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Minimality over free monoid presentations
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Abstract
As a continues study of the paper [4], in here, we first state and prove
the p-Cockcroft property (or, equivalently, efficiency) for a presentation,
say PE , of the semi-direct product of a free abelian monoid rank two by
a finite cyclic monoid. Then, in a separate section, we present sufficient
conditions on a special case for PE to be minimal whilst it is inefficient.
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1. Preliminaries
Suppose that P = [X; r] is a finite presentation for a monoid M . Then the Euler

characteristic is defined by χ(P) = 1− |X|+ |r|. There also exists an upper bound over
M which is defined by δ(M) = 1 − rkZ(H1(M)) + d(H2(M)). In fact, as depicted in
[2, 3, 4], S. Pride has shown that χ(P) ≥ δ(M). With this background, we define the
monoid presentation P to be efficient if χ(P) = δ(M) and then M is called efficient if
it has an efficient presentation. Moreover a presentation P0 for M is called minimal if
χ(P0) ≤ χ(P), for all presentations P of M . There is also interest in finding inefficient
finitely presented monoids since if we can find a minimal presentation P0 for a monoid
M such that P0 is not efficient then we have χ(P′) ≥ χ(P0) > δ(M), for all presentations
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P′ defining the same monoid M . Thus there is no efficient presentation for M , that is,
M is not an efficient monoid.

Some of the fundamental material (for instance, semi-direct products of monoids,
Squier complex, a trivializer set of the Squier complex, p-Cockcroft property, monoid
pictures) which will be needed to construct the main results of this paper have been
defined and referenced in detail in [1, 2, 3, 4].

The following theorem also proved by S. Pride which we will use it rather than making
more direct computations of homology for monoids. In fact Kilgour and Pride showed
the analogous result for groups in [8] and credit an earlier proof by Epstein ([5]).

1.1. Proposition. Let P be a monoid presentation. Then P is efficient if and only if it
is p-Cockcroft for some prime p.

Let A and K be arbitrary monoids with associated presentations PA = [X ; r] and
PK = [Y ; s], respectively. Also let E = KoθA be the corresponding semi-direct product
of these two monoids. For every x ∈ X and y ∈ Y , choose a word, which we denote by
yθx, on Y such that [yθx] = [y]θ[x] as an element of K. To establish notation, let us
denote the relation yx = x(yθx) on X ∪Y by Tyx and write t for the set of relations Tyx.
Then, for any choice of the words yθx,

(1.1) PE = [Y, X ; s, r, t]

is a standard monoid presentation for the semi-direct product E. Then a trivializer set,
XE, of the Squier complex D(PE) has been defined in [10] by J. Wang as the set

XA ∪XK ∪C1 ∪C2

(see also [4, Lemma 1.5]) where XA and XK are the trivializers of the Squier complexes
D(PA) and D(PK), and also the subsets C1, C2 consist of the generating monoid pictures
PS,x (S ∈ s, x ∈ X) and PR,y (R ∈ r, y ∈ Y ). Hence, by using the set XE, Çevik proved
the following result which will be used to proof of Theorem 2.4 below.

1.2. Theorem. [3, Theorem 3.1] Let p be a prime or 0. Then the presentation PE in
(1.1) is p-Cockcroft if and only if the following conditions hold.

(i) PA and PK are p-Cockcroft,
(ii) expy(S) ≡ 0 (mod p) for all S ∈ s, y ∈ Y ,
(iii) expS(BS,x) ≡ 1 (mod p) for all S ∈ s, x ∈ X,
(iv) expS(Cy,θR) ≡ 0 (mod p) for all S ∈ s, y ∈ Y, R ∈ r,
(v) expTyx

(AR+,y) ≡ expTyx
(AR−,y) (mod p) for all R ∈ r, y ∈ Y and x ∈ X.

