

Mugla Journal of Science and Technology

COMPARISON OF CLASSIC AND GREEDY HEURISTIC ALGORITHM RESULTS IN
INTEGER PROGRAMMING: KNAPSACK PROBLEMS

Burcu DURMUŞ*, Department of Statistics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey,
burcudrmz@windowslive.com

(https://orcid.org/0000-0002-0298-0802)
Öznur İŞÇİ GÜNERİ, Department of Statistics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey,

oznur.isci@mu.edu.tr

(https://orcid.org/0000-0003-3677-7121)
Aynur İNCEKIRIK, Department of Econometrics, Faculty of Economics and Administrative Sciences, Manisa Celal Bayar University,

Manisa, Turkey, aynur.incekirik@bayar.edu.tr

(https://orcid.org/0000-0002-5029-6036)

Received: 11.10.2018, Accepted: 24.01.2019
*Corresponding author

Research Article

DOI: 10.22531/muglajsci.469475

Abstract

This paper focus on comparing the differences and similarities between the results obtained from Greedy and classical
algorithms for integer linear programming (ILP) problems. For this purpose, the solution of the problems related to
different models with the purpose function and constraints has been provided by developing a software (Java Program)
which solves the Knapsack problems (KP) with Greedy algorithm. Both the classical algorithm and the results obtained
from Greedy algorithm are compared for the problems considered here. In this context, the results obtained from algorithms
are found to be the same for small-sized pure and 0-1 binary Knapsack problems. Since packet programs are limited in
dimension and number of constraints, it becomes difficult to obtain appropriate results from classical algorithms as the
dimension of the problem grows. However, Greedy algorithm gives the appropriate results regardless of the dimension and
the number of constraints.
Keywords: Integer Programming, Classic Algorithms, Greedy Algorithm, Knapsack Problems

TAMSAYILI PROGRAMLAMADA KLASİK VE GREEDY SEZGİSEL
ALGORiTMALARININ KARŞILAŞTIRILMASI: SIRT ÇANTASI PROBLEMLERİ

Özet

Bu çalışmada, tamsayılı doğrusal programlama (TDP) problemleri için Greedy ve klasik algoritmalardan elde edilen
sonuçlar arasındaki fark ve benzerlikler karşılaştırılmıştır. Bu amaçla, Sırt Çantası Problemlerini (SÇP) Greedy
algoritmasıyla çözen bir yazılım (Java Program) geliştirerek, amaç fonksiyonu ve kısıtları verilmiş farklı modellere ilişkin
problemlere çözüm sağlanmıştır. Dikkate alınan problemler için hem klasik algoritma hem de Greedy algoritmasından elde
edilen sonuçlar karşılaştırılmıştır. Bu bağlamda, küçük boyutlu saf ve 0-1 binary sırt çantası problemleri için
algoritmalardan elde edilen sonuçlar aynı bulunmuştur. Paket programlar boyut ve kısıt sayısı ile sınırlı olduğundan
problemin boyutu büyüdükçe klasik algoritmalar için uygun sonuç elde etmek zorlaşmaktadır. Ancak, Greedy algoritması,
boyut ve kısıt sayısını dikkate almaksızın uygun sonuç vermektedir.
Anahtar Kelimeler: Tam Sayılı Programlama, Klasik Algoritmalar, Greedy Algoritması, Sırt Çantası Problemleri

Cite
Durmuş, B., İşçi Güneri, Ö., İncekırık, A. (2019). “Comparison of classic and greedy heuristic algorithm results in integer
programming: knapsack problems”, Mugla Journal of Science and Technology, 5(1), 34-42

1. Introduction

Although Integer Linear Programming seems to be easier
and more understandable than Linear Programming
(LP), it is often more time consuming and more complex.
Problem solving in ILP requires a true investigation of all
possible fields and the number of constraints increases

when an integer is added into a problem finding a
solution for an integer in ILP may require exponential
computing time [1,2,3]. For this reason, various
algorithms are needed to facilitate access for the optimal
solutions in integer problems. Among these algorithms,
the classic ones provide optimal solutions either
manually or in a computer environment. However,

mailto:burcudrmz@windowslive.com
mailto:oznur.isci@mu.edu.tr
mailto:aynur.incekirik@bayar.edu.tr

