvlevel model selection (only applicable for G-DINA model]?

CLICKTO ESTIMATE: <:

Figure 3. Estimation Specifications

Then, we need to make a decision on the attribute distribution. There are five
options available in the GUI: Saturated, higher-order Rasch, higher-order 1PL, higher-
order 2PL, and uniform distribution. The three higher-order attribute distribution
types are defined based on the item response models for continuous ability. One- and
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two-parameter logistic models, as well as the Rasch model are available options here.
In addition, there are four more optional settings. We need to check the boxes
corresponding to options such as applying monotonic constraints (i.e., mastering an
additional attribute does not lead to a lower success probability) to the fitted model,
Q-matrix validation, and item-level model selection. We then run model estimation by
clicking the Click to Estimate! button.

i Estimation Su
Classification summary

Classification Accuracy

& Model Fi

[Attribute level = Dichotomous 000000 100000 010000 001000 00O100 DBOE1Q
Response level = Dichotomous 01
8.4508 B.5396 0.6285 B.7181 8.7896 0.5782
Homber of parameters = 147 044
Mo. of item parameters B4 011000 019100 910810 010001 901160 001010

Mo. of population parameters = 63 160

9.7217 8.7458 8.6514 8.7377 0.7023 0.4547
For the last iterstion: 128
Max abs change in success prob. = 8.8081 118018 118801 101189 181018 181861 180110
Abs change in deviance -a 110
0.7716 ©.7762 0.5812 0.7143 0.0000 0.7146
Time used = 18.4175 secs 186
010101 910011 001110 PO1101 001911 080111
o11
0.7812 8.3252 8.7284 B.8278 0.7392 0.6166
7
101110 101101 101011 160111 011110 911101
a11
0.5666 ©.8534 0.8234 0.7511 0.8629 0.8415
544
118111 181111 811211 111111
9.7735 ©.9220 .9038 0.9125

attribute level accuracy:

a1 a2 a3 aa a5 I3
0.9438 ©.9475 0.9294 £.9381 0.9451 9.9412

Figure 4. Estimation Summary

In this specific example, we fitted the GDINA model with saturated attribute
distribution and applied monotonic constraints. We further requested Q-matrix
validation and item-level model selection. Estimation results are found in the
Estimation Summary tab when the estimation is completed. As shown in Figure 4, there
are two panels on this tab. The left panel shows the estimation summary and right
reports the classification summary. Estimation summary starts with some descriptive
statistics such as the number of items, number of examinees, number of attributes, and
number of iterations needed for the model to converge. For this specific example, 18
items, 1000 examinees, six measured attributes, and 138 iterations are reported. Then,
information on the fitted model by item, attribute type, and response type are
reported. For our example, we see that G-DINA model fitted to all items, and both
attribute and response data are dichotomous.

In the estimation summary further information about the number of total, item,
and person parameters are also displayed. Sixty-three person parameters and 84 item
parameters were estimated. Notice that because we have a total number of six
attributes to measure, in saturated attribute distribution, we must estimate 63 (26-1)
latent classes, as well as all item parameters defined by the fitted model (84 delta
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parameters defined by the GDINA model). Test and pattern level classification
accuracy rates are reported on the right side under the classification summary panel.

Model-fit evaluation

Estimated CDM parameters are interpretable to the extent that model explains the
data (Chen, de la Torre & Zhang, 2013). Thus, inferences based on any CDM are valid
as long as the model fits to data. Data-model fit can be checked by examining relative-
and absolute- fit statistics. The former statistics indicate the most appropriate model
when competing models are available, whereas the latter shows whether model itself
fits the data. Relative and absolute fit statistics are found under the Model Fit tab of the
GUI. As shown in Figure 5, the relative test fit statistics, log-likelihood, Akaike
information criterion (AIC; Akaike, 1974) and Bayesian information criterion (BIC;
Schwarz, 1976) with the corresponding penalties are given on the relative test fit
window.

GDINA GUI

B Input ]
Relative test fit =

«f Estimation Settings

i Estimation Summary Lozl = “CEriloaHk!
Deviance = 18742.55
. AIC = 19836.55
& Model Fit ATC Penalty = 294
BIC = 19757.99
? Parameter Estimates BIC penalty = 10815.44

£ Q-matrix Validation Outputs

Figure 5. Relative Fit Statistics

When we have rival models that may fit the data, we need to check relative fit
statistics to compare these models. To do so, we can look at the AIC and BIC values of
nonnested models in which, the model with the least information criteria is preferred.
When rival models are nested (e.g., GDINA vs. DINA), one can make a decision based
on a likelihood ratio test: LR = —2[LLyeqycea — LLsaturatea), Where LR is the likelihood
ratio of saturated and reduced models, which is compared against x? distribution with
a given significance level (e.g., .05) and degrees of freedom determined by the
parameters difference in the compared models. Our null hypothesis for this test is the
reduced model fits the data as good as the full model, and we reject the null when LR
is larger than the critical y? value.

