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Abstract 

This paper focus on comparing the differences and similarities between the results obtained from Greedy and classical 
algorithms for integer linear programming (ILP) problems. For this purpose, the solution of the problems related to 
different models with the purpose function and constraints has been provided by developing a software (Java Program) 
which solves the Knapsack problems (KP) with Greedy algorithm. Both the classical algorithm and the results obtained 
from Greedy algorithm are compared for the problems considered here. In this context, the results obtained from algorithms 
are found to be the same for small-sized pure and 0-1 binary Knapsack problems. Since packet programs are limited in 
dimension and number of constraints, it becomes difficult to obtain appropriate results from classical algorithms as the 
dimension of the problem grows. However, Greedy algorithm gives the appropriate results regardless of the dimension and 
the number of constraints. 
Keywords: Integer Programming, Classic Algorithms, Greedy Algorithm, Knapsack Problems 

TAMSAYILI PROGRAMLAMADA KLASİK VE GREEDY SEZGİSEL 
ALGORiTMALARININ KARŞILAŞTIRILMASI: SIRT ÇANTASI PROBLEMLERİ  

Özet 

Bu çalışmada, tamsayılı doğrusal programlama (TDP) problemleri için Greedy ve klasik algoritmalardan elde edilen 
sonuçlar arasındaki fark ve benzerlikler karşılaştırılmıştır. Bu amaçla, Sırt Çantası Problemlerini (SÇP) Greedy 
algoritmasıyla çözen bir yazılım (Java Program) geliştirerek, amaç fonksiyonu ve kısıtları verilmiş farklı modellere ilişkin 
problemlere çözüm sağlanmıştır. Dikkate alınan problemler için hem klasik algoritma hem de Greedy algoritmasından elde 
edilen sonuçlar karşılaştırılmıştır. Bu bağlamda, küçük boyutlu saf ve 0-1 binary sırt çantası problemleri için 
algoritmalardan elde edilen sonuçlar aynı bulunmuştur. Paket programlar boyut ve kısıt sayısı ile sınırlı olduğundan 
problemin boyutu büyüdükçe klasik algoritmalar için uygun sonuç elde etmek zorlaşmaktadır. Ancak, Greedy algoritması, 
boyut ve kısıt sayısını dikkate almaksızın uygun sonuç vermektedir. 
Anahtar Kelimeler: Tam Sayılı Programlama, Klasik Algoritmalar, Greedy Algoritması, Sırt Çantası Problemleri 
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1. Introduction 

Although Integer Linear Programming seems to be easier 
and more understandable than Linear Programming 
(LP), it is often more time consuming and more complex. 
Problem solving in ILP requires a true investigation of all 
possible fields and the number of constraints increases 

when an integer is added into a problem finding a 
solution for an integer in ILP may require exponential 
computing time [1,2,3]. For this reason, various 
algorithms are needed to facilitate access for the optimal 
solutions in integer problems. Among these algorithms, 
the classic ones provide optimal solutions either 
manually or in a computer environment. However, 
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problems that are too complicated and without 
algebraically expressible constraints and objective 
functions could not be solved easily with these 
algorithms, and solution sometimes cannot be achieved. 
Such situations need for algorithms called heuristic. 
Although heuristic algorithms do not always provide the 
optimal solution, they try to produce the proximal 
optimal solution. At the beginning of the current study, it 
was assumed that the classic algorithms give the optimal 
solution and the heuristic algorithms give the proximal 
optimal solution. Thus, this study was aimed to provide 
support for this assumption by comparing the solution 
results of the two algorithms. 