Burcu Durmuş, Öznur İşçi Güneri, Aynur İncekırık
Comparison of Classic and Greedy Heuristic Algorithm Results in Integer Programming: Knapsack Problems

35

problems that are too complicated and without
algebraically expressible constraints and objective
functions could not be solved easily with these
algorithms, and solution sometimes cannot be achieved.
Such situations need for algorithms called heuristic.
Although heuristic algorithms do not always provide the
optimal solution, they try to produce the proximal
optimal solution. At the beginning of the current study, it
was assumed that the classic algorithms give the optimal
solution and the heuristic algorithms give the proximal
optimal solution. Thus, this study was aimed to provide
support for this assumption by comparing the solution
results of the two algorithms.

Knapsack problems (KP) is one of the most commonly
used problems in integer programming. In this study, KP
was used and Greedy algorithm was chosen for the
heuristic solutions of KP. A literature search could show
that is examined, there are many studies on the solutions
of KP with Greedy algorithm (or algorithms based on
Greedy terminology). Akçay et al. [4] proposed a new
Greedy algorithm for heuristic solution of multi-
dimensional KP. Their calculations showed that the
solution was reliable. Liu [5] conducted a simulation
study on 0-1 KP using Greedy terminology and dynamic
programming. Lv et al. [6] designed a degree model by
inspiring from Greedy algorithm. Their algorithm has
been found to be more effective than the other
algorithms. Zhou et al. [7] proposed a new version for
Greedy algorithm and compared the results of this new
version with the results of five different heuristic
algorithms. Their comparisons showed that this new
version 0-1 can be an effective alternative to solve KP
problem. Bulut et al. [8] tried to optimize the recursive
model by adding Greedy approach to the branch and
bound algorithm. They found that such an approach can
shorten the calculation time.

As seen from the literature, both former and new
versions of Greedy algorithm work effectively. However,
the number of programs that solve Greedy algorithm are
limited. Ready software programs developed for solving
ILP problems are limited by the number of variables,
constraints and iterations. For this reason, new software
development for solving problems is necessary for
solving larger-scale problems, since the number of
variables and constraints in real life problems is
excessive.

Given that Greedy algorithm is used in finding solutions
to the problems confronted in daily life or to the
problems that cannot be solved, the importance of this
algorithm’s giving good results could better have
understood. For this purpose, a program with Java codes
was developed in the application part of this study to
compare the solutions of problems with multiple
variables. With the developed program,
multidimensional problems could not only be solved
more economically in terms of both time and calculation
cost using Greedy algorithm, but the program also allows
the comparison of classic and Greedy heuristic results of
multidimensional problems.

It should be noted that integer programming (IP) with
integer linear programming (ILP) means the same in the
literature.

2. Integer Linear Programming (ILP)

It may be desirable to obtain integer results in some
problems solved with LP. For example, selection or not
selection of the course added to curriculum can be
determined by decision variables that take values of 1
and 0, or the number of products to be produced in an
enterprise is expressed by integer values. An integer
programming method has been developed for such
problems where values such as 3.6 computer are not
meaningful [1,2]. A general IP model can be expressed as
in the Equation (1) below. In this model the constraints
can be ≤, ≥ or = [9].

Objective function:

𝑀𝑎𝑥 𝑍 = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑥𝑗

 or

M𝑖𝑛 𝑍 = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑥𝑗

 (1)

Constraints:

∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 ≤ 𝑏𝑗

𝑖 = 1,2, … , 𝑚 𝑎𝑛𝑑 𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

(2)

2.1. Types of Integer Programming Problems

The IP problems are divided into three main classes
according to the values that their variables will have:
pure, 0-1 and mixed integer problems. These models are
briefly explained below.

2.1.1. Pure integer problems

Programming problems where all of the variables can
only take integer values are called pure integer problems.
A general model of pure IP problems can be expressed as
follows [10].