Relative fit statistics of our simulation is given in Figure 5. For demonstration
purposes, we also fitted the DINA model to the data that we have been analyzing. The
log-likelihood, AIC, and BIC results when the DINA is fitted are: -9674.58, 19547.15,
and 20033.02, respectively. AIC and BIC reported in Figure 5 are lower than these
values obtained from the DINA model fit. Furthermore, computed LR =
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—2[-9674.58 + 9371.27] = 606.62, given the model parameters 99 and 147 for the
DINA and GDINA models, need to be compared against Xéos;w) = 65.17. Because the

computed LR is larger than the critical value, we reject the null hypothesis and
conclude that the GDINA model fits the data better than the DINA model.

For absolute fit evaluation, GDINA package offers three statistics: proportion
correct (p), log-odds ratio (I), and transformed correlation (7). Specifically, p stands for
residuals between the observed and predicted proportion correct of individual items;
I is computed based on log-odds ratio of item pairs; and r is computed based on the
residuals between the observed and predicted correlations of item pairs (Chen, de la
Torre & Zhang, 2013; de la Torre & Douglas, 2008; Sinharay & Almond, 2007). When
these statistics are close to zero, it indicates that the model fits the data.

Absolute test fit =

M2= 32.33173 ( df= 24 ) p-value= 0.119
RMSEA = ©.0186 with 90 % CI: [ @ , ©.9337
SRMSR = ©.0265

mean[stats] |max[stats] max[z.stats] p-value adj.p-value
Proportion correct 0.0009 0.0033 0.2077 ©0.8355 1
Transformed correlation 0.0191 8.2090 6.5982 0.0000 [:]
Log odds ratio 0.0972 1.6860 9.3555 ©.e000 2]

Note: p-value and adj.p-value are associated with max[z.stats].

adj.p-values are based on the bonferroni method.

Figure 6. Absolute Fit Statistics

To use p, [, and r, their standard errors are also needed. Please refer to Chen, de la
Torre and Zhang (2013) for derivation of the statistics and their respective standard
errors. The z-scores of the statistics are used to test whether the residuals are
significantly different from zero. Because J-1 proportion correct and J(J-1)/2 pairwise
log-odds ratio and transformed correlations are available for a test with | items, only
the maximum z-scores of each statistics are tested and the test results are provided by
the GUI under the model fit tab. Here in our example, summary of absolute fit analysis
is provided in Figure 6.

Means, maximums, maximum of z-scores, and corresponding p-values and
adjusted p-values are reported in the figure. When we check maximum z-statistics for
all three absolute fit statistics and corresponding p- and adj.p-values, we reject the null
hypotheses that the model fit the data based on ! and r. Only, p statistic retains the null
hypothesis, which is claimed to be either unreliable or results in low rejection rates
(Chen, de la Torre & Zhang, 2013). We should note there that adj.p-value is the
bonferroni adjusted p-value as we implicitly test J-1 proportion correct and J(J-1)/2
pairwise log-odds ratio and transformed correlations by testing the maximum of the
Z-Scores.

The above results indicate that there is at least one item that cannot be fitted to the
model, which is expected because our data were generated based on the items
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following the DINA, ACDM, and G-DINA models. However, if we fit DINA model to
the data corresponding to the first 14 items using the first 14 rows of the Q-matrix, all
three absolute fit statistics indicate that the model fit the data (p-values for the
maximum z-statistics are .878, .133, and .124 for proportion correct, log-odds and
transformed correlations, respectively. These results, therefore, indicate that if only the
first 14 items confirming the DINA model constituted the test, all aforementioned
absolute fit indices would yield model-data fit for all items. We should note that the
GUI also provides a heatmap plot depicting the p-values log-odds and transformed
correlation obtained from item pairs.

Parameter Estimation

Both the item and person parameters estimates are readily available under the
Parameter Estimates tab of the GUL This tab, given in Figure 7, offers a list of item
parameter estimates with or without standard errors: success probabilities of reduced
latent classes; guessing and slip parameters; delta parameters; and success probabilities of all
latent classes. To obtain the standard errors along with the estimates, Estimate S.E? box
must be checked. Figure 7 demonstrates that we requested guessing (g) and slip (s)
parameters with corresponding standard errors. Under G-DINA model, g and 1-s
parameters stand for lower and upper bound of success probabilities.

