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Introduction 

Assessments, when purposefully designed, can provide opportunities for 

collecting relevant diagnostic information. Interpretations based on such information 

then enable educational specialists to take precise remedial actions. Recently 

developed formative assessments are expected to provide students and teachers with 

detailed feedback on what students are able to do yielding information that can 

optimize instruction and learning. In other words, a formative assessment should 

identify individual strengths and weaknesses in a particular content, which results in 

enhanced teaching and learning environment (DiBello & Stout, 2007). For formative 

assessment to fulfil this task, in addition to well-designed assessment methodologies, 

various cognitive diagnosis models (CDMs) to extract diagnostic information from 

diagnostic assessments are needed. These models are regarded as latent class models, 

which can be used to detect mastery and nonmastery of multiple fine-grained skills or 

attributes in a particular content domain (de la Torre, 2009). 

Although there are several software programs available to estimate CDMs, there 

are considerable amounts of benefits of using R for estimation purposes: (1) 

Conducting estimation of various CDMs are available in R; (2) Unlike the R packages, 

many software programs handle only one type of CDM (e.g., MDLTM for general 

diagnostic model [GDM; von Davier, 2006], Arpeggio Suite for noncompensatory-

RUM [NC-RUM; Hartz, 2002], Mplus for log-linear CDM [LCDM; Henson, Templin & 

Willse, 2009]); (3) Many software programs are either commercial or only obtained by 

contacting to authors; and (4) Syntax preparation for some of these programs may 

require substantial effort. Although several R packages available for the CDM 

analyses; one of the most comprehensive packages is the GDINA package. 

This article aims at explaining the fundamentals of CDMs as well as demonstrating 

the various implementations using GDINA package (Ma & de la Torre, 2018). The 

current article explains the basics of CDM and provides sufficient details on the 

implementations and may be used to guide novice researchers in CDMs related 

studies. We start by introducing CDM terminologies, and input and output of a CDM 

analysis. This will be followed by presentation of the G-DINA model framework 

including several specific CDMs, which can be derived from the G-DINA. A brief 

description of the package GDINA will then be provided. The fourth section will 

demonstrate how various analyses are conducted using the R package with a graphical 

user interface. In the fifth section, the paper summarizes additional features of the 

GDINA R package. The final section will provide some concluding remarks. 

Input and Output in a CDM Analysis 

Two input matrices are needed for a basic specification of a CDM. The first matrix 

consists of examinees’ item responses, and may be called response matrix. This matrix 

is composed of examinees’ binary (in the simplest form) responses to items on a test. 

This is typically an IxJ matrix 𝑿, where the element 𝑥𝑖𝑗 indicates whether examinee 𝑖 

correctly responded item 𝑗 (𝑥𝑖𝑗 = 1) or not (𝑥𝑖𝑗 = 0). The second matrix, which specifies 

relationship between each item on a test and content related attributes, is called Q-

matrix (Tatsuoka, 1983). For instance, for a test consisting of 𝑗 = 1,2, … , 𝐽 items and 
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measuring 𝑘 = 1,2, … , 𝐾 attributes, the elements of a IxJ Q-matrix are composed of 

binary variables, where  𝑞𝑗𝑘 = 1 indicates that examinees must have the kth attribute 

to be able to achieve a correct response to jth item. Similarly, element of 𝑞𝑗𝑘 = 0 

indicates that the kth attribute is not required for a successful response to jth item. 

The aim of conducting a CDM analysis is to be able to make inferences about 

examinees’ mastery status of each of the 𝐾 attributes. Typically, but not always, 

attributes are dichotomous, and the 𝐾 attributes form 2𝐾 attribute patterns, which are 

called latent classes and denoted as  𝜶𝑙 = [𝛼𝑙1, … , 𝛼𝑙𝐾], where 𝑙 = 1, … , 2𝐾. Each 

element 𝜶𝑙𝑘 indicates whether members of latent class 𝜶𝑙 possess kth attribute. At the 

end of the analysis, each examinee is assigned with an attribute profile indicating 

which specific attributes the examinee has and has not mastered. In addition, the 

analysis provides information on (1) proportion of examinees mastered a specific 

attribute, and (2) proportion of examinees within each latent class. 

 

Generalized DINA Model Framework 

A wide range of saturated and reduced CDMs have been introduced in the 

literature. One way of distinguishing these various models pertains to attribute-effects 

considered in the response process. In a general (i.e., saturated) model, all main and 

interaction effects of measured attributes contribute to the item response function. The 

generalized deterministic, noisy and gate model (G-DINA: de la Torre, 2011) is a general 

CDM from which, more specific models can be derived. For example, deterministic 

input, noisy “and” gate model (DINA: Junker & Sijtsma, 2001), deterministic input, noisy 

“or” gate model (DINO: Templin & Henson, 2006), and Additive-CDM (ACDM: de la 

Torre, 2011) are derived from the G-DINA model. 