This paper has been divided into two main parts. In Section 2, we will investigate the
efficiency (in fact, by Proposition 1.1, p-Cockcroft property for a prime p) for a standard
presentation of the semi-direct product E of a free abelian monoid rank two, say K2,
by a finite cyclic monoid, say A, (see Theorem 2.4 below). Moreover, in Section 3, we
will present the minimality of the monoid E while it has an inefficient presentation (see
Theorem 3.1 below) by considering a special case.

2. Efficiency
2.1. The semi-direct product of K2 by A. By the definition, to define a semi-direct
product of K2 by an arbitrary monoid A, we first need to define an endomorphism of K2.
To do that, let us start with Z+n which is the free abelian monoid rank n, say Kn. Also
let M be an n× n-matrix with non-negative integer entries. Then we get a mapping

ψM : Kn −→ Kn, v 7−→ vM,



where v = (v1, v2, · · · , vn). Actually ψM ∈ End(Kn) (and so ψM1ψM2 = ψM1M2). We
note that if φ ∈ End(Kn) then there exist a matrix M (depending on φ) such that
φ = ψM. By the mapping M 7−→ ψM, we get an isomorphism from Matn(Z+) to the
monoid End(Kn), where

Matn(Z+) = {M : M is an n× n-matrix with non-negative integer entries}

is a monoid under matrix multiplication.
Suppose PKn = [yi (1 ≤ i ≤ n) ; yiyj = yjyi (1 ≤ i < j ≤ n)] is a presentation for

Kn and PA = [x ; r] is a presentation for A. Suppose also that, for each x ∈ x, we
have an endomorphism ψx of K. Since End(Kn) ∼= Matn(Z+), the endomorphism ψx
(x ∈ x) will be ψMx for some matrix Mx. For any positive word W = x1x2 · · ·xn on x,
let MW be the product Mx1Mx2 · · ·Mxn of the matrices Mxi , where 1 ≤ i ≤ n. Then
the mapping x 7−→ ψx (x ∈ x) induces a homomorphism θ : A −→ End(Kn) if and only
if MR+ = MR− , for all R ∈ r.

Now let A be the finite cyclic monoid with a presentation PA = [x ; xk = xl] where
1 ≤ l < k and l, k ∈ Z+. (We note that the fundamental material about finite cyclic
monoids can be found in the book [6]).

2.1. Remark. Recall that the elements of the finite cyclic monoid A represented by
equivalence classes [xi] (0 ≤ i ≤ k). For 0 ≤ i ≤ l, the equivalence class [xi] just consist
of the single element xi. However for i ≥ l, the equivalence class [xi] consist of infinitely
many elements which are defined by [xi] = {xi+q(k−l) ; q = 0, 1, 2, · · · }.

Also let us consider K2 and let us suppose that ψ is the endomorphism ψM of K2,
where

M =

[
α11 α12

α21 α22

]
such that the entries αij ’s are the positive integers given by

[y1] 7−→ [y1
α11y2

α12 ] and [y2] 7−→ [y1
α21y2

α22 ].

Hence, by the previous explanation, the mapping x 7−→ ψx (x ∈ x) induces a well-defined
monoid homomorphism θ : A −→ End(K2) if and only if M[xk] = M[xl], or equivalently,

(2.1) M
k ≡M

l mod d,

where d | (k − l).

2.2. Remark. By considering the elements of finite cyclic monoid A with its presentation
PA as defined in Remark 2.1, there exits an inequality between the non-negative integers
k and l such as 1 ≤ l < k. Thus to define an induces homomorphism θ : A −→ End(K2),
that is, to be able to define K2 oθ A, we must take congruence relation between Mk and
Ml as given in (2.1) with the assumption d | (k − l).

In fact the kth and lth powers of the matrices can be written as follows. Initially, let
us consider the matrices

M
0 =

[
1 0
0 1

]
and M

1 =

[
α11 α12

α21 α22

]
,

and then, for simplicity, let us rewrite them as the matrices[
A0 B0

C0 D0

]
and

[
A1 B1

C1 D1

]
,



respectively. Then we clearly get

M
2 =

[
A1 B1

C1 D1

] [
α11 α12

α21 α22

]
=

[
A1α11 +B1α21 A1α12 +B1α22

C1α11 +D1α21 C1α12 +D1α22

]
=

[
A2 B2

C2 D2

]
, say.