Knapsack problems (KP) is one of the most commonly 
used problems in integer programming. In this study, KP 
was used and Greedy algorithm was chosen for the 
heuristic solutions of KP. A literature search could show 
that is examined, there are many studies on the solutions 
of KP with Greedy algorithm (or algorithms based on 
Greedy terminology). Akçay et al. [4] proposed a new 
Greedy algorithm for heuristic solution of multi-
dimensional KP. Their calculations showed that the 
solution was reliable. Liu [5] conducted a simulation 
study on 0-1 KP using Greedy terminology and dynamic 
programming. Lv et al. [6] designed a degree model by 
inspiring from Greedy algorithm. Their algorithm has 
been found to be more effective than the other 
algorithms. Zhou et al. [7] proposed a new version for 
Greedy algorithm and compared the results of this new 
version with the results of five different heuristic 
algorithms. Their comparisons showed that this new 
version 0-1 can be an effective alternative to solve KP 
problem. Bulut et al. [8] tried to optimize the recursive 
model by adding Greedy approach to the branch and 
bound algorithm. They found that such an approach can 
shorten the calculation time. 

As seen from the literature, both former and new 
versions of Greedy algorithm work effectively. However, 
the number of programs that solve Greedy algorithm are 
limited. Ready software programs developed for solving 
ILP problems are limited by the number of variables, 
constraints and iterations. For this reason, new software 
development for solving problems is necessary for 
solving larger-scale problems, since the number of 
variables and constraints in real life problems is 
excessive. 

Given that Greedy algorithm is used in finding solutions 
to the problems confronted in daily life or to the 
problems that cannot be solved, the importance of this 
algorithm’s giving good results could better have 
understood. For this purpose, a program with Java codes 
was developed in the application part of this study to 
compare the solutions of problems with multiple 
variables. With the developed program, 
multidimensional problems could not only be solved 
more economically in terms of both time and calculation 
cost using Greedy algorithm, but the program also allows 
the comparison of classic and Greedy heuristic results of 
multidimensional problems. 

It should be noted that integer programming (IP) with 
integer linear programming (ILP) means the same in the 
literature. 

2. Integer Linear Programming (ILP) 

It may be desirable to obtain integer results in some 
problems solved with LP. For example, selection or not 
selection of the course added to curriculum can be 
determined by decision variables that take values of 1 
and 0, or the number of products to be produced in an 
enterprise is expressed by integer values. An integer 
programming method has been developed for such 
problems where values such as 3.6 computer are not 
meaningful [1,2]. A general IP model can be expressed as 
in the Equation (1) below. In this model the constraints 
can be ≤, ≥ or = [9]. 

Objective function: 

𝑀𝑎𝑥 𝑍 = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑥𝑗 

                                     or 

M𝑖𝑛 𝑍 = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑥𝑗  

    (1) 

Constraints: 

∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 ≤ 𝑏𝑗 

𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

(2) 

2.1. Types of Integer Programming Problems 

The IP problems are divided into three main classes 
according to the values that their variables will have: 
pure, 0-1 and mixed integer problems. These models are 
briefly explained below. 

2.1.1. Pure integer problems 

Programming problems where all of the variables can 
only take integer values are called pure integer problems. 
A general model of pure IP problems can be expressed as 
follows [10]. 

Objective function: 

𝑀𝑎𝑥 𝑍 = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑥𝑗 (3) 

Constraints: 

∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 ≤ 𝑏𝑗 

 𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

   (4) 

2.1.2. Mixed integer problems 

Programming problems where some of the variables are 
integers and the others are real values are called mixed 
integer problems. A general mixed integer problem 
model is given below. 

Objective function: 
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𝑀𝑎𝑥 𝑍 = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑥𝑗 (5) 

Constraints: 

∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 ≤ 𝑏𝑗 

 𝑖 = 1,2, … , 𝑚 

𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑗 = 1,2, … , 𝑝 

𝑥𝑗 ≥ 0, 𝑗 = 𝑝, … , 𝑛 (𝑝 ≤ 𝑛) 

(6) 

2.1.3. Binary (0-1) integer problems 

Programming problems where all variables must be 0 or 
1 are called 0-1 integer problems.  