Within the G-DINA model framework, a baseline probability (the probability of 

success when an examinee has not mastered any required attributes for item j), main 

effect terms (change in the success probability when a required attribute is mastered) 

and possible interaction terms (change in the success probability when more than one 

attribute is mastered) are specified. To derive the A-CDM, DINA model and DINO 

model from the G-DINA model, one needs to place specific constraints on the G-DINA 

item response function. Specifically, to obtain the A-CDM, all interaction terms in the 

G-DINA model item response function are set to zero. Likewise, to derive the DINA 

model, all item parameters but the baseline and highest order interaction are set to 

zero. Finally, to obtain the DINO model, the main and interaction effects are 

constrained to be equal with alternating signs. Above constraints result in 𝐾𝑗
∗ + 1 item 

parameters for the A-CDM and just two item parameters for the DINA and DINO 

models.  

As explained in de la Torre (2011), in the specification of general CDMs, several 

link functions may be used.  In saturated forms, the G-DINA model can be expressed 

using the identity link, logit link, and log link, all of which provide identical model-data 

fit. Additive models of log-linear CDM and log CDM models are the linear logistic model 

(LLM; Maris, 1999) and the reduced reparametrized unified model (R-RUM; Hartz, 2002), 
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respectively. Although ACDM, LLM, and R-RUM have the same number of item 

parameters, unlike their general models, they do not provide identical model-data fit 

as they assume different underlying processes. For details on saturated and reduced 

models and their parameter estimations, readers may refer to de la Torre (2011). 

 

GDINA Package 

The package ‘GDINA’ composed of a set of psychometric tools for cognitive 

diagnosis modeling. It has the capability of handling both dichotomous and 

polytomous response data. The G-DINA model, the sequential G-DINA (Ma & de la 

Torre, 2016) and many CDMs subsumed by these two can be estimated using this 

package. More specifically, in addition to the models subsumed by the G-DINA model, 

(i.e., the DINA, DINO, A-CDM, LLM, R-RUM), multiple-strategy DINA model [de la 

Torre & Douglas, 2008], many extensions of the G-DINA model such as the sequential 

G-DINA model for ordinal and nominal data [Ma & de la Torre, 2016], polytomous G-

DINA model for polytomous attributes [Chen & de la Torre, 2013], multiple group G-

DINA model for individuals from multiple groups [Ma, Terzi, Lee & de la Torre, 2017], 

and diagnostic tree model for polytomous response data with multiple strategies [Ma, 

2018] can also be handled by the GDINA package. Marginal maximum likelihood 

estimation with expectation-maximization algorithm (MMLE/EM) is used for item 

parameter estimation. This package allows user to assign different CDMs to different 

items in a single test. It is also flexible in terms of handling independent, saturated, 

higher-order, and structured joint attribute distributions. Offering a graphical user 

interface is a notable feature of the package. Along with providing person and item 

parameter estimates and model-fit statistics, this package allows users to conduct 

various analyses including Q-matrix validation, item-fit evaluation, item and test-level 

model comparisons, and differential item functioning. 

 

Demonstrations 

To be able to follow the demonstrations below, R software (R 3.5.0 or higher 

version) along with R studio (a graphic user interface for R) need to be downloaded 

from https://cran.r-project.org/ and https://rstudio/com, respectively. After 

installing R and Rstudio, the  GDINA package (version 2.2.0) with its all dependencies 

must be installed. Then, command > library(GDINA) is run to start working with the 

GDINA package. To help nonprogrammer users, we intend to apply the main 

functions of the package using Shiny, which is a web application framework that is 

used to build interactive web applications directly from R. To use Shiny with the 

GDINA function, one need to run the command > startGDINA(). Then the GDINA 

graphical user interface (GUI) opens in a new window. 
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Reading Input Data 

Table 1 

Generating Q-matrix 
Item A1 A2 A3 A4 A5 A6  Item A1 A2 A3 A4 A5 A6 

1 1 0 0 0 0 0  10 0 0 0 1 1 0 

2 0 1 0 0 0 0  11 0 0 0 0 1 1 
3 0 0 1 0 0 0  12 1 0 0 0 0 1 

4 0 0 0 1 0 0  13 1 1 1 0 0 0 

5 0 0 0 0 1 0  14 0 1 1 1 0 0 

6 0 0 0 0 0 1  15 0 0 1 1 1 0 

7 1 1 0 0 0 0  16 0 0 0 1 1 1 

8 0 1 1 0 0 0  17 1 0 0 0 1 1 

9 0 0 1 1 0 0  18 1 1 0 0 0 1 

For simulation purposes, given a uniformly distributed attribute patterns, we 

generated a response data set based on the GDINA, ACDM, and DINA models. To 

generate the data, we used a hypothetical Q-matrix given in Table 1. Eighteen items 

requiring one, two, or three attributes constitute the Q-matrix measuring a total of six 

attributes. Thus, in the data generation, 1000 attribute patterns from 26 possible 

attribute patterns were drawn from a uniform distribution. Then, based on this 

sample, response data were generated following the DINA model, additive model, 

and G-DINA model. Responses for items with multiple attributes distributed among 

the three generating models. More specifically, items seven to 14 followed the DINA 

model, items 15 and 16 followed the ACDM, and last two items followed the G-DINA 

model. For the data generation purposes, lower and upper bound of probability 

corrects were drawn from a random uniform distribution of U(.05, .20). Then, final 

response data involved 1000 examinees’ binary responses to 18 items. The R code used 

for data generation is given in Figure 1. 