Therefore the kth (k ∈ Z+) power of M will be

M
k =

[
Ak−1 Bk−1

Ck−1 Dk−1

] [
α11 α12

α21 α22

]
=

[
Ak−1α11 +Bk−1α21 Ak−1α12 +Bk−1α22

Ck−1α11 +Dk−1α21 Ck−1α12 +Dk−1α22

]
=

[
Ak Bk
Ck Dk

]
, say.

As a similar idea, the lth (l ∈ Z+) power of M will be

M
l =

[
Al Bl
Cl Dl

]
.

Now we can present the following lemma which gives the importance of Equation
(2.1). In fact this lemma will be needed in the proof of Theorem 2.4 below.

2.3. Lemma. The function θ : A −→ End(K2) defined by [x] 7−→ θ[x] is a well-defined
monoid homomorphism if and only if Ak ≡ Al mod d, Bk ≡ Bl mod d, Ck ≡ Cl mod d
and Dk ≡ Dl mod d, where d | (k − l).

Proof. This follows immediately from Mk ≡Ml mod d. �

Now suppose that (2.1) holds. Then, by Lemma 2.3, we obtain a semi-direct product
E = K2 oθ A and have a presentation

(2.2) PE = [y1, y2, x ; S,R, Ty1x, Ty2x],

as in (1.1), for the monoid E where

S : y1y2 = y2y1, R : xk = xl

Ty1x : y1x = xyα11
1 yα12

2 , Ty2x : y2x = xyα21
1 yα22

2 ,

respectively.
At the rest of this paper, we will assume that Equality (2.1) always holds when we

talk about the semi-direct product E of K2 by A.
We know that the trivializer set of XE of D(PE) consists of the trivializer set XK2 of

D(PK2), XA of D(PA) and the sets C1, C2 (see [4, Lemma 1.5]). In our case, XK2 is
equal to the empty set since, for the relator S, we have ι(S+) 6= ι(S−) (or, equivalently,
τ(S+) 6= τ(S−)) and so, by [7], PK2 is aspherical then p-Cockcroft for any prime p.
Newertheless, the trivializer set XA of the Squier complex D(PA) is defined as in Figure
1 (cf. [3, Lemma 4.4]).

Finally the subsets C1 and C2 contain the generating monoid pictures PS,x (which
contains a non-spherical subpicture BS,x as depicted in [3]), PR,y1 and PR,y2 of the triv-
ializer set XE. These pictures can be presented as in Figure 2-(a) and (b).
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Figure 1. : Generating pictures of finite monogenic monoids

�
���� �
 �� �
�� �


�
�� ??

? ??

- �

-�

yi yi
xl xk

xk xl xk
yiθxkyiθxl

A−1
R+,yi

A−1
R−,yi

Cyi,θR

PR,yi (i = 1, 2)

�
�
�
�

l l
l

l l

CC

��
HH

AASSCC

���
�
�
�

((

hhh

-
-

?
-

-

PPq
-

-

- -
-�

X
Y

Y
X

y1
y2

x
y2

y1

x

y1 y2 x

B−1
S,x

PS,x

��
s

q �

(a) (b)

Figure 2. : In the figure (a), X = yα21
1 yα22

2 and Y = yα11
1 yα12

2

2.2. The main theorem and its proof. For simplicity, let us replace the sum of
coefficients

(2.3)

A0 +A1 + · · ·+Ak−1 as Ak , A0 +A1 + · · ·+Al−1 as Al ,
B0 +B1 + · · ·+Bk−1 as Bk , B0 +B1 + · · ·+Bl−1 as Bl ,
C0 + C1 + · · ·+ Ck−1 as Ck , C0 + C1 + · · ·+ Cl−1 as Cl ,
D0 +D1 + · · ·+Dk−1 as Dk , D0 +D1 + · · ·+Dl−1 as Dl .


