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Approximation of some discrete-time stochastic
processes by differential equations

Raúl Fierro ∗

Abstract
This work deals with solutions of ordinary differential equations as
approximations of some discrete-time stochastic processes. Similarly,
these stochastic processes may be seen as schemes of approximation for
this solution. Indeed, these stochastic schemes are defined and their
convergence to the solution of a differential equation is proven. More-
over, the asymptotic distribution of the fluctuations about the limit
solution is studied. This fact gives the asymptotic distribution of a
random global error of approximation. Main results are illustrated by
means of the so called SIS epidemic model and numerical simulations
are carried out.
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1. Introduction
Often processes associated to population dynamics are mathematically modeled by dif-

ferential equations and/or stochastic processes, which are of continuous or discrete time.
Because the analysis of a model based on differential equations is less cumbersome and
more efficient, both from a mathematical point of view as computational, by introducing
a stochastic model for a given process is desirable that it can be approximated by the
solution of an Ordinary Differential Equation (ODE), as is also the case studied in this
work. Some authors such as Kurtz [9, 10, 11] and Darling and Norris [3] have studied the
approximation of continuous-time Markov processes with pure jump by solving an ODE.
The convergence shown by these authors is almost surely and based on the Markov prop-
erty of these processes. Our interest is to analyze such an approach for a class of discrete
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time stochastic processes which are not necessarily Markovian, but including discrete-
time Markov chains. Conversely, given an ordinary differential equation, it is possible to
approximate its solution through this kind of processes. Indeed, our class of stochastic
processes can be seen as a stochastic variant of the Euler scheme to approximate the
solution to an ODE. These schemes of approximation are presented as discrete-time sto-
chastic processes, which includes but are not limited to Markov chains. Recently some
authors, such as Abbasbandy and Bervillier in [1], Eslahchi et al. in [4] Parand et al. in
[5], among others, have studied the problem of approximation for ordinary differential
equations by different deterministic methods. Also, stochastic schemes of approximation
have been developed by Fierro and Torres in [6] and Kloeden and Platen in [8]. This
latter reference deals with schemes of approximation for stochastic differential equations
(SDE). In [12], Kushner and Dupuis present a stochastic scheme of approximation for
SDE based on a Markov chain, which, in particular, can be applied for approximating
solutions to ODEs. Even though, in general, our schemes need not be Markovian, this
model can be included in our setting, whenever the noise part of the equation is zero.

The main results presented in this work are the convergence of the mentioned schemes
to the solution to the ODE and a central limit theorem, which allows to know the asymp-
totic distribution of the global error of the approximation. These results are applied to an
example coming from the biomathematical literature. Indeed, the differential equation
modeling the well-known SIS epidemic model is analyzed under our framework by means
of two natural schemes of approximation.

In order to quantify the probability of error in the approximation, the central limit
theorem presented allows to know the asymptotic distribution of the global error, i.e.
of the fluctuations of the process around the solution to the ODE. By this result it is
possible to establish confidence bands around this solution, which are determined by a
preassigned probability. Therefore, when a particular heuristic model is defined by a
solution to an ODE, it is possible to perform an asymptotical statistical test to validate
the model. Indeed, by considering the stochastic model as the observed process, these
observations should be close to the solution to the ODE insofar this solution to be a good
model for the heuristic situation. Hence, the asymptotic distribution of the global error
allows to carry out a goodness of fit test for both the random and deterministic model.

The plan of this paper is as follows. In Section 2, by means of a recursive condition,
we define a family of discrete-time stochastic processes, which approximate the solution
of the ODE. Main results of this work, along with their proofs, are stated in Section 3.
Since our schemes are stochastic, the global error is so. The asymptotic distribution of
it is analyzed in Section 4. Moreover, some dispersion measures and their estimators are
defined in this section. An example is included in Section 5. Indeed, the solution to the
differential equation defining the so called SIS epidemic model is approximated through
two schemes included in our framework. Both schemes are compared and numerical
simulations are carried out.

2. Preliminaries
Let x0 ∈ Rd and b : R+ × Rd → Rd be a continuous function satisfying the following

Lipchitz condition:
(L) ‖b(t, x)− b(t, y)‖ ≤ K‖x− y‖, for all t ∈ R+,

where K is a positive constant and ‖ · ‖ stands for the usual norm in Rd. Hence, the
initial value problem

(2.1) ẋ(t) = b(t, x(t)) x(0) = x0,

has one and only one solution.