Objective function:

𝑀𝑎𝑥 𝑍 = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑥𝑗 (3)

Constraints:

∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 ≤ 𝑏𝑗

 𝑖 = 1,2, … , 𝑚 𝑎𝑛𝑑 𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

 (4)

2.1.2. Mixed integer problems

Programming problems where some of the variables are
integers and the others are real values are called mixed
integer problems. A general mixed integer problem
model is given below.

Objective function:

Burcu Durmuş, Öznur İşçi Güneri, Aynur İncekırık
Comparison of Classic and Greedy Heuristic Algorithm Results in Integer Programming: Knapsack Problems

36

𝑀𝑎𝑥 𝑍 = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑥𝑗 (5)

Constraints:

∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 ≤ 𝑏𝑗

 𝑖 = 1,2, … , 𝑚

𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 = 1,2, … , 𝑝

𝑥𝑗 ≥ 0, 𝑗 = 𝑝, … , 𝑛 (𝑝 ≤ 𝑛)

(6)

2.1.3. Binary (0-1) integer problems

Programming problems where all variables must be 0 or
1 are called 0-1 integer problems.

𝑥𝑗 = {
1, 𝑖𝑓 𝑗. 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
0, 𝑖𝑓 𝑗. 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

 (7)

In the Equation (7), the situations where the product is
selected or not selected are shown (j=1, 2,…, n) [11]. In
such situations, xj variables can only take 1 or 0 values. A
general 0-1 IP problem model can be expressed as
follows.

Objective function:

𝑀𝑎𝑥 𝑍 = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑥𝑗 (8)

Constraints:

∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 ≤ 𝑏𝑗

 𝑖 = 1,2, … , 𝑚 𝑎𝑛𝑑 𝑥𝑗 = 0 𝑜𝑟 1

(9)

3. Solution Methods in Integer Programming

The classic algorithms developed for LP after adding the
property of being an integer are insufficient to solve IP
problems. For this reason, new methods of solution are
needed. Among these methods, heuristic algorithms are
divided into two in the literature:

 Classic Heuristic Algorithms
 Meta (Modern) Heuristic Algorithms

Classic heuristic algorithms are examined separately as
they perform narrower (local) searches than meta
heuristic algorithms.

These solution methods developed for IP can be
generally grouped as in Figure 1.

Figure 1. Solution algorithms for IP.

3.1. Classic Algorithms

When methods like Simplex developed to solve LP
problems are used to solve the problems modeled with
business data, they make it possible to reach optimal
solutions with modern computers within a few hours.
Therefore, LP is widely used [12].

However, this does not hold true for IP problems. IP
problems are created by adding integer constraints to LP
problems. They therefore contain more constraints. As a
consequence of increasing of the constraints, IP
problems show exponential growth according to LP
problems. Sometimes proper formulations cannot be
formed. In this respect, it is not possible to solve the IP
problems with the methods developed for LP. As a result
of such fundamental differences, it became necessary to
develop new algorithms for IP problems.

These algorithms are also known in the literature as
'exact solution algorithms' [2,13]. The classic algorithms
most commonly used by researchers are listed in Figure
2.

Burcu Durmuş, Öznur İşçi Güneri, Aynur İncekırık
Comparison of Classic and Greedy Heuristic Algorithm Results in Integer Programming: Knapsack Problems

37

Figure 2. IP classic solution algorithms.

3.2. Heuristic Algorithms

Heuristic algorithms are methods that provide optimal
solutions close to the optimization problem. Its name is
derived from the Greek word “heuristic” meaning
“discovering a new method”, “solving problem”. It
entered into our language with the words “sezgisel’,
‘buluşsal’, ‘bulgusal’. They became popular as some
problems could not be solved with classic algorithms,
solutions to these problems were complex, took a long
time and were expensive [14]. Heuristic algorithms are
also used for quadratic and nonlinear problems. Some of
these algorithms are given below;

 Greedy algorithms
 Nearest neighbor algorithm
 Dantzig and Ramser’s method
 Saving algorithm
 Sorting algorithm
 Tabu search
 Genetic algorithm
 Simulated annealing
 Ant colony
 Artificial bee colony
 Particle swarm optimization
 Artificial neural networks

They are often inspired by nature, disciplines of science
or human behaviors [15]. The accuracy of heuristic
algorithms cannot be proved. The main reasons for their
frequent preference by researchers are as follows:

 They do not give the optimal solution exactly, but
they give near-optimal solutions with small
deviations.