Suppose that the positive integer d, defined in (2.1), is equal to a prime p such that

p | (k− l). Therefore the first main theorem of this paper can be given as in the following.

2.4. Theorem. Let p be a prime or 0, and consider the replacements in (2.3). Then the
presentation PE, as in (2.2), for the monoid E = K2 oθ A is p-Cockcroft if and only if

a) detM ≡ 1 mod p,

b) Ak ≡ Dl mod p , Bk ≡ Cl mod p ,
Ck ≡ Bl mod p , Dk ≡ Al mod p .

Proof. The proof will be given by checking the conditions of Theorem 1.2. By a part
of prelimary material of this paper, it is clear that XK2 = ∅. Also, since the trivializer
set XA of the Squier complex D(PA) can be defined as in Figure 1, it is clear that PA
is p-Cockcroft (in fact Cockcroft). Moreover, by considering the picture PS,x in Figure
2-(a), we see that expTy1x(PS,x) = 0 = expTy2x(PS,x) which is clear by expy1(S) = 0 =

expy2(S). Thus the conditions (i) and (ii) of Theorem 1.2 hold. Furthermore in the



picture BS,x, we actually have α11 α12-times positive and α12 α21-times negative S-discs.
Thus

expS(BS,x) = α11 α12 − α12 α21 = detM.

So to condition (iii) be hold, we must have detM ≡ 1 mod p, as required.
Let us consider the generating pictures PR,y1 and PR,y2 as drawn in Figure 2-(b). We

always have expR(PR,y1) = 0 = expR(PR,y2). Recall that to define a semi-direct product
K2 oθ A, we assumed equality (2.1) be held. That means, for each i ∈ {1, 2}, we must
have

yiθ[xk] = yiθ[xl].

But we know that this equality be hold if and only if the conditions in Lemma 2.3 are
satisfied. Besides of that using the equality of the congruence classes gives us that there
will be no Cyi,θR subpictures. In other words, all arcs in that part will be coincides
to each other. So the condition (iv) will be directly held. Let us now consider the
subpictures AR+,yi and AR−,yi which consist of only Tyix discs (1 ≤ i ≤ 2). Since each of
the generating pictures PR,y1 and PR,y2 contains a single subpicture AR+,yi and a single
subpicture A−1

R−,yi
, we must have

expyi(AR+,yi)− expyi(AR−,yi) = expyi(PR,yi).

Now let us take into account the matrices M0,M1, · · · ,Mk−1. By using the endo-
morphism ψM of K defined by [y1] 7−→ [y1

α11y2
α12 ] and [y2] 7−→ [y1

α21y2
α22 ], a simple

calculation shows that the sum of the first row and first column elements in these matrices
gives the exponent sum of the Ty1x discs in the subpicture AR+,y1 . In other words

Ak = expTy1x(AR+,y1).

Similarly, we also get

Bk = expTy2x(AR+,y1),Ck = expTy1x(AR+,y2) and Dk = expTy2x(AR+,y2).

On the other hand, again by considering the matrices M0,M1, · · · ,Ml−1 with the
same idea as above, we obtain

Al = expTy2x(AR−,y2) , Bl = expTy1x(AR−,y2) ,
Cl = expTy2x(AR−,y1) , Dl = expTy1x(AR−,y1) .

Therefore to p-Cockcroft property be hold, we need

expTyix
(AR+,yi) ≡ expTyix

(AR−,yi) mod p,

for all 1 ≤ i ≤ 2.
Conversely let the two conditions a) and b) of the theorem be hold. Then, by using

the trivializer of the Squier complex D(PE), we can easily see that PE is p-Cockcroft
where p is a prime or 0.

Hence the result. �

2.5. Remark. The importance of the assumption p | (k − l) seems much clear in the
proof of Theorem 2.4. Otherwise we could not have obtained Equality (2.1) and so could
not have obtained the exponent sums of the disc Ty1x and Ty2x congruent to zero by
modulo p in the subpictures AR+,yi and AR−,yi , where i ∈ {1, 2}, since these sums are
directly related to the number of k-arcs and l-arcs, respectively.