In this work, a stochastic scheme of approximation for the solution to (2.1) is stated.
Let (Ω,F, IP) be a probability space and {tnk}k∈N the sequence of non-negative real

numbers defined as tnk = Ck/n, (C > 0, n ∈ N \ {0}). In what follows and without loss
of generality, we assume C = 1. An approximation of the solution to (2.1) is obtained
by means of a sequence {Zn}n∈N of stochastic processes defined on R+ × Ω. Such an
approximation is obtained by defining Fnk = σ(Zn(tn1 ), . . . , Zn(tnk )) as the sigma alge-
bra generated by Zn(tn1 ), . . . , Zn(tnk ), xn = xn(0) + 1

n
Zn and assuming the following

condition:
(C) IE(∆Zn(tnk )|Fnk−1) = b(tnk−1, x

n(tnk−1)), (k ≥ 1),
where for any stochastic process Z, ∆Z(tnk ) = Z(tnk )− Z(tnk−1).

For a real number x, [x] stands for the integer part of x and

Ln(t) =
1

n

[nt]∑
k=1

ξnk , (t ≥ 0),

where ξnk = ∆Zn(tnk )− b(tnk−1, x
n(tnk−1)). By defining Fnt = Fn[nt], (t ≥ 0), we have Ln is

a d-dimensional Fnt −martingale and

(2.2) Zn(t) = Zn(0) + n

[nt]∑
k=1

b(tnk−1, x
n(tnk−1))∆tn + nLn(t), (t > 0).

Given any d-dimensional martingale L, its predictable quadratic variation, at time t, is
denoted by 〈L〉(t). Thus, 〈L〉(t) is a d× d-matrix and it directly follows that

(2.3) 〈Ln〉(t) =
1

n2

[nt]∑
k=1

IE(ξnk ξ
n
k
>|Fnk−1), (t ≥ 0)

From (2.1) and (2.2), we have

(2.4) xn(t)−x(t) = xn(0)−x(0)+

∫ [nt]/n

0

{b([nu]/n, xn(u))−b(u, x(u))} du+Ln(t)+εn(t),

where, εn(t) = x([nt]/n) − x(t). Note that sup0≤u≤t ‖εn(s)‖ ≤ St/n, where St =
sup0≤u≤t ‖b(u, x(u))‖.

3. Main results
In the sequel, x stands for the solution to (2.1). In this section, the convergence of

xn to x is stated, which means {xn}n∈N converges uniformly in probability, on compact
subsets of R+, to x as n goes to ∞.

3.1. Theorem. Assume conditions (C) and (L) are satisfied. Moreover, suppose the
following two conditions hold:

(3.1.1): xn(0)
IP−→x0.

(3.1.2): For each t ≥ 0,

1

n2

[nt]∑
k=1

IE(‖ξnk ‖2|Fnk−1)
IP−→ 0, as n→∞.

Then, for each T > 0, sup
0≤t≤T

‖xn(t)− x(t)‖ IP−→ 0, as n→∞.

Proof. Fix T > 0 and let gn(t) = sup0≤s≤t ‖xn(s) − x(s)‖, (t ∈ [0, T ]). From (2.4) and
(L), we obtain

gn(t) ≤ αn +K

∫ t

0

gn(u) du,



where αn = gn(0)+sup0≤t≤T ‖Ln(t)‖+ST /n. Since, by (3.1.1), {gn(0)}n∈N converges in
probability to zero, by Gronwall’s inequality, it suffices to verify that {sup0≤t≤T ‖Ln(t)‖}n∈N
converges in probability to zero.

From Theorem 1 by Lenglart [13], for any ε, η > 0, we have

IP(sup0≤t≤T ‖Ln(t)‖2 > ε) ≤ 1

ε
IE(tr〈Ln〉(T ) ∧ η) + IP(tr〈Ln〉(T ) > η)

<
η

ε
+ IP(

1

n2

[nT ]∑
k=1

tr IE(ξnk ξ
n
k
>|Fnk−1) > η)

=
η

ε
+ IP(

1

n2

[nT ]∑
k=1

IE(‖ξnk ‖2|Fnk−1) > η)

and hence, by (3.1.2),
lim
n→∞

IP( sup
0≤t≤T

‖Ln(t)‖2 > ε) = 0,

which concludes the proof.