GDINA GUI

Parameter estimation

3 Input

Estim

Item parameter estimates

. Item parameter estimation specifications
Estimation Summary

Item parameters : : 5 q
& Model Fit guessing  slip SE[guessing] SE[slip]
Guessing and slip parameters Ttem 1  0.8651 0.1680 0.0161  0.0217
I o T T Ttem 2 0.8678 0.0799 0.0176  0.0190
- Gressing and slip parameters Ttem 3 0.1167 0.1162 0.0201  0.0203
I Estimate S.E.2 I Delta parameters Ttem 4 0.0842 0.1327 0.0191  0.6213
idation Outputs S L G A SR Ttem 5  0.1080 0.0746 0.0209  0.0170
Ttem 6 0.1151 0.0431 0.0217  0.0167
odel s Ttem 7  0.0848 0.0811 0.0209 0.0224
Ttem 8 0.0946 0.0425 0.0209 0.0174
Ttem 9 0.1050 0.1485 0.0232  0.0297
Plots Ttem 16 0.0457 ©.0670 0.0169  0.0245
Ttem 11  0.6743 0.0642 0.0165  0.0261
Ttem 12 0.6439 0.1439 0.0132  0.0304
Ttem 13  0.0480 0.0297 0.0211  0.0248
Ttem 14  0.6256 0.0860 0.0241  0.0393
Item 15 ©.8121 @.0534 0.9473 0.08290
Item 16 ©0.2489 0.0532 0.8511 0.8234
Ttem 17  0.0656 0.1084 0.0330  0.0296
Ttem 18  0.1785 0.1140 0.0452  6.0297

Figure 7. [tem Parameter Estimation Specifications
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Person parameter estimation specifications = Person parameter estimates of first 10 observations

Person parameter estimation method:
Al A2 A3 A4 AS A6
EAP [1,] 1 @ 8 1 8 1
[2,] e @8 1 1 1 1
[3,] 1@ 111 8
| & Download | [4,] ¢ @ 1 1 11
- babilities of mastering each attribute [5] 1 e @ 11 e
File type: [6,] 1 @ @ @ 1 @
® csv<:: [7,] e @ @ 1 08 1
O tsv [8,] @ 1 1 1 @ @
[9.] 1 1 @ 1 @ 1
[te,] 1 1 1 1 1 1

Estimated proportions of latent classes = Estimated proportions of first 10 latent classes
specifications

latentclass proportion
000000 ©.004149292
1000006 0.023183470
010000 ©.012463984
001000 ©.025669691
000106 0.023114808
000010 0.013325367
000001 ©.018319702
110000 ©.016806536
101000 ©.017095203
10 100100 ©.011897999

Sorted by:

default )4

[r—
. Download ——

File type:

® v =< —1

O tsv

W NN B W R

Figure 8. Person Parameter Estimation Specifications

In addition to item parameters, the Parameter Estimates tab of the GUI provides us
with person parameters as well. Examinees” estimated attribute profiles for the first 10
examinees are shown in the middle panel of this tab. Attribute profile estimates based
on maximum likelihood estimation (MLE), expected a priori (EAP), and maximum a
priori (MAP) are computed and may be selected from the list given in the Person
parameter estimation method. This list also includes the Probabilities of mastering each
attribute option. In our example given in Figure 8, we see the first ten examinees’
estimated attribute vectors. The GUI allows for all these types of person parameters to
be downloaded as a .csv or .tsv file. To do so, we need to select one of the two file
types, and hit the Download button.

Q-matrix Validation

In general, implementation of the CDMs requires a Q-matrix mapping attributes
to items. This matrix embodies the cognitive specifications in test construction
(Leighton, Gierl & Hunka, 2004). Because this input plays a crucial role in
incorporating cognitive theories into psychometric practice, it needs to be correctly
specified. Only then, CDMs can provide maximum diagnostic information (de la
Torre, 2008). However, due to subjective judgments of content experts, Q-matrix
construction process might not be fulfilled easily and successfully. This process may
result in some misspecifications in the Q-matrix such that a required attribute may be
missed, or an unnecessary attribute may be added in the matrix. These two types of
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misspecifications are known as under- and over-specifications, respectively (de la
Torre & Chiu, 2016).