𝑥𝑗 = {
1, 𝑖𝑓 𝑗. 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑        
0, 𝑖𝑓 𝑗. 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

 (7) 

In the Equation (7), the situations where the product is 
selected or not selected are shown (j=1, 2,…, n) [11]. In 
such situations, xj variables can only take 1 or 0 values. A 
general 0-1 IP problem model can be expressed as 
follows. 

Objective function: 

𝑀𝑎𝑥 𝑍 = ∑ 𝑐𝑗

𝑛

𝑗=1

𝑥𝑗 (8) 

Constraints: 

∑ 𝑎𝑖𝑗

𝑛

𝑗=1

𝑥𝑗 ≤ 𝑏𝑗 

 𝑖 = 1,2, … , 𝑚  𝑎𝑛𝑑  𝑥𝑗 = 0 𝑜𝑟 1 

(9) 

3. Solution Methods in Integer Programming 

The classic algorithms developed for LP after adding the 
property of being an integer are insufficient to solve IP 
problems. For this reason, new methods of solution are 
needed. Among these methods, heuristic algorithms are 
divided into two in the literature: 

 Classic Heuristic Algorithms 
 Meta (Modern) Heuristic Algorithms  

Classic heuristic algorithms are examined separately as 
they perform narrower (local) searches than meta 
heuristic algorithms. 

These solution methods developed for IP can be 
generally grouped as in Figure 1. 

 
Figure 1. Solution algorithms for IP. 

3.1. Classic Algorithms 

When methods like Simplex developed to solve LP 
problems are used to solve the problems modeled with 
business data, they make it possible to reach optimal 
solutions with modern computers within a few hours. 
Therefore, LP is widely used [12]. 

However, this does not hold true for IP problems. IP 
problems are created by adding integer constraints to LP 
problems. They therefore contain more constraints. As a 
consequence of increasing of the constraints, IP 
problems show exponential growth according to LP 
problems. Sometimes proper formulations cannot be 
formed. In this respect, it is not possible to solve the IP 
problems with the methods developed for LP. As a result 
of such fundamental differences, it became necessary to 
develop new algorithms for IP problems. 

These algorithms are also known in the literature as 
'exact solution algorithms' [2,13]. The classic algorithms 
most commonly used by researchers are listed in Figure 
2. 
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Figure 2. IP classic solution algorithms. 

3.2. Heuristic Algorithms 

Heuristic algorithms are methods that provide optimal 
solutions close to the optimization problem. Its name is 
derived from the Greek word “heuristic” meaning 
“discovering a new method”, “solving problem”. It 
entered into our language with the words “sezgisel’, 
‘buluşsal’, ‘bulgusal’. They became popular as some 
problems could not be solved with classic algorithms, 
solutions to these problems were complex, took a long 
time and were expensive [14]. Heuristic algorithms are 
also used for quadratic and nonlinear problems. Some of 
these algorithms are given below; 

 Greedy algorithms   
 Nearest neighbor algorithm   
 Dantzig and Ramser’s method   
 Saving algorithm   
 Sorting algorithm  
 Tabu search   
 Genetic algorithm   
 Simulated annealing   
 Ant colony   
 Artificial bee colony   
 Particle swarm optimization   
 Artificial neural networks  

They are often inspired by nature, disciplines of science 
or human behaviors [15]. The accuracy of heuristic 
algorithms cannot be proved. The main reasons for their 
frequent preference by researchers are as follows: 

 They do not give the optimal solution exactly, but 
they give near-optimal solutions with small 
deviations. 

 They reach the result with short and simple 
solutions. 

 They are conceptually simple. In small problems, 
they can yield optimum results. 

 Their calculation cost is less [16]. 
 They can be used for problems that do not have a 

formulization or an optimal solution. 
 They can solve quadratic and nonlinear problems. 
 They can be flexed and adapted according to the 

problem [15]. 
 They can produce solutions for some problems 

that package programs do not solve. 
 The verifiability of algorithms is ignored [3]. 