For each t ∈ R+, let b̃t : Rd → Rd be such that b̃t(x) = b(t, x) and suppose for each
t ∈ R+, b̃t has continuous partial derivatives. The following result aims to the problem
of finding confident bands for the approximate solution to (2.1). Before stating it, for
each (t, a) ∈ R+ × Rd, let D(b)(t, a) denote the Jacobian matrix of b̃t at a.

A function v : R+ → Rd×d is said to be a positive-definite, if for each θ ∈ Rm,
fθ : R+ → R defined as fθ(t) = θ>v(t)θ is continuous, increasing and fθ(0) = 0.

3.2. Theorem. Let v be a positive-definite function and yn =
√
n(xn − x). Suppose the

following conditions hold:

(3.2.1): The partial derivatives of b̃t exist and are continuous in Rd.

(3.2.2): For each ε > 0 and t ≥ 0,
1

n

[nt]∑
k=1

IE(‖ξnk ‖2I{‖ξn
k
‖>ε
√
n}|F

n
k−1)

IP−→ 0, as n

goes to ∞.
(3.2.3): {yn(0)}n∈N converges in distribution to a random variable η.

(3.2.4): For each t ≥ 0, sup
0≤s≤t

‖ 1

n

[ns]∑
k=1

IE(ξnk ξ
n
k
>|Fnk−1)−v(s)‖ IP−→ 0, as n goes to ∞.

Then, the sequence {yn}n∈N converges in law to the solution y satisfying the following
stochastic differential equation:

(3.1) dy(t) = D(b)(t, x(t))y(t)dt+ dm(t), y(0) = η,

where m is a d-dimensional continuous martingale starting at zero with predictable qua-
dratic variation, at t ≥ 0, given by 〈m〉(t) = v(t).

Proof. Condition (3.2.2) implies the jump asymptotic rarefaction condition in [14, The-
orem 8, Chapter II.5] by Rebolledo, for the sequence of martingales {mn}n∈N, where
mn =

√
nLn. This fact along with condition (3.2.4) imply {mn}n∈N converges in law to

a continuous martingale m starting at zero and having predictable quadratic variation
〈m〉 given by 〈m〉(t) = v(t).

Let bi be the i-th coordinate of b, (i = 1, . . . , d). By the Value Mean Theorem,
there exists θni (t) ∈ Rd between x(t) and xn(t) such that bi(t, xn(t)) − bi(t, x(t)) =
D(bi)(t, θ

n
i (t))(xn(t)−x(t)), where D(bi)(t, a) is the Jacobian matrix of bi(t, ·) at a ∈ Rd.



From (2.4), it is derived

(3.2) yn(t) = yn(0) +

∫ t

0

Dn(u)yn(s) ds+mn(t) +
√
nεn(t),

where Dn(u) = (D(b1)(u, θn1 (u)), . . . ,D(bd)(u, θ
n
d (u)))>.

Consequently,

sup
0≤u≤t

‖yn(u)‖ ≤ ‖yn(0)‖+ C(t)

∫ t

0

sup
0≤u≤s

‖yn(u)‖ds+ sup
0≤u≤t

‖mn(u)‖+
St√
n
,

where Cn(t) = sup0≤u≤t sup‖y‖=1 ‖Dn(u)y‖ and C(t) = supn∈N Cn(t). From (3.2.1) and
Theorem 3.1, {sup0≤u≤t ‖Dn(u)‖}n∈N converges in probability to sup0≤u≤t ‖D(b)(u, x(u))‖
and thus, C(t) <∞.

Hence, from a standard application of the Gronwall inequality, we obtain

(3.3) sup
0≤u≤t

‖yn(u)‖ ≤ (‖yn(0)‖+ sup
0≤u≤t

‖mn(u)‖+ St/
√
n) etC(t) .

In order to prove the convergence in law of {yn}n∈N and that its limit has continuous
trajectories, Theorem 15.5 by Billingsley (1968) is used. Since {yn(0)}n∈N converges
in distribution, Theorem 6.2 in Billingsley (1968) implies this sequence is tight, which
means for each ε > 0, there exists a > 0 such that supn∈N IP(‖yn(0)‖ > a) < ε. Hence

(3.4) lim
a→∞

sup
n∈N

IP(‖yn(0)‖ > a) = 0.