Another possible error may emerge when both under- and over-specifications
coexist for an item, which is referred to as over-and-under-specification (de la Torre &
Chiu, 2016). Negative effects of misspecified Q-matrices in item calibration, examinee
classification, and model misfit have been shown in the literature (e.g., Chiu, 2013; de
la Torre, 2008; de la Torre & Chiu, 2016). To address misspecifications due to
subjectivity in the process, a general Q-matrix validation procedure (i.e., de la Torre &
Chiu, 2016) along with several others specifically developed for reduced models (e.g.,
Chiu, 2013; de la Torre, 2008) have been proposed.

An item specific discrimination index, q}, is proposed and used in the general Q-
matrix validation method. G is a measure of weighted variance of success probability
for a particular attribute distribution. De la Torre and Chiu (2016) showed that a correct
g-vector yields homogenous latent groups in terms of probability of success. The idea
behind use of this index for Q-matrix validation lies in the fact that correct q-vector
should produce the highest variability in success probability. Their method suggests
selecting a g-vector that approximates the maximum G# with the fewest attribute
specifications.

Q-matrix validation

GDINA GUI

3 Input

Estima gs

Q-matrix validation specifications Suggested Q-matrix o

Q-validation method:

i Est n Summary

& Model Fit
@® PVAF Q-matrix validation based on PVAF method

O Stepwise Wald test

2 Parameter Estimates

Suggested Q-matrix:
£ Q-matrix Validation Outputs PVAF cutoff AL A2 A3 A4 RS AS

[

Note: * denotes a modified element.

Figure 9. Setting PVAF Cutoff and Suggested Q-matrix

For the search algorithm to select a parsimonious gq-vector producing
approximately the highest G% rather than the g-vector yielding the highest G, a
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stopping rule is implemented as a part of the algorithm. This stopping rule is defined
by the proportion of variance accounted for (PVAF) by a particular g-vector relative to
the highest G7. Because maximum G? is produced by the g-vector requiring all
measured attributes, a g-vector is selected by this method when PVAF is higher than
a predetermined cutoff (i.e., €).

Item #

]

Plot type:
® best <) ® eps =038 A
0l '”‘

[] Data labels? B

& Download Plot as PDF file

Mesa Plot for Item 18

1.0

PVAF

04
I

0o

T T T T T T T
000000 100000 110000 110001 111001 110111 111111

g-vectors

Figure 10. Mesa Plot with Specifications

The GDINA package implements the general Q-matrix validation method.
Validation results (when requested in the estimation specifications tab) are found in
the Q-matrix Validation Outputs tab in the GUI. On this output page, first PVAF cutoff
needs to be specified so that suggested Q-matrix will be produced based on this cutoff.
Here in our example given in Figure 9, we set the PVAF to .80 and the corresponding
suggested Q-matrix yielded correction in one item (ie., item 18). Stepwise
implementation of the test is also available through the option Stepwise Wald test.
Remember that although the validation method has suggested this g-vector, the final
decision on correcting the Q-matrix should be based on the expert decision after
careful consideration of related item, g-vector, and the attributes measured by the test.

Down on the same page, we are able to see Mesa Plot (de la Torre & Ma, 2018) for
each item. Item 18 is shown in Figure 10 as an example, for which we plotted the best
g-vectors option. We could also see all g-vectors option by selecting the plot type from
Mesa Plot Specifications. PV AF values for this item indicates that a q-vector of 110000 is
as good as the specified q-vector (110001). Notice that the original q-vector is marked
with filled circle. Here we also have an option to print data Iabels by clicking the
corresponding box in the specifications window. Furthermore, the GUI allows us to
download Mesa plots as PDF file.

Item-level Model Comparison

GDINA package allows item-level model selection so that CDMs need not be
specified a priori. To perform model selection between saturated and reduced models
at the item-level, Wald test is used to compare G-DINA model against the fits of the
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specific CDMs (i.e., DINA, DINO, ACDM, LLM, and RRUM). The Wald test proposed
by de la Torre (2011) is an item level procedure, which can be performed for items
requiring at least two attributes. Wald test requires a restriction matrix of R
constraining the GDINA parameterization to derive the reduced models. This
restriction matrix is used in computation of Wald statistic. For further information on
the Wald statistics, readers may refer to de la Torre and Lee (2013) and Ma,
Iaconangelo and de la Torre (2016).