 They reach the result with short and simple
solutions.

 They are conceptually simple. In small problems,
they can yield optimum results.

 Their calculation cost is less [16].
 They can be used for problems that do not have a

formulization or an optimal solution.
 They can solve quadratic and nonlinear problems.
 They can be flexed and adapted according to the

problem [15].
 They can produce solutions for some problems

that package programs do not solve.
 The verifiability of algorithms is ignored [3].

4. Greedy Algorithm

Consciously or unconsciously, Greedy algorithm is the
most commonly used algorithm in everyday life. The aim
is always to keep the utility high. It addresses the
problem whose objective function is given with the
assumption that one with the highest coefficient would
yield the highest profit. Its priority thus is to assign the
highest value to this variable. In the case of single
constrained problems, it calculates the utility per unit. It
tries to fill its capacity by preferring to select the most
from the variable yielding the highest benefit [17].

This algorithm uses less computation and fewer
algorithms than the other heuristics. For this reason,
researchers have remained in dilemma many times
about the results. Despite the fact that Greedy heuristic
has been disputed on the grounds it yields local or
immediate results, its use is still quite common. The main
reason for this is that it is quite easy to apply, the
computational costs are very low, and it can be applied to
all kinds of problems (problems without solution or
formulation, complex problems, irreducible problems,
problems without a certain model, etc.) [1,3].

A general flow diagram for Greedy is given in Figure 3
[17,18].

Burcu Durmuş, Öznur İşçi Güneri, Aynur İncekırık
Comparison of Classic and Greedy Heuristic Algorithm Results in Integer Programming: Knapsack Problems

38

Figure 3. A general Greed flow diagram.

5. Application

In this part of the study, one-dimensional 0-1 and pure
KP, two-dimensional 0-1 and pure KP were solved with
Greedy algorithm. A software code has been developed to
solve the KP with Greedy algorithm and multivariate
problems have been solved with the help of this code. In
addition, the branch-bound method was used from the
classic algorithms and the results were compared with
the results obtained from the pom-QM package.

5.1. Introduction of the Developed Program

When we look at the recent studies on IP, it can be said
that it is preferred to write a program for the solutions of
the problem considered here. With the widespread use of
information technologies, it has been seen that code
writing has yielded many benefits in terms of time, labor,
calculation costs etc. therefore for KP solutions of Greedy
algorithm on which we are working, a software program
was developed [17].

The developed program was written in Java language and
presented as desktop program in order to provide ease
of use. The program solves one-dimensional (0-1 and
pure) KP and two-dimensional (0-1 and pure) KP
addressed in the current study with Greedy algorithm. In
order to solve a desired problem with the developed
program, it is necessary to enter the purpose and
constraint function values, the capacity limit and to select
the problem dimension. Figure 4 shows the main window
of the program.

Figure 4. The main window of the developed program.

With Greedy algorithm, although the KP can be solved in
a short time manually, this program facilitates the
solution of multivariate problems and two-dimensional
KP problems to a large extent. Also, while program
packages such as pom-QM have limited iterations and
variable numbers, this program can perform as many
operations as requested and does not impose any
restriction.

5.2. Problem: One-dimensional 0-1 KP

4-variable and single constraint sample problem is given
below;

Objective function:

𝑀𝑎𝑥 𝑍 = 20𝑥1 + 108𝑥2 + 27𝑥3 + 12𝑥4 (10)

Constraints:

4𝑥1 + 16𝑥2 + 9𝑥3 + 5𝑥4 ≤ 24

𝑥𝑖 = 0 𝑜𝑟 1
(11)

In the solution of the problem with branch-boundary
method, the results in each branch are calculated
separately. For this example, the results were found to be
x1 = x2 = 1, x3 = x4 = 0 and 𝑍 = 128. As we have
already mentioned that various program packages have
been developed, but calculation of results for each
branch of the large scale problems could be
problematical.