Fix T > 0 and let us define the modulus of continuity ωT as

ωT (z, δ) = sup
|s−t|<δ

‖z(s)− z(t)‖,

where δ > 0 and z : [0, T ]→ Rd is right continuous and left-hand limited.
From (3.2) we have

(3.5) ωT (yn, δ) ≤ δC(T ) sup
0≤t≤T

‖yn(t)‖+ ωT (mn, δ) + 2ST /
√
n.

Since {mn}n∈N converges in distribution tom, it follows from Theorem 15.2 in Billings-
ley [2] that for each ε > 0, limδ→0 supn∈N IP(ωT (mn, δ) > ε) = 0. Hence, from (3.3), for
each ε > 0,

(3.6) lim
δ→0

sup
n∈N

IP(ωT (yn, δ) > ε) = 0.

Conditions (3.4) and (3.6) imply the sequence {Pn}n∈N of probabilities measures, where
Pn is the law of yn, satisfies the hypotheses of Theorem 15.5 in Billingsley [2] and hence,
{Pn}n∈N is tight and every limit point P of this sequence satisfies P (C) = 1, where C
is the space of continuous functions from R+ to Rd. This fact, along Theorem 6.1 in
Billingsley [2], imply that {Pn}n∈N is relatively compact. Let {ynk}k∈N a subsequence
converging in distribution to a process y. Since, by Theorem 3.1, {Dn}n∈N converges
uniformly in probability to D(b)(·, x(·)), {mn}n∈N converges in law to m and {

√
nεn}n∈N

converges uniformly to 0, it follows from (3.2) that y is a solution to (3.1). Finally,
uniqueness of solutions to (3.1) implies {yn}n∈N converges in distribution to this solution
y, which concludes the proof.

Remarks
R1: By Itô’s rule, the unique solution to (3.1) is given by

y(t) = Ψ(t)

(
η +

∫ t

0

Ψ(s)−1 dm(s)

)
, 0 ≤ t ≤ 1,



where Ψ is the unique solution to the matrix differential equation

Ψ′(t) = D(b)(t, x(t))Ψ(t), Ψ(0) = identity matrix.

R2: Condition (3.2.4) holds whenever for each t ≥ 0 and ε > 0,

1

n

[nt]∑
k=1

IE(‖ξnk ‖2I{‖ξn
k
‖>ε
√
n})

IP−→ 0, as n goes to ∞. (Lindeberg condition).

4. Random global discretization error

In this section, we assume the partial derivatives of b̃t exist and are continuous in Rd
and for each n ∈ N, xn(0) = x(0).

4.1. Some definitions. In order to analyze the error produced by the discretization
scheme introduced here, for a fixed T > 0, we define the random global error to be
ênT = ‖xn(T )− x(T )‖ and, for p ≥ 1, the p-mean global error to be enT (p) = IE(‖xn(T )−
x(T )‖p)1/p, whenever IE(‖xn(T )‖p) < ∞, i.e. enT (p) is the usual norm of ênT defined on
Lp(Ω,F, IP), the space of random variables x such that IE(|xp|) <∞. We refer to enT (2)
as the square mean global error. Since, even in simple cases, it is not possible to know
or calculate enT (p), an estimator of this one is obtained by defining

ênT (p,m) =

(
1

m

m∑
i=1

ênT (i)p
)1/p

,

where ênT (1), . . . , ênT (m) are independent random variables with the same distribution
than ênT . Anyway the distribution of ênT needs to be known. Theorem 3.2 allows to
obtain an approximation of this distribution.

It follows from the Strong Law of Large Numbers by Kolmogorov that the estimator
ênT (p,m) is strongly consistent, i.e.

lim
m→∞

ênT (p,m) = enT (p).

Consequently, by carrying out simulations of ênT , an approximation of enT (p) can be
obtained. In particular, the sample variance of ênT can be consistently estimated by means
of

Sn,2m =
1

m

m∑
i=1

(
ênT (i)− 1

m

m∑
i=1

ênT (i)

)2

= ênT (2,m)2 − ênT (1,m)2.