Wald statistics and p-values =

Wald statistics

DINA DINO ACDM LLM RRUM
Item 7 3.2455 607.1375 162.6467 40.1298 18.6776
Item 8 B.6860 1143_4767 303.0966 61.0608 22.9455
Item 9 8.8234 416.0701 161.6568 45.3366 20.1859
Item 1@ 3.8829 742.4009 269.7410 32.2446 8.5974
Item 11 B8.0000 606.3199 226.4049 36.3413 14.8095
Item 12 5.2497 469.9715 219.2797 25.2301 9.2206
Item 13 1.7392 11908.1993 653.8814 36.4754 31.6960

Item 14 1©.2957 421.2165 243.6981 35.3682 17.4988
Item 15 166.8551 151.6201 5.9892 6.0009 4.4904
Item 16 76.2306 248.8655 9.1693 11.8718 4.089%90
Item 17 452.79808 12.6917 138.4325 31.2514 27.7197
Item 18 243.5619 118.1075 56.5202 21.5705 46.5845

P-values

DINA DINO ACDM LLM RRUM
Item 7 |©.1974|0.0000 ©.000 0.0000 0.0015
Item 8 |©@.7096|0.0000 ©.000 0.0000 O.0000
Item 9 |©.9884|0.0000 0.000 0.0000 O.0000
Item 10| ©2.2141|6.0000 ©.000 0.0000 0.0034
Item 11]|1.6660|0.0000 ©.000 ©.0000 0.0001
Item 12| ©2.8724|0.0000 ©.000 ©.0000 0.0024
Item 13]©2.9421|0.0000 ©.000 ©.00080 O.0000
Item 14| ©.1127|06.0000 ©.000 ©.0000 ©.0015
Item 15 ©.8006 ©6.0000|0.200 6.1991 6.3437
Item 16 ©.0000 ©.0000|0.857 ©.0258 ©.3941
Item 17 ©.60000 ©.0482 ©.000 ©0.0000 O.0000
Item 18 ©.0000 ©.0000 ©.000 ©.0002 O.000Q

Figure 11. Item-level Model Comparison

For our case, the Wald statistics and corresponding p-values for the different
reduced models, given in Figure 11, are reported under the Model Selection Output tab
of the GUI. Notice that these statistics only printed for the items requiring at least two
attributes for which more than one CDM can be fitted. Wald statistics and p-values
indicates that items 7-14 are DINA and items 17-18 are the GDINA items. Remaining
two items (i.e., 15-16) conform to at least two of the following CDMs: RRUM, ACDM
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and LLM. Although the data for these two items are simulated using the ACDM,
because these three models have the same number of item parameters under different
link functions (see de la Torre, 2011 for different link functions), it may be hard to make
a perfect selection.

Plots

The GUI allows users to generate various types of graphs via the Plots tab. These
readily available graphs are useful tools to highlight important information and enable
users to compare various parameters or statistics. For example, Plot of probability of
mastery for individuals is given in Figure 12; which allows users to compare individuals’
mastery probabilities. To do so, one need to enter a vector of individuals whose
mastery probabilities are to be compared. This vector must be comma delimited, and
no quatation marks is needed. Another type of graph is generated to display individual
posterior probabilities. This bar graph allows user to display the mastery probabilities in
increasing or decreasing order.

GDINA GUI =

Plots for individual statistics

Specifications for individuals’ mastery plots = Plot of probability of mastery for individuals =

Enter a vector of individuals (comma delimited) Mastery probadiltes

125 == P

Horizontal? <=1

& Downluad Plot as POF file )
-
B, | i
Bos N-
N

F 2 L — P F

Figure 12. Individuals” Mastery Probability Plots

oy pr

The next graph is the Plot of proportions of latent classes, which indicates the latent
classes” mastery rates. The mastery proportions of the latent classes may also be
displayed in decreasing or increasing order. All these graphs are displayed vertically
as default; however, user can switch to the horizontal positioning by clicking the
Horizontal box. The last graph is the Item response function plot, which displays the item
statistics of the selected item. Error bars can also be added to this bar graph by clicking
the Error bars box.

Additional Functions Offered by the Package

This section provides additional flexibilities offered by the package not covered by
the GUI. R scripts are needed to use additional functions. By writing a script additional
features of the package become available, and additional analyses that are not part of
the GUI can be conducted. Note that, because our goal is to serve unexperienced
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audience, we only focus on the fundamental functions used in dichotomous attribute
cases. Information in this section is useful for readers who have some level of R
programming skills.