The solution of the problem with the pom-QM package
was found to be the same as the branch-bound algorithm
solution. Heuristic algorithms can be used to save time in
solving the problem. The following steps can be defined
to solve the problem with Greedy Heuristic.

Step 1. All the benefit rj = (𝑐𝑗/𝑎𝑗) values are calculated.

Step 2. Benefit values (rj) are ranked. If there are same

benefit values, their rank is randomly determined.

Burcu Durmuş, Öznur İşçi Güneri, Aynur İncekırık
Comparison of Classic and Greedy Heuristic Algorithm Results in Integer Programming: Knapsack Problems

39

Step 3. The item offering the most benefit is put into the
knapsack. The following benefit value is examined. If it
does not exceed the capacity, it is put into the knapsack,
if it exceeds, then the following item is examined.

Step 4. If all the items have been checked, then the
operation is concluded. Otherwise, it is returned to step
3.

According to these steps, Greedy algorithm solution of KP
is given in Table 1.

Table 1. One-dimensional 0-1 KP benefit values.
𝐱𝐣 𝐜𝐣 𝐚𝐣 𝐫𝐣 = (𝒄𝒋/𝒂𝒋) rank

x1 20 4 5 2

x2 108 16 6.75 1

x3 27 9 3 3

x4 12 5 2.4 4

If we start to load with the highest value of good; x2 is
loaded first according to sorting, the reduced capacity is
16, the remaining capacity is 24 - 16 = 8. Then x1 is
loaded, the reduced capacity becomes 4, the remaining
capacity becomes 8 - 4 = 4. The remaining 4 items have
no good to be loaded, the process ends. In this case, the
solution is x1 = x2 = 1, x3 = x4 = 0 and 𝑍 = 128. The
output of the program developed using the above steps is
as shown in Figure 5.

Figure 5. One-dimensional 0-1 KP Greedy program

output.

When we look at the results of branch-bound algorithm
and Greedy algorithm, it is clear that we get the optimal
solution with much economical processing.

5.2.1. Problem: One-dimensional 0-1 KP having
different numbers of variables

Problems with variable numbers of 2, 3, 4, 8, 10, 15, 20,
25, 50 for 0-1 KP have been solved with the aid of the
developed code and pom-QM program package.

Table 2. Solution results of one-dimensional 0-1 KP.
Dimension Pom-QM solution Greedy solution

2x1 8 8

3x1 17 17

4x1 21 21

8x1 52 43

10x1 60 60

15x1 87 87

20x1 147 126

25x1 653 653

50x1 - 61

According to Table 2, pom-QM program and Greedy
software solutions have been found different for 8x1 and
20x1 problems. For the 50x1 problem, the pom-QM
program could not produce a solution (since the number
of variables in pom-QM is limited to 30). However, with
Greedy program developed, the result was found to be
61.

5.3. Problem: One-dimensional pure KP

The sample problem with 4 variables and single
constraint is given below;

Objective function:

𝑀𝑎𝑥 𝑍 = 𝑥1 + 8𝑥2 + 30𝑥3 + 12𝑥4 (12)

Constraints:

4𝑥1 + 5𝑥2 + 6𝑥3 + 8𝑥4 ≤ 70

𝑥𝑖 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
(13)

According to the branch-bound algorithm, the result of
the problem was found to be x1 = 1, x3 = 11, x2 = x4 =
0 and 𝑍 = 331. If we solve the problem with pom-QM, the
result will be the same.

The following steps can be defined to solve the problem
with Greedy heuristic.

Step 1. All the benefit rj = (𝑐𝑗/𝑎𝑗) values are calculated.

Step 2. Benefit values (rj) are ranked. If there are same

benefit values, their rank is randomly determined.

Step 3. The item offering the most benefit is put into the
knapsack. The following benefit value is examined. If it
does not exceed the capacity, it is put into the knapsack,
if it exceeds, then the following item is examined.