 
Figure 1. R Code for Data Generation 
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To read the input data (i.e., response data and Q-matrix) by the GUI, we need to 

go to the input tab and select our files from the folder where they are kept. There are 

three panels in this window. In the upper panel, shown in Figure 2, input files are read. 

Data in the input files need to be separated with one of the following: Tab, comma, 

semicolon, or space. If our input file has header, Header box must be checked. The 

remaining two panels (not given in the figure) are used to check whether the data are 

read properly. Specifically, middle and lower panels show the first six rows of the 

response data and the Q-matrix, respectively. 

 
Figure 2. Upper Panel of the Input Tab. 

Model Estimation 

In many cases, item parameters along with examinees’ attribute patterns are not 

known. In this situation, item parameters and examinee attribute profiles are 

estimated together. To fulfill this, GDINA package employs marginal maximum 

likelihood estimation (MMLE) through expectation-maximization (EM) algorithm. 

The Estimation Settings tab of the GUI provide us with several lists and options to select 

from. This tab is given in Figure 3. First, we need to select a CDM to fit among the eight 

available models: GDINA, logit GDINA, log GDINA, DINA, DINO, ACDM, LLM, and 

RRUM. There is a ninth option here, which allows user to specify a vector of models 

(comma delimited without quotation mark).  

 
Figure 3. Estimation Specifications 

Then, we need to make a decision on the attribute distribution. There are five 

options available in the GUI: Saturated, higher-order Rasch, higher-order 1PL, higher-

order 2PL, and uniform distribution. The three higher-order attribute distribution 

types are defined based on the item response models for continuous ability. One- and 
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two-parameter logistic models, as well as the Rasch model are available options here. 

In addition, there are four more optional settings. We need to check the boxes 

corresponding to options such as applying monotonic constraints (i.e., mastering an 

additional attribute does not lead to a lower success probability) to the fitted model, 

Q-matrix validation, and item-level model selection. We then run model estimation by 

clicking the Click to Estimate! button. 

 
Figure 4. Estimation Summary 

In this specific example, we fitted the GDINA model with saturated attribute 

distribution and applied monotonic constraints. We further requested Q-matrix 

validation and item-level model selection. Estimation results are found in the 

Estimation Summary tab when the estimation is completed. As shown in Figure 4, there 

are two panels on this tab. The left panel shows the estimation summary and right 

reports the classification summary. Estimation summary starts with some descriptive 

statistics such as the number of items, number of examinees, number of attributes, and 

number of iterations needed for the model to converge. For this specific example, 18 

items, 1000 examinees, six measured attributes, and 138 iterations are reported. Then, 

information on the fitted model by item, attribute type, and response type are 

reported. For our example, we see that G-DINA model fitted to all items, and both 

attribute and response data are dichotomous.  

In the estimation summary further information about the number of total, item, 

and person parameters are also displayed. Sixty-three person parameters and 84 item 

parameters were estimated. Notice that because we have a total number of six 

attributes to measure, in saturated attribute distribution, we must estimate 63 (26-1) 

latent classes, as well as all item parameters defined by the fitted model (84 delta 
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parameters defined by the GDINA model). Test and pattern level classification 

accuracy rates are reported on the right side under the classification summary panel. 

Model-fit evaluation 

Estimated CDM parameters are interpretable to the extent that model explains the 

data (Chen, de la Torre & Zhang, 2013). Thus, inferences based on any CDM are valid 

as long as the model fits to data. Data-model fit can be checked by examining relative- 

and absolute- fit statistics. The former statistics indicate the most appropriate model 

when competing models are available, whereas the latter shows whether model itself 

fits the data. Relative and absolute fit statistics are found under the Model Fit tab of the 

GUI. As shown in Figure 5, the relative test fit statistics, log-likelihood, Akaike 

information criterion (AIC; Akaike, 1974) and Bayesian information criterion (BIC; 

Schwarz, 1976) with the corresponding penalties are given on the relative test fit 

window.  

 
Figure 5. Relative Fit Statistics 

When we have rival models that may fit the data, we need to check relative fit 

statistics to compare these models. To do so, we can look at the AIC and BIC values of 

nonnested models in which, the model with the least information criteria is preferred. 

When rival models are nested (e.g., GDINA vs. DINA), one can make a decision based 

on a likelihood ratio test: 𝐿𝑅 = −2[𝐿𝐿𝑟𝑒𝑑𝑢𝑐𝑒𝑑 − 𝐿𝐿𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑], where LR is the likelihood 

ratio of saturated and reduced models, which is compared against 𝜒2 distribution with 

a given significance level (e.g., .05) and degrees of freedom determined by the 

parameters difference in the compared models. Our null hypothesis for this test is the 

reduced model fits the data as good as the full model, and we reject the null when LR 

is larger than the critical 𝜒2 value. 