4. Greedy Algorithm 

Consciously or unconsciously, Greedy algorithm is the 
most commonly used algorithm in everyday life. The aim 
is always to keep the utility high. It addresses the 
problem whose objective function is given with the 
assumption that one with the highest coefficient would 
yield the highest profit. Its priority thus is to assign the 
highest value to this variable. In the case of single 
constrained problems, it calculates the utility per unit. It 
tries to fill its capacity by preferring to select the most 
from the variable yielding the highest benefit [17].  

This algorithm uses less computation and fewer 
algorithms than the other heuristics. For this reason, 
researchers have remained in dilemma many times 
about the results. Despite the fact that Greedy heuristic 
has been disputed on the grounds it yields local or 
immediate results, its use is still quite common. The main 
reason for this is that it is quite easy to apply, the 
computational costs are very low, and it can be applied to 
all kinds of problems (problems without solution or 
formulation, complex problems, irreducible problems, 
problems without a certain model, etc.) [1,3]. 

A general flow diagram for Greedy is given in Figure 3 
[17,18]. 
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Figure 3. A general Greed flow diagram. 

5. Application 

In this part of the study, one-dimensional 0-1 and pure 
KP, two-dimensional 0-1 and pure KP were solved with 
Greedy algorithm. A software code has been developed to 
solve the KP with Greedy algorithm and multivariate 
problems have been solved with the help of this code. In 
addition, the branch-bound method was used from the 
classic algorithms and the results were compared with 
the results obtained from the pom-QM package. 

5.1. Introduction of the Developed Program 

When we look at the recent studies on IP, it can be said 
that it is preferred to write a program for the solutions of 
the problem considered here. With the widespread use of 
information technologies, it has been seen that code 
writing has yielded many benefits in terms of time, labor, 
calculation costs etc. therefore for KP solutions of Greedy 
algorithm on which we are working, a software program 
was developed [17]. 

The developed program was written in Java language and 
presented as desktop program in order to provide ease 
of use. The program solves one-dimensional (0-1 and 
pure) KP and two-dimensional (0-1 and pure) KP 
addressed in the current study with Greedy algorithm. In 
order to solve a desired problem with the developed 
program, it is necessary to enter the purpose and 
constraint function values, the capacity limit and to select 
the problem dimension. Figure 4 shows the main window 
of the program. 

 
Figure 4. The main window of the developed program. 

 

With Greedy algorithm, although the KP can be solved in 
a short time manually, this program facilitates the 
solution of multivariate problems and two-dimensional 
KP problems to a large extent. Also, while program 
packages such as pom-QM have limited iterations and 
variable numbers, this program can perform as many 
operations as requested and does not impose any 
restriction. 

5.2. Problem: One-dimensional 0-1 KP 

4-variable and single constraint sample problem is given 
below; 

Objective function: 

𝑀𝑎𝑥 𝑍 =  20𝑥1 + 108𝑥2 + 27𝑥3 + 12𝑥4 (10) 

Constraints: 

4𝑥1 + 16𝑥2 + 9𝑥3 + 5𝑥4 ≤  24 

𝑥𝑖 = 0 𝑜𝑟 1 
(11) 

In the solution of the problem with branch-boundary 
method, the results in each branch are calculated 
separately. For this example, the results were found to be 
x1 = x2 = 1, x3 = x4 = 0 and 𝑍 = 128. As we have 
already mentioned that various program packages have 
been developed, but calculation of results for each 
branch of the large scale problems could be 
problematical.  

The solution of the problem with the pom-QM package 
was found to be the same as the branch-bound algorithm 
solution. Heuristic algorithms can be used to save time in 
solving the problem. The following steps can be defined 
to solve the problem with Greedy Heuristic. 

Step 1. All the benefit rj = (𝑐𝑗/𝑎𝑗) values are calculated. 