We can start with the function simGDINA( ) that is used to simulate examinee
response data. Sample size (N), Q-matrix (Q), and lower and upper bound of
probability correct (gs.parm) must be provided, where gs.parm is a matrix or data frame
for lower and upper bound probability correct parameters (i.e., guessing and slip
parameters). The contribution of the delta parameters of the additive models is
specified by the gs.args argument for which two options, “equal” and “random”, are
available. The model argument allows users to assign a CDM to each item. model is a
character vector for each item (or a scalar when all items are the same type), for which
the available options are: “GDINA”, “DINA”, “DINO”, “ACDM”, “LLM”, “RRUM”,
and “MSDINA”. The att.dist argument is used to indicate the attribute distribution for
simulation, where “uniform”, “higher.order”, “mvnorm”, and “multinomial” are
available options for the uniform, higher order, multivariate normal, and multinomial
distributions, respectively. When attribute distribution happens to be multinomial, the
probability of each attribute pattern needs to be specified through att.prior. If we would
like attribute distribution to be higher-order, then, higher order distribution of
attributes need to be specified through higher.order.parm. Lastly, a list of parameters for
multivariate normal distribution is provided by mvnorm.parm when the attribute
distribution to be generated is a multivariate normal.

The GDINA package allows users to generate hierarchical attribute structures and,
to provide prior joint attribute distribution with specified hierarchical relations among
the attributes. For this purpose, the att.structure( ) function can be used. The
hierarchy.list is a list used for specifying hierarchical structure among the attributes.
Elements of this list specify direct prerequisite relations between the two attributes.
For example, when three attributes (e.g., A1, A2, and A3) have a linear relationship
where Al is prerequisite for A2 (and A3), and A2 is also prerequisite for A3; this
hierarchical structure is defined by the list(c(1,2), ¢(2,3)). The number of attributes K
must also be specified to use this function. The att.prob argument is used in this
function to set latent class probabilities as either “random” or “uniform.”

The GDINA( ) function calibrates the GDINA and reduced CDMs. Here we would
like to focus on the features available using specific functions that are not available in
the GUI. Along with the CDMs available in the GUI, multiple-strategy DINA model
(MSDINA; de la Torre & Douglas, 2008) is also estimated by this function. This
function allows hierarchically structured attributes in the estimation, for which
att.prior must be specified such that prior weights 0 are assigned to impossible latent
classes. This option is only available for calibration of the DINA, DINO, or G-DINA
models.

To evaluate whether a specific CDM can replace the G-DINA model without
significant loss in data-model fit, the modelcomp( ) function can be used. Although
model comparison can also be conducted in the item and test level using the GUI, use
of this function allows one to specify the items for which the model comparison is
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requested. Furthermore, we can also specify the reduced models to be considered in
the model selection. Unlike in the GUI, Wald statistics is not the only option under this
function. Two more statistics, namely, Lagrange multiplier and likelihood ratio, are
also available for model comparison.

The extract( ) function is used to extract information or data such as att.prior,
discrim, prevalence, prosterior.prob, and delta.parm (i.e., attribute priors,
discriminations, attribute prevalence, posterior probabilities, and delta parameters,
respectively). To obtain such information, objects from class GDINA, itemfit,
modelcomp, or simGDINA must be specified by the object argument. The what
argument is then used to call the information we would like to extract.

The GDINA package permits one to evaluate differential item functioning (DIF),
which may occur when the success probabilities on an item are different for the
examinees from different groups with the same attribute mastery profile (Hou, de la
Torre & Nandakumar, 2014). The dif() function is used to detect DIF based on the
models in the GDINA function using the Wald test (Hou, de la Torre, & Nandakumar,
2014) and the likelihood ratio test (Ma, et. al, 2017). It should also be noted that the
current version of the package only allows detection of DIF for two groups.

Concluding Remarks

In this manuscript, we first discussed relevant literature in cognitive diagnosis,
which includes a saturated model and several reduced models. It was followed by
presentation of the GDINA R package, which can be conveniently used for CDM
analyses. We demonstrated step-by-step basic CDM analyses using the GUI with an
aim of guiding novice researchers and practitioners in the field. Within the
demonstration, we provided fundamental information on the statistics used and
interpretations of the output. Although the analyses and options are limited when one
uses the GUI, more advanced methods for CDMs are available in the package for users
who are more familiar with R.