Step 4. If all the items have been checked, then the
operation is concluded. Otherwise, it is returned to step
3.

Burcu Durmuş, Öznur İşçi Güneri, Aynur İncekırık
Comparison of Classic and Greedy Heuristic Algorithm Results in Integer Programming: Knapsack Problems

40

According to these steps, the solution of KP is as in Table
3.

Table 3. One-dimensional pure KP benefit values.
𝐱𝐣 𝐜𝐣 𝐚𝐣 𝐫𝐣 = (𝒄𝒋/𝒂𝒋) rank

x1 1 4 0.25 4

x2 8 5 1.6 2

x3 30 6 5 1

x4 12 8 1.5 3

If we start to load with the good with the highest benefit
value in such a way as not to exceed the maximum
capacity; according to the rank order, first x3 = 11 and
the remaining capacity is 70 - 66 (6x11) = 4. x2 and x4
exceed the capacity, x1 = 1 and the remaining capacity is
4 - 4 = 0. In this case, Greedy solution of the problem was
found to be x1 = 1, x3 = 11, x2 = x4 = 0 and 𝑍 = 331.
The program output of the solution with Greedy
algorithm is given in Figure 6.

Figure 6. One-dimensional pure KP Greedy program

output.

Looking at the solutions with branch-bound and Greedy
algorithms, it is seen that the optimal solution is achieved
more economically, as in the one-dimensional 0-1 KP.

5.3.1. Problem: One-dimensional pure KP with
different numbers of variables

For pure KP, problems with 2, 3, 4, 8, 10, 15, 20, 25, 50
variables were solved. The results of the problems are
given in Table 4.

Table 4. Results of solutions for one-dimensional pure
KP.

Dimension Pom-QM solution Greedy solution

2x1 24 24

3x1 96 96

4x1 66 15

8x1 257 257

10x1 288 288

15x1 100 100

20x1 226 15

25x1 800 628

50x1 - 200

As can be seen in Table 4, pom-QM program package
results for 4x1, 20x1 and 25x1 are different when
compared to the results of Greedy program. For 50x1, as
the number of constraints with pom-QM exceeded 30, no
solution could be found. The result of Greedy program
was found to be 200.

5.4. Problem: Two-dimensional 0-1 KP

The current study addressed the constrained problems.
In the previous problems, Greedy solutions of single
constrained examples for KP were calculated from the
utility values. In this problem, we will focus on how the
two-dimensional (or two-constrained) KP is solved with
Greedy algorithm.

Gorski et al. [19] put forward a method for solving two-
dimensional KP problems. They gave their theorems for
the method in the study together with the proofs and
tried to explain the method with examples. In this
method, according to the capacity differences for two
constraints (for b1 > b2 > 0), Greedy algorithm can be
applied to two constrained problems.

The problem given by Equation (14) below is solved
according to differences between the benefit values and
its’ effect on the capacity, and the results are given.

Objective function:

𝑀𝑎𝑥 𝑍 = 35𝑥1 + 85𝑥2 + 135𝑥3 + 10𝑥4 + 25𝑥5

+ 2𝑥6 + 94𝑥7
(14)

Constraints:

2𝑥1 + 3𝑥2 + 9𝑥3 + 0.5𝑥4 + 2𝑥5 + 0.1𝑥6 + 4𝑥7 ≤ 25

15 + 35𝑥2 + 105𝑥3 + 68𝑥4 + 125𝑥5 + 25𝑥6

+ 100𝑥7 ≤ 400

𝑥𝑖 = 0 𝑜𝑟 1

(15)

The utility values are calculated in Table 5 to solve two-
dimensional and 7 variables 0-1 KP with Greedy
algorithm.

Burcu Durmuş, Öznur İşçi Güneri, Aynur İncekırık
Comparison of Classic and Greedy Heuristic Algorithm Results in Integer Programming: Knapsack Problems

41

Table 5. Ranking of the two-dimensional 0-1 KP
according to benefit values.