2.3. Some applications.

2.6. Example. Let p be an odd prime and suppose that

(2.4) M =

[
1 α12

0 1

]
is a matrix representation for the endomorphism of free abelian monoid K2 rank two.
We then always have

M
p+1 ≡M

1 mod p

and, by Lemma 2.3, we also have E = K2 oθ A. Hence we get a presentation

(2.5) PE = [y1, y2, x ; y1y2 = y2y1, x
p+1 = x, y1x = xy1y

α12
2 , y2x = xy2],

as in (2.2), for the monoid E.

Therefore we can give the following result as a consequence of Theorem 2.4.

2.7. Corollary. For all odd prime p, the semi-direct product presentation PE in (2.5)
always p-Cockcroft.

Proof. By considering the subpictures AR+,y1 , AR+,y2 , AR−,y1 and AR−,y2 given in Fig-
ures 3 and 4, the proof will be an easy application of Theorem 2.4. In fact the condition
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a) of Theorem 2.4 always holds since detM = 1. Moreover we have

expTy1x(PR,y1) = expTy1x(AR+,y1)− expTy1x(AR−,y1)
= A0 +A1 + · · ·+Ap −D0 = (p+ 1)− 1 = p,

which is obviously congruent to zero by modulo p, and

expTy2x(PR,y1) = expTy2x(AR+,y1)− expTy2x(AR−,y1)
= B0 +B1 + · · ·+Bp − C0

= α12
p(p+ 1)

2
− 0 = α12

p(p+ 1)

2
≡ 0 mod p.
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Similarly,

expTy1x(PR,y2) = expTy1x(AR+,y2)− expTy1x(AR−,y2)
= C0 + C1 + · · ·+ Cp −B0 ≡ 0 mod p,

expTy2x(PR,y2) = expTy2x(AR+,y2)− expTy2x(AR−,y2)
= D0 +D1 + · · ·+Dp −A0 = (p+ 1)− 1 = p ≡ 0 mod p.

Therefore, for all i ∈ {1, 2}, expTyix
(PR,yi) ≡ 0 mod p. (We note that, by the explanation

as in the proof of Theorem 2.4, we do not have Cyi,θR subpictures in PR,yi). This
completes the proof. �

2.8. Remark. In Example 2.6, if we constructed the matrix M, defined in (2.4), for
even prime p while xp+1 = x then, by Lemma 2.3, we would obtain a semi-direct product
E for just α12 = 1 or α12 = 0 while M3 ≡M mod p. However, for α12 = 1, since

B0 +B1 +B2 6= C0,

by Theorem 2.4, the presentation PE in (2.5) will be inefficient. Here, by Theorem
2.4, one can show that PE is efficient if and only if α12 = 0. But α12 = 0 gives the
homomorphism θ is identitiy and so, K2 oθ A becomes K2 ×A. In fact the efficiency for
a presentation of the direct product of arbitrary two monoids has been investigated in
[3, Theorem 4.1].

A similar case, as in Example 2.6, can be given by using the matrix

M =

[
1 0
α21 1

]
.

Then we obtain a semi-direct product E with a presentation

(2.6) PE = [y1, y2, x ; y1y2 = y2y1, x
p+1 = x, y1x = xy1, y2x = xyα21

1 y2].

Thus we have the following result, as a consequence of Theorem 2.4, which can be
proved quite similarly as in Corollary 2.7.

2.9. Corollary. Let PE, as in (2.6), be a presentation for the semi-direct product of K2

by A. Then, for all odd prime p, PE is p-Cockcroft.

We note that Remark 2.8 is also valid for the above case.

2.10. Example. Suppose that p is a prime and the matrixM is equal to either
[

1 α12

0 1

]
or
[

1 0
α21 1

]
.

Then, by applying a simple calculation as in the previous examples, we get an efficient
semi-direct product presentation for k = 2p+ 1 and l = 1.