Several steps must be taken to implement cognitive diagnosis modeling
successfully. The first step requires specification of the domain-specific attributes for
which researchers may need to look into theories within the content domain, review
the relevant literature, and conduct a protocol analysis with the think-aloud procedure
(Akbay, Terzi, Kaplan, & Karaaslan, 2017; Leighton & Gierl, 2007; Tjoe & de la Torre,
2014). In general, finer grain sized attributes provide richer information (Alderson,
2005); however, an increase in the number of attributes measured by a single test
requires a larger number of items which, in turn, requires much larger sample sizes
for the model parameters to be estimated accurately.

Once the attributes are determined, items measuring single attributes and
combinations of attributes are developed and the relationships between these items
and the attributes must be carefully specified through the construction of a Q-matrix.
It should be noted that the usefulness of the diagnostic information provided by the
CDM analysis is highly dependent on the theoretical and empirical soundness of the
Q-matrix (de la Torre, 2008; de la Torre, & Chiu 2016; Lee & Sawaki, 2009). Therefore,
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item-attribute relationships must be specified carefully and correctly. In certain
situations, researchers have expectations regarding how attributes interact in the item
response process. In these situations, another fundamental step involves deciding a
priori which CDMs should be fitted to item response data to test one’s hypotheses.

Although other software programs are also available, using the GDINA package
offers users some flexibilities such as allowing estimation of a wide range of CDMs
and allowing nonprogrammers to benefit from this package through the GUI. Using
the GDINA, one can obtain diagnostic information about individual examinees’
mastery or nonmastery status of attributes; proportion of examinees who have
mastered a specific attribute; and proportion of examinees that are in a specific latent
class. In addition to ordinary CDM analyses, GDINA package further allows users to
apply model selection at the test- and item-level to make sure that the most appropriate
CDM (i.e., CDM that best explains the attribute interactions in the item) is fitted to the
response data. Furthermore, to identify possible item-attribute specification mistakes
in the Q-matrix, implementation of an empirical Q-matrix validation method is
available in the GDINA package. Lastly, this package offers various handy graphs,
which can be very useful in emphasizing important information and comparing
various parameters and/or statistics.
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GDINA R Paketi Kullanarak Bilissel Tan1 Modelleri Uygulamasi

Atif:

de la Torre, J., & Akbay, L. (2019). Implementation of cognitive diagnosis modeling
using the GDINA R package. Eurasian Journal of Educational Research, 80, 171-
192, DOL: 10.14689/ ejer.2019.80.9

Ozet

Formatif degerlendirme icin hazirlanmis olan 6lgme araclari, amacli bir sekilde
tasarlandiginda, tanilayici bilgi toplamamiza imkén saglarlar. Bu tiir bilgilere
dayanarak yapilan ¢ikarimlar egitimcilerin telafi edici eylemler gergeklestirmelerini
saglar. Son zamanlarda gelistirilen formatif degerlendirme yontemleri 6grencilere ve
Ogretmenlere 6grencilerin hangi bilgi ve beceri parcaciklarina (biligsel niteliklere)
sahip olduklar1 ya da olmadiklariyla ilgili ayrintili geri bildirim saglayabilmektedir.
Bu geribildirimlerin 6gretimi ve 6grenmeyi optimize etmek amaciyla kullanilmasi
beklenmektedir. Formatif clgme ve degerlendirmelerin sonuglarindan tanisal bilgi
edinebilmek icin iyi tasarlanmis sinavlarin uygulanmasinin yani sira gesitli bilissel tani
modellerinin kullanimina da ihtiya¢ vardir. Ancak, bu modellerin alan yazina yeni
kazandirilmis olmasi ve egitimcilerin hentiz yeterince asina olmamalar1 nedeniyle,
bilissel tani modellemelerinin (BTM) parametre kestirimlerinin ve diger ilgili
analizlerin uygulamalar1 yeterince yayginlasmamuistir.

Bu makalenin amaci BTM'ye asina olmayan egitimci ve arastirmacilara BTM'nin temel
prensiplerini tanitmak ve ticretsiz bir yazilim olan GDINA R paketi kullanilarak
yapilabilecek ¢esitli BTM uygulamalarini yeterince detayl1 olarak gostermektir. BTM
analizleri yapan baz1 yazilim programlarinin mevcut olmasina ragmen, alanla ilgili en
kapsaml1 paketlerden biri olan GDINA R paketinin kullaniminin saglayacagt
avantajlar arasinda sunlar sayilabilir: (1) Bircok bilissel tant modelinin kestiriminin R
ile miimkiin olmasy;, (2) Diger bir¢ok yazilim programlarmin tek tip modelin
kestirimine imkan veriyor olmasy; (3) Diger programlarin ¢ogunun ticari olmasi veya
ancak yazarin kendisiyle irtibat kurularak temin edilebilir olmasi; ve (4) Sozdizimi
(sintaks) hazirlamanin bazi programlarda oldukca zahmet verici olmas.