Step 2. Benefit values (rj) are ranked. If there are same 

benefit values, their rank is randomly determined. 
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Step 3. The item offering the most benefit is put into the 
knapsack. The following benefit value is examined. If it 
does not exceed the capacity, it is put into the knapsack, 
if it exceeds, then the following item is examined. 

Step 4. If all the items have been checked, then the 
operation is concluded. Otherwise, it is returned to step 
3. 

According to these steps, Greedy algorithm solution of KP 
is given in Table 1. 

Table 1. One-dimensional 0-1 KP benefit values.  
𝐱𝐣 𝐜𝐣 𝐚𝐣 𝐫𝐣 = (𝒄𝒋/𝒂𝒋) rank 

x1  20 4 5 2 

x2 108 16 6.75 1 

x3 27 9 3 3 

x4 12 5 2.4 4 

 

If we start to load with the highest value of good; x2 is 
loaded first according to sorting, the reduced capacity is 
16, the remaining capacity is 24 - 16 = 8. Then x1 is 
loaded, the reduced capacity becomes 4, the remaining 
capacity becomes 8 - 4 = 4. The remaining 4 items have 
no good to be loaded, the process ends. In this case, the 
solution is x1 = x2 = 1,  x3 = x4 = 0 and 𝑍 = 128. The 
output of the program developed using the above steps is 
as shown in Figure 5. 

 
Figure 5. One-dimensional 0-1 KP Greedy program 

output. 

 

When we look at the results of branch-bound algorithm 
and Greedy algorithm, it is clear that we get the optimal 
solution with much economical processing. 

5.2.1. Problem: One-dimensional 0-1 KP having 
different numbers of variables 

Problems with variable numbers of 2, 3, 4, 8, 10, 15, 20, 
25, 50 for 0-1 KP have been solved with the aid of the 
developed code and pom-QM program package. 

Table 2. Solution results of one-dimensional 0-1 KP.  
Dimension  Pom-QM solution Greedy  solution 

2x1 8 8 

3x1 17 17 

4x1 21 21 

8x1 52 43 

10x1 60 60 

15x1 87 87 

20x1 147 126 

25x1 653 653 

50x1 - 61 

 

According to Table 2, pom-QM program and Greedy 
software solutions have been found different for 8x1 and 
20x1 problems. For the 50x1 problem, the pom-QM 
program could not produce a solution (since the number 
of variables in pom-QM is limited to 30). However, with 
Greedy program developed, the result was found to be 
61. 

5.3. Problem: One-dimensional pure KP 

The sample problem with 4 variables and single 
constraint is given below; 

Objective function: 

𝑀𝑎𝑥 𝑍 =  𝑥1 + 8𝑥2 + 30𝑥3 + 12𝑥4 (12) 

Constraints: 

4𝑥1 + 5𝑥2 + 6𝑥3 + 8𝑥4 ≤  70 

𝑥𝑖 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 
(13) 

According to the branch-bound algorithm, the result of 
the problem was found to be x1 = 1, x3 = 11, x2 = x4 =
0 and 𝑍 = 331. If we solve the problem with pom-QM, the 
result will be the same. 

The following steps can be defined to solve the problem 
with Greedy heuristic. 

Step 1. All the benefit rj = (𝑐𝑗/𝑎𝑗) values are calculated. 

Step 2. Benefit values (rj) are ranked. If there are same 

benefit values, their rank is randomly determined. 

Step 3. The item offering the most benefit is put into the 
knapsack. The following benefit value is examined. If it 
does not exceed the capacity, it is put into the knapsack, 
if it exceeds, then the following item is examined. 

Step 4. If all the items have been checked, then the 
operation is concluded. Otherwise, it is returned to step 
3. 
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According to these steps, the solution of KP is as in Table 
3. 