Since (Sn,2m ;m ∈ N) converges IP-a.s. to Var(ênT ) = enT (2)2 − enT (1)2 and Var(ênT ) is
a measure of dispersion, small values of Sn,2m suggest no much simulations of ênT are
necessary to carry out a suitable estimation of the square mean global error.

4.2. Asymptotic distribution of the global error. In this subsection we examine
the asymptotical distribution of ênT . Indeed, let yn be as in Theorem 3.2 and suppose
the hypotheses of this theorem hold. Thus, ênT = (∆tn)1/2‖yn(T )‖ and from Theorem
3.2, ênT is asymptotically distributed as ‖y(T )‖/

√
n, where y is the solution to (3.1) with

y(0) = 0. From Remark R1,

y(T ) =

∫ T

0

B(T, s) dm(s)

where B(t, s) = Ψ(t)Ψ(s)−1. Hence, by taking into account that, for almost sure s ≥ 0,
there exists v′(s), the derivative of v at s, we have

(4.1) IE(‖y(T )‖2) =

∫ T

0

B(T, s)v′(s)B(T, s)> ds



and for large values of n, enT (2), the square mean global error can be approximated by√
IE(‖y(T )‖2)/n, whenever {‖yn(T )‖2}n∈N is uniformly integrable (see Theorem 5.4 in

Billingsley [2] ).

4.3. Hypothesis testing. Fix T > 0. The global error could be used to develop an
asymptotic hypothesis testing to reject or not the validity of the model. This procedure
is performed in the following natural manner: given a significance level α ∈ (0, 1), we
choose tα > 0 such that IP(‖y(T )‖ > tα) = α. Then, we compare the statistic

√
nênT

with tα. If
√
nênT > tα we reject the hypothesis as false, while if

√
nênT ≤ tα, we conclude

that there is no sufficient evidence that the model is incorrect. In this case, although the
null hypothesis need not to be true, no change in the model is recommended.

5. An example
In this section, we apply the results of this work to a known differential equation

coming from the biomathematical literature. A brief description of this model is given
in the first subsection and two probabilistic schemes, which are approximated by the
solution to this equation, are presented. Results of this work are illustrated by means
numerical simulations in Subsection 2.

5.1. The SIS epidemic model. One of the most commonly used differential equations
in the biomathematical literature is that correspondig to the SIS epidemic model. In this
model it is assumed that at time t ≥ 0, x(t) and y(t) represent the densities of infective
and susceptible individuals, respectively, and they satisfy the following system of ordinary
differential equations:

dx
dt

(t) = βx(t)y(t)− γy(t)

dy
dt

(t) = −βx(t)y(t) + γy(t).

Since for each t ≥ 0, x(t)+y(t) = 1, this model is completely determined by the ordinary
differential equation:

(5.1)
dx

dt
(t) = β(1− x(t))x(t)− γx(t).

This test equation, given x(0) = x0 ∈]0, 1[, has the unique solution

x(t) =


x0

x0βt+1
if β = γ

x0(β−γ) e(β−γ)t

β−γ+x0β(e(β−γ)t −1)
if β 6= γ.

Let xn(0) = [nx0]/n. In accordance with our setting, let Zn = An − Bn and
xn = xn(0) + 1

n
Zn, where An and Bn are independent. Two probability distribu-

tions are defined below, in order to Zn takes values in the nonnegative integers. The
first one, which is labeled by distribution D1 is recursively defined as follows. Let
In(tnk−1) = [nx0]+Zn(tnk−1) and Sn(tnk−1) = n−In(tnk−1), conditional on Fnk−1, ∆An(tnk )
and ∆Bn(tnk ) have Binomial distribution with parameters (Sn(tnk−1), βxn(tnk−1)∆tn) and
(In(tnk−1), γ∆tn). I.e., for each a ∈ {0, . . . , Sn(tnk−1)} and b ∈ {0, . . . , In(tnk−1)},

IP(∆An(tnk ) = a|Fnk−1) =

(
Sn(tnk−1)

a

)
pan,k−1(1− pn,k−1)S

n(tnk−1)−a

and

IP(∆Bn(tnk ) = b|Fnk−1) =

(
In(tnk−1)

b

)
qbn(1− qn)I

n(tnk )−b,



where pn,k−1 = βxn(tnk−1)∆tn and qn = γ∆tn. Here, it is suppose n is large enough to
β/n ≤ 1 and γ/n ≤ 1.