Bu makalede 6ncelikle BTM analizinin girdi ve ¢iktilar1 da dahil olmak tizere BTM
terminolojisi tartisilmakta, sonrasinda GDINA model yapisi tanitilmakta ve GDINA R
paketi sunulmaktadir. Sonrasinda ise niimerik bir 6rnek veri setinden yola ¢ikilarak,
GDINA R paketi ve bu paketin sundugu grafiksel kullanici ara ytizii (GUI: graphical
user interface) kullanilarak yapilabilecek analiz tiirleri adim adim takip edilebilecek
sekilde sunulmustur. Ayrica gerekli goriilen noktalarda yapilan is ve islemlerin teorik
bilgisine ve elde edilen sonuglarin yorumlanmasina dair bilgiler verilmistir. {lerleyen
boltimlerde, GUI ile yapilamayan ancak GDINA paketinin sundugu ve R kullanimina
asina olan kullanicilarin s6zdizimi yazarak yapabilecekleri ilave analizlere ve paketin
ek ozelliklerine yer verilmistir. Makalenin son bolimiinde ise bazi hatirlatma ve
tespitler yapilmustir.
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G-DINA modeli ve GDINA paketi

Genel ya da kisitlanmis olarak bircok biligsel tan1 modelinin ayrimlari grencinin
maddeleri cevaplama siirecinde bilissel niteliklerin (6lgiilen bilgi ya da becerilerin)
etkilesimlerine bagli olarak yapilir. G-DINA gibi genel modellerde biitiin ana etkiler
ve etkilesim etkileri madde tepki fonksiyonuna katkida bulunur. Bu tiir genel
modellerin parametrelerinde yapilacak kisitlamalarla daha kisith ya da daha sade
modeller elde edilebilir. Bunun yani sira, genel modellerde birden farkli link
fonksiyonlarinm kullanimi da s6z konusudur. Ornegin, G-DINA model identity, logit
ve log linkleriyle farkl1 isimlerle sunulabilir, ancak farkli linklerle ortaya konulan genel
modeller 6zdes model-veri uyumuna sahiptirler.

GDINA paketi GUI araciligiyla farkli linkler altinda olusturulabilecek olan GDINA,
logit GDINA, log GDINA'nin yani sira, bu genel modellerde ortaya koyulacak
kisitlamalarla olusturulabilen DINA, DINO, ACDM, LLM, ve RRUM modellerinin
kestirimine imkan verir. Ayrica, GUI araciligiyla olmasa da, R kullanimina agina olan
ve sozdizimi yazabilen kullanicilar GDINA R paketini kullanarak farkl stratejilerin
kullanimi durumunu goéz o6niinde bulunduran MS-DINA ve G-DINA'nin farkl
uzantilarindan olusan modellerin (6r. siniflama ve siralama olcekleriyle elde edilen
veriler icin sequential G-DINA ve kismi puanlamali nitelikleri i¢in polyfomous G-DINA)
kestirimini yapabilirler.

GDINA'y1 kullanarak, testi alanlarin nitelikleri kazanmis ya da kazanamamis olma
durumlariyla ilgili tanulayici bilgi; belirli bir niteligin kazandirilma orany; ve belirli bir
profile sahip olan kisilerin oranu ile ilgili bilgiler elde edilebilir. Bunlarin disinda, temel
CDM analizlerinin yani sira, madde ve nitelikler arasindaki etkilesimi en iyi agiklayan
BTM'nin kullamilabilmesi adima GDINA paketi arastirmacilarin test- ve madde-
diizeyinde model secimi yapabilmelerine imkan tanir. GDINA paketi ayn1 zamanda
madde-nitelik eslestirme matrisinde yapilabilecek muhtemel yanlislar1 ortaya
¢ikarmaya yardimci olmak adma ampirik olarak Q-matrisin uygunlugunun
dogrulamasini saglayan metotlarin kullanilmasina imkan saglar. Son olarak, bu paket,
cesitli kolay ve kullanisli grafikler ortaya koyar. Bu grafikler elde edilen analiz
sonuglarinda ©¢nemli noktalarmn vurgulanmasmna ve elde edilen istatistik ve
parametrelerin kolaylikla karsilastirilmasina olanak saglar.

Anahtar sézciikler: Biligsel tan1 modelleri, GDINA, R paketi, BTM uygulamalari.
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