Relative fit statistics of our simulation is given in Figure 5. For demonstration 

purposes, we also fitted the DINA model to the data that we have been analyzing. The 

log-likelihood, AIC, and BIC results when the DINA is fitted are: -9674.58, 19547.15, 

and 20033.02, respectively. AIC and BIC reported in Figure 5 are lower than these 

values obtained from the DINA model fit. Furthermore, computed 𝐿𝑅 =
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−2[−9674.58 + 9371.27] = 606.62, given the model parameters 99 and 147 for the 

DINA and GDINA models, need to be compared against 𝜒(.05;48)
2 = 65.17. Because the 

computed LR is larger than the critical value, we reject the null hypothesis and 

conclude that the GDINA model fits the data better than the DINA model. 

For absolute fit evaluation, GDINA package offers three statistics: proportion 

correct (p), log-odds ratio (l), and transformed correlation (r). Specifically, p stands for 

residuals between the observed and predicted proportion correct of individual items; 

l is computed based on log-odds ratio of item pairs; and r is computed based on the 

residuals between the observed and predicted correlations of item pairs (Chen, de la 

Torre & Zhang, 2013; de la Torre & Douglas, 2008; Sinharay & Almond, 2007). When 

these statistics are close to zero, it indicates that the model fits the data. 

 
Figure 6. Absolute Fit Statistics 

To use p, l, and r, their standard errors are also needed. Please refer to Chen, de la 

Torre and Zhang (2013) for derivation of the statistics and their respective standard 

errors. The z-scores of the statistics are used to test whether the residuals are 

significantly different from zero. Because J-1 proportion correct and J(J-1)/2 pairwise 

log-odds ratio and transformed correlations are available for a test with J items, only 

the maximum z-scores of each statistics are tested and the test results are provided by 

the GUI under the model fit tab. Here in our example, summary of absolute fit analysis 

is provided in Figure 6.  

Means, maximums, maximum of z-scores, and corresponding p-values and 

adjusted p-values are reported in the figure. When we check maximum z-statistics for 

all three absolute fit statistics and corresponding p- and adj.p-values, we reject the null 

hypotheses that the model fit the data based on l and r. Only, p statistic retains the null 

hypothesis, which is claimed to be either unreliable or results in low rejection rates 

(Chen, de la Torre & Zhang, 2013). We should note there that adj.p-value is the 

bonferroni adjusted p-value as we implicitly test J-1 proportion correct and J(J-1)/2 

pairwise log-odds ratio and transformed correlations by testing the maximum of the 

z-scores.  

The above results indicate that there is at least one item that cannot be fitted to the 

model, which is expected because our data were generated based on the items 
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following the DINA, ACDM, and G-DINA models. However, if we fit DINA model to 

the data corresponding to the first 14 items using the first 14 rows of the Q-matrix, all 

three absolute fit statistics indicate that the model fit the data (p-values for the 

maximum z-statistics are .878, .133, and .124 for proportion correct, log-odds and 

transformed correlations, respectively. These results, therefore, indicate that if only the 

first 14 items confirming the DINA model constituted the test, all aforementioned 

absolute fit indices would yield model-data fit for all items. We should note that the 

GUI also provides a heatmap plot depicting the p-values log-odds and transformed 

correlation obtained from item pairs. 

Parameter Estimation 

Both the item and person parameters estimates are readily available under the 

Parameter Estimates tab of the GUI. This tab, given in Figure 7, offers a list of item 

parameter estimates with or without standard errors: success probabilities of reduced 

latent classes; guessing and slip parameters; delta parameters; and success probabilities of all 

latent classes. To obtain the standard errors along with the estimates, Estimate S.E? box 

must be checked. Figure 7 demonstrates that we requested guessing (g) and slip (s) 

parameters with corresponding standard errors. Under G-DINA model, g and 1-s 

parameters stand for lower and upper bound of success probabilities.  

 
Figure 7. Item Parameter Estimation Specifications 
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Figure 8. Person Parameter Estimation Specifications 

In addition to item parameters, the Parameter Estimates tab of the GUI provides us 

with person parameters as well. Examinees’ estimated attribute profiles for the first 10 

examinees are shown in the middle panel of this tab. Attribute profile estimates based 

on maximum likelihood estimation (MLE), expected a priori (EAP), and maximum a 

priori (MAP) are computed and may be selected from the list given in the Person 

parameter estimation method. This list also includes the Probabilities of mastering each 

attribute option. In our example given in Figure 8, we see the first ten examinees’ 

estimated attribute vectors. The GUI allows for all these types of person parameters to 

be downloaded as a .csv or .tsv file. To do so, we need to select one of the two file 

types, and hit the Download button.  

Q-matrix Validation 

In general, implementation of the CDMs requires a Q-matrix mapping attributes 

to items. This matrix embodies the cognitive specifications in test construction 

(Leighton, Gierl & Hunka, 2004). Because this input plays a crucial role in 

incorporating cognitive theories into psychometric practice, it needs to be correctly 

specified. Only then, CDMs can provide maximum diagnostic information (de la 

Torre, 2008). However, due to subjective judgments of content experts, Q-matrix 

construction process might not be fulfilled easily and successfully. This process may 

result in some misspecifications in the Q-matrix such that a required attribute may be 

missed, or an unnecessary attribute may be added in the matrix. These two types of 
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misspecifications are known as under- and over-specifications, respectively (de la 

Torre & Chiu, 2016).  