Since for each k ∈ N, 0 ≤ ∆An(tnk ),∆Bn(tnk ) ≤ n, IP-a.s., on a time interval [0, T ],
(T > 0), the state space of xn is a finite subset of 1

n
Z+ = {k/n : k ∈ Z+}.

By using notations before, we have

ξnk = ∆An(tnk )−∆Bn(tnk )− {βSn(tnk−1)xn(tnk−1)∆tn − γIn(tnk−1)∆tn}

and consequently,

IE(|ξnk |2|Fnk−1) = β(1− xn(tnk−1))xn(tnk−1)(1− βxn(tnk−1)∆tn) + γxn(tnk−1)(1− γ∆tn).

Since

IE(|ξnk |3|Fnk−1) = Sn(tnk−1)pn,k−1(1− pn,k−1)2 + In(tnk−1)qn(1− qn)2 ≤ β + γ,

{|ξnk |2;n, k ≥ 1} is uniformly integrable and Lindeberg condition stated in R2 holds. In
addition, IE(|ξnk |2|Fnk−1) ≤ 1 and hence conditions (3.1.2) and (3.2.2) of Theorem 3.1 and
3.2, respectively, are satisfied. Consequently, Theorem 3.1 implies for each t ≥ 0,

sup
0≤s≤t

| 1
n

[ns]∑
k=1

IE(|ξnk |2|Fnk−1)− v1(s)| IP−→ 0, as n goes to ∞,

where

(5.2) v1(s) =

∫ s

0

{β(1− x(u)) + γ}x(u) du.

As shown in [7], the distribution of xn has a biomathematical sense, where n denotes
the population size. However, other distributions allow xn is approximated by the solu-
tion to (5.1). Indeed, a second distribution for xn, which has less variability, and we label
by D2, is defined as follows. Assumed that, conditional to Fnk−1, ∆An(tnk ) and ∆Bn(tnk )
have Bernoulli distribution with parameters βSn(tnk−1)xn(tnk−1)∆tn and γIn(tnk−1)∆tn,
respectively. For large enough values of n, these conditional parameters are equal or
less than one and it is easy to see the hypotheses of Theorems 3.1 and 3.2 hold with a
positive-definite function v2 defined by

(5.3) v2(s) =

∫ s

0

{β(1− x(u))(1− β(1− x(u))x(u)) + γ(1− γx(u))}x(u) du

and satisfying, for each t ≥ 0,

sup
0≤s≤t

| 1
n

[ns]∑
k=1

IE(|ξnk |2|Fnk−1)− v2(s)| IP−→ 0, as n goes to ∞,

This latter probabilistic scheme has some advantages regarding the conditional Bino-
mial jumps case, labeled by D1. One of them is that, according to D2 distribution, ∆Zn

takes values in the set {−1, 0, 1} instead of {−n, . . . , 0, . . . , n} as in the D1 distribution.
In addition, from (5.2) and (5.3), for each s ≥ 0,

(5.4) v′1(s)− v′2(s) = {β(1− x(s))x(s)}2 + {γx(s)}2 ≥ 0.

This inequality and (4.1) imply the square mean global error is lesser, for the D2 distri-
bution, than the corresponding error for the D1 distribution.
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Figure 1. Approximations of the equilibrium solution with n = 50,
β = 2 and γ = 1.
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Figure 2. Approximations for the solution and confidence bounds
with n = 7, 000, β = 2 and γ = 1.

5.2. Numerical simulations. In the sequel, some of the concepts presented before are
applied to the solution to (5.1) with the scheme of approximations labeled by D1 and
D2. First, in order to appreciate the difference in variability of the schemes D1 and D2,
the equilibrium solution to (5.1) is considered, i.e. x0 = 1 − γ/β. We simulated both
approximations for T = 10, β = 2, γ = 1 and n = 50; see Figure 1.

Let a(t) = β − γ − 2βx(t) and, v1 and v2 defined by (5.2) and (5.3), respectively.
From (4.1), V ar1(y(t)) and V ar2(y(t)), the variances of y(t) according to the D1 and D2
distribution, respectively, are given by

V ari(y(t)) =

∫ t

0

v′i(u) e2
∫ t
u a(s) ds du,



where v′1(u) = {β(1 − x(u)) + γ}x(u) and v′2(u) = {β(1 − x(u))(1 − β(1 − x(u))x(u)) +
γ(1− γx(u))}x(u).