Table 3. One-dimensional pure KP benefit values. 
𝐱𝐣 𝐜𝐣 𝐚𝐣 𝐫𝐣 = (𝒄𝒋/𝒂𝒋) rank 

x1  1 4 0.25 4 

x2 8 5 1.6 2 

x3 30 6 5 1 

x4 12 8 1.5 3 

 

If we start to load with the good with the highest benefit 
value in such a way as not to exceed the maximum 
capacity; according to the rank order, first x3 = 11 and 
the remaining capacity is 70 - 66 (6x11) = 4. x2 and x4 
exceed the capacity, x1 = 1 and the remaining capacity is 
4 - 4 = 0. In this case, Greedy solution of the problem was 
found to be  x1 = 1, x3 = 11, x2 = x4 = 0 and 𝑍 = 331. 
The program output of the solution with Greedy 
algorithm is given in Figure 6.  

 
Figure 6. One-dimensional pure KP Greedy program 

output. 

 

Looking at the solutions with branch-bound and Greedy 
algorithms, it is seen that the optimal solution is achieved 
more economically, as in the one-dimensional 0-1 KP. 

5.3.1. Problem: One-dimensional pure KP with 
different numbers of variables 

For pure KP, problems with 2, 3, 4, 8, 10, 15, 20, 25, 50 
variables were solved. The results of the problems are 
given in Table 4. 

 

Table 4. Results of solutions for one-dimensional pure 
KP. 

Dimension   Pom-QM solution Greedy  solution 

2x1 24 24 

3x1 96 96 

4x1 66 15 

8x1 257 257 

10x1 288 288 

15x1 100 100 

20x1 226 15 

25x1 800 628 

50x1 - 200 

 

As can be seen in Table 4, pom-QM program package 
results for 4x1, 20x1 and 25x1 are different when 
compared to the results of Greedy program. For 50x1, as 
the number of constraints with pom-QM exceeded 30, no 
solution could be found. The result of Greedy program 
was found to be 200. 

5.4. Problem: Two-dimensional 0-1 KP 

The current study addressed the constrained problems. 
In the previous problems, Greedy solutions of single 
constrained examples for KP were calculated from the 
utility values. In this problem, we will focus on how the 
two-dimensional (or two-constrained) KP is solved with 
Greedy algorithm. 

Gorski et al. [19] put forward a method for solving two-
dimensional KP problems. They gave their theorems for 
the method in the study together with the proofs and 
tried to explain the method with examples. In this 
method, according to the capacity differences for two 
constraints (for b1 > b2 > 0), Greedy algorithm can be 
applied to two constrained problems. 

The problem given by Equation (14) below is solved 
according to differences between the benefit values and 
its’ effect on the capacity, and the results are given. 

Objective function: 

𝑀𝑎𝑥 𝑍 =  35𝑥1 + 85𝑥2 + 135𝑥3 + 10𝑥4 + 25𝑥5

+ 2𝑥6 + 94𝑥7 
(14) 

Constraints: 

2𝑥1 + 3𝑥2 + 9𝑥3 + 0.5𝑥4 + 2𝑥5 + 0.1𝑥6 + 4𝑥7 ≤ 25 

15 + 35𝑥2 + 105𝑥3 + 68𝑥4 + 125𝑥5 + 25𝑥6

+ 100𝑥7 ≤ 400 

𝑥𝑖 =  0 𝑜𝑟 1 

(15) 

The utility values are calculated in Table 5 to solve two-
dimensional and 7 variables 0-1 KP with Greedy 
algorithm.  
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Table 5. Ranking of the two-dimensional 0-1 KP 
according to benefit values. 

𝐱𝐣 𝐜𝐣 𝐚𝟏𝐣 𝐚𝟐𝐣 𝐫𝟏𝐣 𝐫𝟐𝐣 𝐫𝟏𝐣 − 𝐫𝟐𝐣 rank 

x1  35 2 15 17.5 2.33 15.17 5 

x2 85 3 35 28.3 2.42 25.88 1 

x3 135 9 105 15 1.28 13.72 6 

x4 10 0.5 68 20 0.14 19.86 4 

x5 25 2 125 12.5 0.2 12.3 7 

x6 2 0.1 25 20 0.08 19.92 3 

x7 94 4 100 23.5 0.94 22.56 2 

 

The solution of the problem according to Greedy 
algorithm steps is given Table 6. 