𝐱𝐣 𝐜𝐣 𝐚𝟏𝐣 𝐚𝟐𝐣 𝐫𝟏𝐣 𝐫𝟐𝐣 𝐫𝟏𝐣 − 𝐫𝟐𝐣 rank

x1 35 2 15 17.5 2.33 15.17 5

x2 85 3 35 28.3 2.42 25.88 1

x3 135 9 105 15 1.28 13.72 6

x4 10 0.5 68 20 0.14 19.86 4

x5 25 2 125 12.5 0.2 12.3 7

x6 2 0.1 25 20 0.08 19.92 3

x7 94 4 100 23.5 0.94 22.56 2

The solution of the problem according to Greedy
algorithm steps is given Table 6.

Table 6. The two-dimensional 0-1 KP results for Greedy
algorithm.

 weight (≤ 25) volume (≤ 400)

x2 = 1 25 – 3 = 22 400 – 35 = 365

x7 = 1 22 – 4 = 18 365 – 100 = 265

x6 = 1 18 – 0.1 = 17.9 265 – 25 = 240

x4 = 1 17.9 – 0.5= 17.4 240 – 68 = 172

x1 = 1 17.4 – 2 = 15.4 172 – 15 = 157

x3 = 1 15.4 – 9 = 6.4 157 – 105 = 52

x5 = 0

Greedy solution of the problem was found to be
x1 = x2 = x3 = x4 = x6 = x7 = 1, x5 = 0 and Z = 361.
The program solution of the problem is shown in Figure
7.

Figure 7. Two-dimensional 0-1 KP Greedy program

output

5.5. Problem: Two-dimensional pure KP

The problem given by Equation (14) above can be
remodeled as pure KP. Greedy program solution
according to utility matrix given for the newly defined
problem is shown in Figure 8.

Figure 8. Two-dimensional pure KP Greedy program

output.

Greedy solution of the problem was found to be
x2 = 8, x4 = 1, x6 = 2 and Z = 694.

Since there is not enough practice in the literature for
solving mixed KP, it is not included in the program.

Burcu Durmuş, Öznur İşçi Güneri, Aynur İncekırık
Comparison of Classic and Greedy Heuristic Algorithm Results in Integer Programming: Knapsack Problems

42

6. Conclusion

This study is designed to investigate whether Greedy
heuristic algorithm gives close solutions when compared
with classical algorithms. The solutions of problems were
obtained with the appropriate classic algorithm and
Greedy algorithm. The results were compared and it was
seen that Greedy algorithm gave good results to a large
extent. Taking all the problems considered in the study
into account, it can be interpreted that Greedy algorithm
gives good results (same as classic algorithms) in small-
sized problems with small number of variables. However,
if the number of variables is large, the classic algorithms
are limited by the number of constraints and the number
of variables; in such cases, the result can be found with
Greedy.

The program developed for solving problems having
different variable numbers with using Greedy algorithm
provided great convenience in making comparisons in
the study. The program solves one and two dimensional
KP given in the literature. In addition, the program solves
one and two dimensional capital budgeting problems
with the same structure. Since this program is not limited
by the number of constraints or iterations as it is in the
pom-QM package, it can produce solutions for every
problem.

Greedy algorithm can be used for the selection of initial
population for GA, one of the heuristic algorithms. At the
same time, it can be used in branch-bound algorithm; one
of the classic algorithms, to trim the branches of search
tree. For this reason, the demonstration that Greedy
algorithm gives close results is important in terms of
supporting future research and theoretical knowledge.

In the current study, Greedy algorithm solutions of 0-1
and pure IP problems have been discussed. In future
studies, it is aimed to investigate the solution by using
Greedy algorithm for mixed IP and more complex IP
models. After these studies, it is considered to develop a
program for solving more complicated problem models
and problems with larger number of dimensions using
Greedy algorithm.

Other codes written for the heuristic algorithm produce
a solution for a single problem. When the program
developed in the current study for this purpose is
compared with the other software codes, it can be seen
that it is more advantageous as it does not include any
constrain, is easy to use and can solve capital budgeting
problems having a similar model structure. In future
studies, it is aimed to develop codes for other algorithms
and then turn them into a program package that can
perform heuristic solutions.