Let 0 < α < 1 and Φ be the cumulative function of a standard normal distribu-
tion. Since for the D1 approximation scheme and for large n,

√
n(xn(t) − x(t)) has

approximately normal distribution with mean zero and variance V ar1(y(t)), by defining
u±α (t) = x(t)±wα/2

√
V ar1(y(t))/n, we have xn(t) ∈ [u−α (t), u+

α (t)] with an approximate
probability 1−α for large values of n. Analogously, x(t)±wα/2

√
V ar2(y(t))/n allow to

obtain confidence bands for the scheme of approximation based upon the D2 distribution.
In Figure 2, simulations of xn, starting at x0 = 5/8, are carried out according to the
D1 and D2 distributions with n = 7, 000, T = 10, β = 2 and γ = 1. In both cases, the
bounds u−α and u+

α are pictured with dash lines for α = .05, which gives wα/2 = 1.96.

5.3. About the appropriate value of n. In order to choose an appropriate value of
n that provides a good approximation for the global error to a normal distribution, a
goodness-of-fit test is developed for each of the both distributions we are considering.

Let CHI2i (n) = n(ênT )2/V ari(y(T )), (i = 1, 2). The values of the variances are given
by V ar1(y(T )) = 0.5016656 and V ar2(y(T )) = 0.2508328. For large enough values of n,
it is expected CHI2i (n), (i = 1, 2), has an approximate χ2-distribution with one degree of
freedom, whether is D1 or D2, respectively, the assumed distribution for the model. Let
F be the accumulative distribution function corresponding to a χ2-distribution with one
degree of freedom. Consequently, we expect F (CHI2i (n)) has an approximately uniform
distribution for large values of n. We use the goodness-of-fit χ2-test to evaluate this
concordance. For this purpose, we partition the positive part of the real straight line by
m subintervals determined by 0 = t0 < t1 < · · · < tm−1 < tm = ∞, where t0, . . . , tm
have been chosen in such a way that F (tv) − F (tv−1) = 1/m. Then, CHI2i (n) is simu-
lated repeatedly, recording the number of times that CHI2i (n) fall into each subinterval
[tv−1, tv[, for each v = 1, . . . ,m. By choosing m = 10, we have t1 = 0.016, t2 = 0.064,
t3 = 0.148, t4 = 0.275, t5 = 0.455, t6 = 0.708, t7 = 1.074, t8 = 1.642 and t9 = 2.706. In
addition, for m = 10, the expected percentage falling into each subinterval is 10%. A χ2

test is performed for different values of n.
First, we analyzed the approximate normality of CHI21 (n). To this end, CHI21 (n) is

simulated 103 times and the percentages of CHI21 (n) falling into these subintervals are
determined by the values in Table 1.

Table 1. Percentages of observations of CHI22 (n) for the indicated
value of n and p-values of the corresponding χ2 test (β = 2, γ = 1 and
T = 10).

n [t0, t1[ [t1, t2[ [t2, t3[ [t3, t4[ [t4, t5[ [t5, t6[ [t6, t7[ [t7, t8[ [t8, t9[ [t9, t10[ p-value
40 7.3 0.0 15.9 14.7 13.6 0.0 14.4 7.5 12.4 14.2 0.00015575
50 8.3 15.7 0.0 14.5 13.9 10.1 7.5 8.5 10.8 10.7 0.03813725
60 6.1 13.8 13.1 0.0 11.3 10.8 9.4 15.0 9.9 10.6 0.05308202
70 6.8 11.9 11.8 12.9 0.0 9.0 15.8 9.0 11.1 11.7 0.05671326
80 5.8 15.0 11.0 10.4 9.4 9.2 9.3 11.6 8.8 9.5 0.83829960
90 5.6 12.3 10.1 11.2 8.7 9.1 9.7 13.0 11.2 9.1 0.91180700
100 6.7 12.1 9.0 8.8 9.5 10.5 12.8 13.1 7.6 9.9 0.90154290



Observed percentages of the values of CHI22 (n) falling in the corresponding time
intervals, for the seven values of n given in Table 1, are organized in the matrix

A = (Auv) =



7.3 0.0 15.9 14.7 13.6 0.0 14.4 7.5 12.4 14.2
8.3 15.7 0.0 14.5 13.9 10.1 7.5 8.5 10.8 10.7
6.1 13.8 13.1 0.0 11.3 10.8 9.4 15.0 9.9 10.6
6.8 11.9 11.8 12.9 0.0 9.0 15.8 9.0 11.1 11.7
5.8 15.0 11.0 10.4 9.4 9.2 9.3 11.6 8.8 9.5
5.6 12.3 10.1 11.2 8.7 9.1 9.7 13.0 11.2 9.1
6.7 12.1 9.0 8.8 9.5 10.5 12.8 13.1 7.6 9.9


.