Table 6. The two-dimensional 0-1 KP results for Greedy 
algorithm. 

 weight (≤ 25) volume (≤ 400) 

x2 = 1 25 – 3 = 22 400 – 35 = 365 

x7 = 1 22 – 4 = 18 365 – 100 = 265 

x6 = 1 18 – 0.1 = 17.9 265 – 25 = 240 

x4 = 1 17.9 – 0.5= 17.4 240 – 68 = 172 

x1 = 1 17.4 – 2 = 15.4 172 – 15 = 157 

x3 = 1 15.4 – 9 = 6.4 157 – 105 = 52 

x5 = 0   

 

Greedy solution of the problem was found to be  
x1 = x2 = x3 = x4 = x6 = x7 = 1, x5 = 0 and  Z = 361. 
The program solution of the problem is shown in Figure 
7. 

 
Figure 7. Two-dimensional 0-1 KP Greedy program 

output  

5.5. Problem: Two-dimensional pure KP 

The problem given by Equation (14) above can be 
remodeled as pure KP. Greedy program solution 
according to utility matrix given for the newly defined 
problem is shown in Figure 8. 

 
Figure 8. Two-dimensional pure KP Greedy program 

output. 

 

Greedy solution of the problem was found to be  
x2 = 8, x4 = 1, x6 = 2 and Z = 694. 

Since there is not enough practice in the literature for 
solving mixed KP, it is not included in the program. 
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6. Conclusion 

This study is designed to investigate whether Greedy 
heuristic algorithm gives close solutions when compared 
with classical algorithms. The solutions of problems were 
obtained with the appropriate classic algorithm and 
Greedy algorithm. The results were compared and it was 
seen that Greedy algorithm gave good results to a large 
extent. Taking all the problems considered in the study 
into account, it can be interpreted that Greedy algorithm 
gives good results (same as classic algorithms) in small-
sized problems with small number of variables. However, 
if the number of variables is large, the classic algorithms 
are limited by the number of constraints and the number 
of variables; in such cases, the result can be found with 
Greedy. 

The program developed for solving problems having 
different variable numbers with using Greedy algorithm 
provided great convenience in making comparisons in 
the study. The program solves one and two dimensional 
KP given in the literature. In addition, the program solves 
one and two dimensional capital budgeting problems 
with the same structure. Since this program is not limited 
by the number of constraints or iterations as it is in the 
pom-QM package, it can produce solutions for every 
problem. 

Greedy algorithm can be used for the selection of initial 
population for GA, one of the heuristic algorithms. At the 
same time, it can be used in branch-bound algorithm; one 
of the classic algorithms, to trim the branches of search 
tree. For this reason, the demonstration that Greedy 
algorithm gives close results is important in terms of 
supporting future research and theoretical knowledge. 

In the current study, Greedy algorithm solutions of 0-1 
and pure IP problems have been discussed. In future 
studies, it is aimed to investigate the solution by using 
Greedy algorithm for mixed IP and more complex IP 
models. After these studies, it is considered to develop a 
program for solving more complicated problem models 
and problems with larger number of dimensions using 
Greedy algorithm.  

Other codes written for the heuristic algorithm produce 
a solution for a single problem. When the program 
developed in the current study for this purpose is 
compared with the other software codes, it can be seen 
that it is more advantageous as it does not include any 
constrain, is easy to use and can solve capital budgeting 
problems having a similar model structure. In future 
studies, it is aimed to develop codes for other algorithms 
and then turn them into a program package that can 
perform heuristic solutions. 
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