7. References
[1] Bakır, M.A. and Altunkaynak, B., Tamsayılı Programlama

Teori, Modeller ve Algoritmaları, Nobel Yayın Dağıtım,
Ankara, 2003.

[2] Başkaya, Z., Tamsayılı Programlama Algoritmaları ve
Bilgisayar Uygulamalı Problem Çözümleri, Başak
Matbaacılık, Ankara, 2005.

[3] Güler, A., Tamsayılı Programlama Problemleri İçin Garanti
Değerli Algoritmalar, Ege University, Graduate School of
Natural and Applied Sciences, Master Thesis, İzmir, 2008.

[4] Akçay, Y., Li, H. and Xu, S.H, “Greedy Algorithm for the
General Multidimensional Knapsack Problems”, Annals of
Operations Research, 150, 17-29, 2007.

[5] Liu, L., “Solving 0-1 Knapsack Problems by Greedy Method
and Dynamic Programming Method”, Advanced Materials
Research, 282-283, 570-573, 2011.

[6] Lv, J., Wang, X., Huang, M., Cheng, H. and Li, F., “Solving 0-1
Knapsack Problem by Greedy Degree and Expectation
Efficiency”, Applied Soft Computing, 41, 94-103, 2016.

[7] Zhou, Y., Chen, X. and Zhou, G., “An Improved Monkey
Algorithm for a 0-1 Knapsack Problem”, Applied Soft
Computing, 38, 817-830, 2016.

[8] Bulut, F. and İnce, İ.F., “Tam Sayı Programlamada Açgözlü
ve Sezgisel Aramalar ile 0-1 Sırt Çantası Problemine Yeni
Bir Bakış”, Karaelmas Fen ve Mühendislik Dergisi, 8(1), 89-
98, 2018.

[9] Winston, W.L., Operations Research Applications and
Algorithms, Canada, 2004.

[10] Taha, H., Yöneylem Araştırması, Literatür Yayıncılık,
İstanbul, 2000.

[11] Hillier, F. S. and Lieberman, G. J., Introduction to Operations
Research, McGraw-Hill, New York, 2001.

[12] Schrijver, A., Theory of Linear and Integer Programming, A
Wiley-Interscience Publication, Amsterdam, 1999.

[13] Keskintürk, T., Topuk, N. and Özyeşil, O., “Araç Rotalama
Problemleri İle Çözüm Yöntemlerinin Sınıflandırılması ve
Bir Uygulama”, The Journal of Business Science, 3(2), 77-
107, 2015.

[14] Sağır, M., Öztürk, A. and Öztürk, Ö., Yöneylem Araştırması-
2, Anadolu Üniversitesi Açıköğretim Yayınları, Eskişehir,
2013.

[15] Yıldırım, T., Kalaycı, C.B. and Mutlu, Ö., “Gezgin Satıcı
Problemi İçin Yeni Bir Meta Sezgisel: Kör Fare
Algoritması”, Pamukkale University Journal of Engineering
Sciences, 22(1), 64-70, 2016.

[16] Pearl, J., Heuristics Intelligent Search Strategies for
Computer Problem Solving, Addison-Wesley Publishing
Company, 1984.

[17] Durmuş, B., Tamsayılı Programlamada Klasik ve Greedy
Sezgisel Algoritma Sonuçlarının Karşılaştırılması, Muğla
Sıtkı Koçman University, Graduate School of Natural and
Applied Sciences, Master Thesis, Muğla, 2018.

[18] Alwan, H.O. and Farhan, N.M., “Load Restoration
Methodology Considering Renewable Energies and
Combined Heat and Power Systems”, International Journal
of Engineering and Technology, 7(2.6), 130-134, 2018.

[19] Gorski, J., Paquete, L. and Pedrosa, F., “Greedy Algorithms
for a Class of Knapsack Problems with Binary Weights”,
Computers and Operations Research, 39, 498-511, 2012.