For the purpose of carrying out the test, the statistics

χ2
u =

10∑
v=1

(Ouv − Euv)2

Euv
∼ χ2(9), u = 1, . . . , 7,

have been defined, where Ouv = 10 × Auv and Euv = 100, for u = 1, . . . , 7 and v =
1, . . . , 10. For each u = 1, . . . ,, the rejection region is defined as {χ2

u > c}, where c is
chosen in such a way that IP(χ2

u > c) = .05.
We compute the p-values associated with the χ2 test statistic to evaluate the goodness-

of-fit of CHI21 (n); see Table 1. Since for n = 60 the p-value is approximately the
significance level .05, we think, the distribution of CHI21 (60) is well approximated by the
χ2 distribution with one degree of freedom.

Next, the former test is performed for D2 distribution and 9 values of n are considered.
The simulated values of CHI22 (n), along with the corresponding p-values for each n, are
shown in Table 2.

Table 2. Percentages of observations of CHI22 (n) for the indicated
value of n and p-values of the corresponding χ2 test (β = 2, γ = 1 and
T = 10).

n [t0, t1[ [t1, t2[ [t2, t3[ [t3, t4[ [t4, t5[ [t5, t6[ [t6, t7[ [t7, t8[ [t8, t9[ [t9, t10[ p-value
50 9.7 0.0 20.5 0.0 21.3 0.0 14.9 10.3 8.9 14.4 0.000
80 9.0 17.5 0.0 13.8 15.3 0.0 13.9 9.1 12.7 8.7 0.000
100 7.0 14.5 0.0 15.7 15.3 10.8 9.8 6.7 11.0 9.2 0.01612624
110 6.6 14.0 14.5 0.0 13.0 12.1 9.1 7.6 12.4 10.7 0.04275268
115 15.9 0.0 13.8 11.5 10.7 11.3 9.4 7.1 9.8 10.5 0.06137558
120 8.4 14.8 11.7 0.0 12.5 11.5 8.0 13.9 10.1 9.1 0.07337148
150 6.0 13.4 10.5 11.4 11.6 10.9 8.2 5.6 13.1 9.3 0.68034140
200 5.0 9.5 10.2 11.9 10.8 10.8 13.6 9.7 7.4 11.1 0.82372460
500 10.6 7.9 13.7 6.6 11.3 11.2 8.1 11.3 9.1 10.2 0.91595900

It is obtained for n between 110 and 115 the p-value of the corresponding χ2 test is
approximately the significance level .05. Hence, for these values of n, it is reasonable to
assume CHI22 (60) has an approximated χ2 distribution with one degree of freedom.

Although, under D1, xn has more variability than under D2, the conducted simulation
shows that the global error, under D1, attains approximate normality for lower values on
n than under D2.

6. Conclusions
A family of discrete-time stochastic processes is presented and it is proven that these

processes can be approximate by means of the solution to an ODE. Conversely, these
processes may be seen as schemes of approximation for this solution. For this reason,



a stochastic version of the global error associated to these schemes are defined and its
asymptotic distribution is studied. The uniform convergence in probability, on compact
subsets of the positive real numbers, is proven and a central limit theorem for the fluc-
tuations of the stochastic processes is derived. This fact allows us to find confidence
bands, where with a preassigned probability the trajectories of the stochastic processes
are bounded by these bands. Our results are illustrated by an emblematic model coming
from the mathematical literature. Indeed, two discrete time stochastic processes are ap-
proximated by the solution of the differential equation corresponding to the SIS epidemic
model. Simulations of their trajectories are carried out and compared with the solution of
the SIS deterministic model. Moreover, χ2 tests are carried out to evaluate the goodness
of the discretization, in order to obtain approximate normality for the global error.
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