Another possible error may emerge when both under- and over-specifications 

coexist for an item, which is referred to as over-and-under-specification (de la Torre & 

Chiu, 2016). Negative effects of misspecified Q-matrices in item calibration, examinee 

classification, and model misfit have been shown in the literature (e.g., Chiu, 2013; de 

la Torre, 2008; de la Torre & Chiu, 2016). To address misspecifications due to 

subjectivity in the process, a general Q-matrix validation procedure (i.e., de la Torre & 

Chiu, 2016) along with several others specifically developed for reduced models (e.g., 

Chiu, 2013; de la Torre, 2008) have been proposed. 

An item specific discrimination index, Ϛ𝑗
2, is proposed and used in the general Q-

matrix validation method. Ϛ𝑗
2 is a measure of weighted variance of success probability 

for a particular attribute distribution. De la Torre and Chiu (2016) showed that a correct 

q-vector yields homogenous latent groups in terms of probability of success. The idea 

behind use of this index for Q-matrix validation lies in the fact that correct q-vector 

should produce the highest variability in success probability. Their method suggests 

selecting a q-vector that approximates the maximum Ϛ𝑗
2 with the fewest attribute 

specifications.  

 
Figure 9. Setting PVAF Cutoff and Suggested Q-matrix 

For the search algorithm to select a parsimonious q-vector producing 

approximately the highest Ϛ𝑗
2 rather than the q-vector yielding the highest Ϛ𝑗

2, a 
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stopping rule is implemented as a part of the algorithm. This stopping rule is defined 

by the proportion of variance accounted for (PVAF) by a particular q-vector relative to 

the highest Ϛ𝑗
2. Because maximum Ϛ𝑗

2 is produced by the q-vector requiring all 

measured attributes, a q-vector is selected by this method when PVAF is higher than 

a predetermined cutoff (i.e., 𝜖). 

 
Figure 10. Mesa Plot with Specifications 

The GDINA package implements the general Q-matrix validation method. 

Validation results (when requested in the estimation specifications tab) are found in 

the Q-matrix Validation Outputs tab in the GUI. On this output page, first PVAF cutoff 

needs to be specified so that suggested Q-matrix will be produced based on this cutoff. 

Here in our example given in Figure 9, we set the PVAF to .80 and the corresponding 

suggested Q-matrix yielded correction in one item (i.e., item 18). Stepwise 

implementation of the test is also available through the option Stepwise Wald test. 

Remember that although the validation method has suggested this q-vector, the final 

decision on correcting the Q-matrix should be based on the expert decision after 

careful consideration of related item, q-vector, and the attributes measured by the test. 

Down on the same page, we are able to see Mesa Plot (de la Torre & Ma, 2018) for 

each item. Item 18 is shown in Figure 10 as an example, for which we plotted the best 

q-vectors option. We could also see all q-vectors option by selecting the plot type from 

Mesa Plot Specifications. PVAF values for this item indicates that a q-vector of 110000 is 

as good as the specified q-vector (110001). Notice that the original q-vector is marked 

with filled circle. Here we also have an option to print data labels by clicking the 

corresponding box in the specifications window. Furthermore, the GUI allows us to 

download Mesa plots as PDF file. 

Item-level Model Comparison 

GDINA package allows item-level model selection so that CDMs need not be 

specified a priori. To perform model selection between saturated and reduced models 

at the item-level, Wald test is used to compare G-DINA model against the fits of the 
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specific CDMs (i.e., DINA, DINO, ACDM, LLM, and RRUM). The Wald test proposed 

by de la Torre (2011) is an item level procedure, which can be performed for items 

requiring at least two attributes. Wald test requires a restriction matrix of R 

constraining the GDINA parameterization to derive the reduced models. This 

restriction matrix is used in computation of Wald statistic. For further information on 

the Wald statistics, readers may refer to de la Torre and Lee (2013) and Ma, 

Iaconangelo and de la Torre (2016).  

 
Figure 11. Item-level Model Comparison 

For our case, the Wald statistics and corresponding p-values for the different 

reduced models, given in Figure 11, are reported under the Model Selection Output tab 

of the GUI. Notice that these statistics only printed for the items requiring at least two 

attributes for which more than one CDM can be fitted. Wald statistics and p-values 

indicates that items 7-14 are DINA and items 17-18 are the GDINA items. Remaining 

two items (i.e., 15-16) conform to at least two of the following CDMs: RRUM, ACDM 
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and LLM. Although the data for these two items are simulated using the ACDM, 

because these three models have the same number of item parameters under different 

link functions (see de la Torre, 2011 for different link functions), it may be hard to make 

a perfect selection. 

Plots 

The GUI allows users to generate various types of graphs via the Plots tab. These 

readily available graphs are useful tools to highlight important information and enable 

users to compare various parameters or statistics. For example, Plot of probability of 

mastery for individuals is given in Figure 12; which allows users to compare individuals’ 

mastery probabilities. To do so, one need to enter a vector of individuals whose 

mastery probabilities are to be compared. This vector must be comma delimited, and 

no quatation marks is needed. Another type of graph is generated to display individual 

posterior probabilities. This bar graph allows user to display the mastery probabilities in 

increasing or decreasing order.  

 
Figure 12. Individuals’ Mastery Probability Plots 

The next graph is the Plot of proportions of latent classes, which indicates the latent 

classes’ mastery rates. The mastery proportions of the latent classes may also be 

displayed in decreasing or increasing order. All these graphs are displayed vertically 

as default; however, user can switch to the horizontal positioning by clicking the 

Horizontal box. The last graph is the Item response function plot, which displays the item 

statistics of the selected item. Error bars can also be added to this bar graph by clicking 

the Error bars box.  

 

Additional Functions Offered by the Package 

This section provides additional flexibilities offered by the package not covered by 

the GUI. R scripts are needed to use additional functions. By writing a script additional 

features of the package become available, and additional analyses that are not part of 

the GUI can be conducted. Note that, because our goal is to serve unexperienced 
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audience, we only focus on the fundamental functions used in dichotomous attribute 

cases. Information in this section is useful for readers who have some level of R 

programming skills. 

We can start with the function simGDINA( ) that is used to simulate examinee 

response data. Sample size (N), Q-matrix (Q), and lower and upper bound of 

probability correct (gs.parm) must be provided, where gs.parm is a matrix or data frame 

for lower and upper bound probability correct parameters (i.e., guessing and slip 

parameters). The contribution of the delta parameters of the additive models is 

specified by the gs.args argument for which two options, “equal” and “random”, are 

available. The model argument allows users to assign a CDM to each item. model is a 

character vector for each item (or a scalar when all items are the same type), for which 

the available options are: “GDINA”, “DINA”, “DINO”, “ACDM”, “LLM”, “RRUM”, 

and “MSDINA”. The att.dist argument is used to indicate the attribute distribution for 

simulation, where “uniform”, “higher.order”, “mvnorm”, and “multinomial” are 

available options for the uniform, higher order, multivariate normal, and multinomial 

distributions, respectively. When attribute distribution happens to be multinomial, the 

probability of each attribute pattern needs to be specified through att.prior. If we would 

like attribute distribution to be higher-order, then, higher order distribution of 

attributes need to be specified through higher.order.parm. Lastly, a list of parameters for 

multivariate normal distribution is provided by mvnorm.parm when the attribute 

distribution to be generated is a multivariate normal. 

The GDINA package allows users to generate hierarchical attribute structures and, 

to provide prior joint attribute distribution with specified hierarchical relations among 

the attributes. For this purpose, the att.structure( ) function can be used. The 

hierarchy.list is a list used for specifying hierarchical structure among the attributes. 

Elements of this list specify direct prerequisite relations between the two attributes. 

For example, when three attributes (e.g., A1, A2, and A3) have a linear relationship 

where A1 is prerequisite for A2 (and A3), and A2 is also prerequisite for A3; this 

hierarchical structure is defined by the list(c(1,2), c(2,3)). The number of attributes K 

must also be specified to use this function. The att.prob argument is used in this 

function to set latent class probabilities as either “random” or “uniform.” 

The GDINA( ) function calibrates the GDINA and reduced CDMs. Here we would 

like to focus on the features available using specific functions that are not available in 

the GUI. Along with the CDMs available in the GUI, multiple-strategy DINA model 

(MSDINA; de la Torre & Douglas, 2008) is also estimated by this function. This 

function allows hierarchically structured attributes in the estimation, for which 

att.prior must be specified such that prior weights 0 are assigned to impossible latent 

classes. This option is only available for calibration of the DINA, DINO, or G-DINA 

models. 

To evaluate whether a specific CDM can replace the G-DINA model without 

significant loss in data-model fit, the modelcomp( ) function can be used. Although 

model comparison can also be conducted in the item and test level using the GUI, use 

of this function allows one to specify the items for which the model comparison is 
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requested. Furthermore, we can also specify the reduced models to be considered in 

the model selection. Unlike in the GUI, Wald statistics is not the only option under this 

function. Two more statistics, namely, Lagrange multiplier and likelihood ratio, are 

also available for model comparison.  

The extract( ) function is used to extract information or data such as att.prior, 

discrim, prevalence, prosterior.prob, and delta.parm (i.e., attribute priors, 

discriminations, attribute prevalence, posterior probabilities, and delta parameters, 

respectively). To obtain such information, objects from class GDINA, itemfit, 

modelcomp, or simGDINA must be specified by the object argument. The what 

argument is then used to call the information we would like to extract. 

The GDINA package permits one to evaluate differential item functioning (DIF), 

which may occur when the success probabilities on an item are different for the 

examinees from different groups with the same attribute mastery profile (Hou, de la 

Torre & Nandakumar, 2014). The dif() function is used to detect DIF based on the 

models in the GDINA function using the Wald test (Hou, de la Torre, & Nandakumar, 

2014) and the likelihood ratio test (Ma, et. al, 2017). It should also be noted that the 

current version of the package only allows detection of DIF for two groups. 

Concluding Remarks 

In this manuscript, we first discussed relevant literature in cognitive diagnosis, 

which includes a saturated model and several reduced models. It was followed by 

presentation of the GDINA R package, which can be conveniently used for CDM 

analyses. We demonstrated step-by-step basic CDM analyses using the GUI with an 

aim of guiding novice researchers and practitioners in the field. Within the 

demonstration, we provided fundamental information on the statistics used and 

interpretations of the output. Although the analyses and options are limited when one 

uses the GUI, more advanced methods for CDMs are available in the package for users 

who are more familiar with R.  

Several steps must be taken to implement cognitive diagnosis modeling 

successfully. The first step requires specification of the domain-specific attributes for 

which researchers may need to look into theories within the content domain, review 

the relevant literature, and conduct a protocol analysis with the think-aloud procedure 

(Akbay, Terzi, Kaplan, & Karaaslan, 2017; Leighton & Gierl, 2007; Tjoe & de la Torre, 

2014). In general, finer grain sized attributes provide richer information (Alderson, 

2005); however, an increase in the number of attributes measured by a single test 

requires a larger number of items which, in turn, requires much larger sample sizes 

for the model parameters to be estimated accurately.  

Once the attributes are determined, items measuring single attributes and 

combinations of attributes are developed and the relationships between these items 

and the attributes must be carefully specified through the construction of a Q-matrix. 

It should be noted that the usefulness of the diagnostic information provided by the 

CDM analysis is highly dependent on the theoretical and empirical soundness of the 

Q-matrix (de la Torre, 2008; de la Torre, & Chiu 2016; Lee & Sawaki, 2009). Therefore, 
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item-attribute relationships must be specified carefully and correctly. In certain 

situations, researchers have expectations regarding how attributes interact in the item 

response process. In these situations, another fundamental step involves deciding a 

priori which CDMs should be fitted to item response data to test one’s hypotheses. 

Although other software programs are also available, using the GDINA package 

offers users some flexibilities such as allowing estimation of a wide range of CDMs 

and allowing nonprogrammers to benefit from this package through the GUI. Using 

the GDINA, one can obtain diagnostic information about individual examinees’ 

mastery or nonmastery status of attributes; proportion of examinees who have 

mastered a specific attribute; and proportion of examinees that are in a specific latent 

class. In addition to ordinary CDM analyses, GDINA package further allows users to 

apply model selection at the test- and item-level to make sure that the most appropriate 

CDM (i.e., CDM that best explains the attribute interactions in the item) is fitted to the 

response data. Furthermore, to identify possible item-attribute specification mistakes 

in the Q-matrix, implementation of an empirical Q-matrix validation method is 

available in the GDINA package. Lastly, this package offers various handy graphs, 

which can be very useful in emphasizing important information and comparing 

various parameters and/or statistics. 
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GDINA R Paketi Kullanarak Bilişsel Tanı Modelleri Uygulaması  

 

Atıf:  

de la Torre, J., & Akbay, L. (2019). Implementation of cognitive diagnosis modeling 

using the GDINA R package. Eurasian Journal of Educational Research, 80, 171-

192, DOI: 10.14689/ejer.2019.80.9 

Özet 

Formatif değerlendirme için hazırlanmış olan ölçme araçları, amaçlı bir şekilde 

tasarlandığında, tanılayıcı bilgi toplamamıza imkân sağlarlar. Bu tür bilgilere 

dayanarak yapılan çıkarımlar eğitimcilerin telafi edici eylemler gerçekleştirmelerini 

sağlar. Son zamanlarda geliştirilen formatif değerlendirme yöntemleri öğrencilere ve 

öğretmenlere öğrencilerin hangi bilgi ve beceri parçacıklarına (bilişsel niteliklere) 

sahip oldukları ya da olmadıklarıyla ilgili ayrıntılı geri bildirim sağlayabilmektedir. 

Bu geribildirimlerin öğretimi ve öğrenmeyi optimize etmek amacıyla kullanılması 

beklenmektedir. Formatif ölçme ve değerlendirmelerin sonuçlarından tanısal bilgi 

edinebilmek için iyi tasarlanmış sınavların uygulanmasının yanı sıra çeşitli bilişsel tanı 

modellerinin kullanımına da ihtiyaç vardır. Ancak, bu modellerin alan yazına yeni 

kazandırılmış olması ve eğitimcilerin henüz yeterince aşina olmamaları nedeniyle, 

bilişsel tanı modellemelerinin (BTM) parametre kestirimlerinin ve diğer ilgili 

analizlerin uygulamaları yeterince yaygınlaşmamıştır. 

Bu makalenin amacı BTM’ye aşina olmayan eğitimci ve araştırmacılara BTM’nin temel 

prensiplerini tanıtmak ve ücretsiz bir yazılım olan GDINA R paketi kullanılarak 

yapılabilecek çeşitli BTM uygulamalarını yeterince detaylı olarak göstermektir. BTM 

analizleri yapan bazı yazılım programlarının mevcut olmasına rağmen, alanla ilgili en 

kapsamlı paketlerden biri olan GDINA R paketinin kullanımının sağlayacağı 

avantajlar arasında şunlar sayılabilir: (1) Birçok bilişsel tanı modelinin kestiriminin R 

ile mümkün olması; (2) Diğer birçok yazılım programlarının tek tip modelin 

kestirimine imkan veriyor olması; (3) Diğer programların çoğunun ticari olması veya 

ancak yazarın kendisiyle irtibat kurularak temin edilebilir olması; ve (4) Sözdizimi 

(sintaks) hazırlamanın bazı programlarda oldukça zahmet verici olması. 

Bu makalede öncelikle BTM analizinin girdi ve çıktıları da dahil olmak üzere BTM 

terminolojisi tartışılmakta, sonrasında GDINA model yapısı tanıtılmakta ve GDINA R 

paketi sunulmaktadır. Sonrasında ise nümerik bir örnek veri setinden yola çıkılarak, 

GDINA R paketi ve bu paketin sunduğu grafiksel kullanıcı ara yüzü (GUI: graphical 

user interface) kullanılarak yapılabilecek analiz türleri adım adım takip edilebilecek 

şekilde sunulmuştur. Ayrıca gerekli görülen noktalarda yapılan iş ve işlemlerin teorik 

bilgisine ve elde edilen sonuçların yorumlanmasına dair bilgiler verilmiştir. İlerleyen 

bölümlerde, GUI ile yapılamayan ancak GDINA paketinin sunduğu ve R kullanımına 

aşina olan kullanıcıların sözdizimi yazarak yapabilecekleri ilave analizlere ve paketin 

ek özelliklerine yer verilmiştir. Makalenin son bölümünde ise bazı hatırlatma ve 

tespitler yapılmıştır. 
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G-DINA modeli ve GDINA paketi 

Genel ya da kısıtlanmış olarak birçok bilişsel tanı modelinin ayrımları öğrencinin 

maddeleri cevaplama sürecinde bilişsel niteliklerin (ölçülen bilgi ya da becerilerin) 

etkileşimlerine bağlı olarak yapılır. G-DINA gibi genel modellerde bütün ana etkiler 

ve etkileşim etkileri madde tepki fonksiyonuna katkıda bulunur. Bu tür genel 

modellerin parametrelerinde yapılacak kısıtlamalarla daha kısıtlı ya da daha sade 

modeller elde edilebilir. Bunun yanı sıra, genel modellerde birden farklı link 

fonksiyonlarının kullanımı da söz konusudur. Örneğin, G-DINA model identity, logit 

ve log linkleriyle farklı isimlerle sunulabilir, ancak farklı linklerle ortaya konulan genel 

modeller özdeş model-veri uyumuna sahiptirler.  

GDINA paketi GUI aracılığıyla farklı linkler altında oluşturulabilecek olan GDINA, 

logit GDINA, log GDINA’nın yanı sıra, bu genel modellerde ortaya koyulacak 

kısıtlamalarla oluşturulabilen DINA, DINO, ACDM, LLM, ve RRUM modellerinin 

kestirimine imkan verir. Ayrıca, GUI aracılığıyla olmasa da, R kullanımına aşina olan 

ve sözdizimi yazabilen kullanıcılar GDINA R paketini kullanarak farklı stratejilerin 

kullanımı durumunu göz önünde bulunduran MS-DINA ve G-DINA’nın farklı 

uzantılarından oluşan modellerin (ör. sınıflama ve sıralama ölçekleriyle elde edilen 

veriler için sequential G-DINA ve kısmi puanlamalı nitelikleri için polytomous G-DINA) 

kestirimini yapabilirler.  

GDINA'yı kullanarak, testi alanların nitelikleri kazanmış ya da kazanamamış olma 

durumlarıyla ilgili tanılayıcı bilgi; belirli bir niteliğin kazandırılma oranı; ve belirli bir 

profile sahip olan kişilerin oranı ile ilgili bilgiler elde edilebilir. Bunların dışında, temel 

CDM analizlerinin yanı sıra, madde ve nitelikler arasındaki etkileşimi en iyi açıklayan 

BTM’nin kullanılabilmesi adına GDINA paketi araştırmacıların test- ve madde-

düzeyinde model seçimi yapabilmelerine imkan tanır. GDINA paketi aynı zamanda 

madde-nitelik eşleştirme matrisinde yapılabilecek muhtemel yanlışları ortaya 

çıkarmaya yardımcı olmak adına ampirik olarak Q-matrisin uygunluğunun 

doğrulamasını sağlayan metotların kullanılmasına imkan sağlar. Son olarak, bu paket, 

çeşitli kolay ve kullanışlı grafikler ortaya koyar. Bu grafikler elde edilen analiz 

sonuçlarında önemli noktaların vurgulanmasına ve elde edilen istatistik ve 

parametrelerin kolaylıkla karşılaştırılmasına olanak sağlar. 

Anahtar sözcükler: Bilişsel tanı modelleri, GDINA, R paketi, BTM uygulamaları. 
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