2.11. Example. Let p be any prime and let M =

[
1 0
0 α22

]
. Hence we get M2p+1 ≡

M mod p and, by Lemma 2.3, we have a semi-direct product E = K2 oθ A with a
presentation

(2.7) PE = [y1, y2, x ; y1y2 = y2y1, x
2p+1 = x, y1x = xy1, y2x = xyα22

2 ].

As an application of Theorem 2.4, we also have the following corollary.

2.12. Corollary. The presentation PE, as in (2.7), is p-Cockcroft for all prime p, if
α22 = 1 + pt where t > 0.

Proof. In the proof, we will assume α22 = 1 + pt, t > 0, and then just follow the same
way as in the proof of Corollary 2.7. It is clear that detM ≡ 1 (mod p) by the assumption
on α22. So the condition a) in Theorem 2.4 holds. Now let us consider the subpictures
AR+,y1 , AR+,y2 , AR−,y1 and AR−,y2 given in Figure 5. We note that, by fixing these
subpictures into the pictures PR,y1 and PR,y2 given in Figure 2-(b), we obtain similar
PR,yi (1 ≤ i ≤ 2) pictures for this case. Then we have
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Figure 5

expTy1x(AR+,y1)− expTy1x(AR−,y1) = (2p+ 1)− 1 = 2p ≡ 0 mod p,

expTy2x(AR+,y1)− expTy2x(AR−,y1) ≡ 0 mod p and
expTy1x(AR+,y2)− expTy1x(AR−,y2) ≡ 0 mod p.



Furthermore, since

expTy2x(AR+,y2)− expTy2x(AR−,y2) = 1 + α22 + α22
2 + · · ·+ α22

2p − 1

=
α22

2p+1 − 1

α22 − 1
− 1

=
α22

2p+1 − α22

α22 − 1
≡ 0 mod p,

the condition b) of Theorem 2.4 holds.
We should note that M2p+1 ≡ M (mod p) implies α22

2p+1 ≡ α22 (mod p) and this
gives us that τ(AR+,y2) = ι(A−1

R+,y2
), that is, there is no subpicture Cy2,θR in the picture

PR,y2 as expressed in the proof of Theorem 2.4. �

By choosing

M =

[
α11 0
0 1

]
,

for any prime p, we get again M2p+1 ≡M mod p as in Example 2.11, and so we obtain
a presentation

(2.8) PE = [y1, y2, x ; y1y2 = y2y1, x
2p+1 = x, y1x = xyα11

1 , y2x = xy2],

for the semi-direct product E = K2 oθ A. Therefore, by drawing quite similar pictures
as in Figure 5, we have the following consequence of Theorem 2.4.

2.13. Corollary. The presentation PE, as in (2.8), is p-Cockcroft for all prime p, if
α11 = 1 + pt where t > 0 .

2.14. Remark. The examples and corrollories given in this subsection can also be true
for the general case of k = np+ 1 and l = 1 where n is the positive integer.

3. Minimality
3.1. The Main Theorem. Let K2 be the free abelian monoid rank 2 with a pre-
sentation PK2 = [y1, y2 ; y1y2 = y2y1] and let A be the finite cyclic monoid with a
presentation PA = [x ; x2p+1 = x]. Also, suppose that ψ is the endomorphism ψM of K,

where M =

[
α11 α12

α21 α22

]
such that (2.1) holds with the assumption d = p. Then, by

Lemma 2.3, we get a semi-direct product E = K2 oθ A with a presentation

PE = [ y1, y2, x ; y1y2 = y2y1, x
2p+1 = x,

y1x = xyα11
1 yα12

2 , y2x = xyα21
1 yα22

2 ].(3.1)

Let us assume that

α11 = 1, α12 = α21 = 0 and α22 = 1 + pt1 (t1 > 0) or
α22 = 1, α12 = α21 = 0 and α11 = 1 + pt2 (t2 > 0),

where p is a prime. Then, by Corollary 2.12 or Corollary 2.13, the presentation PE in
(3.1) is p-Cockcroft for any prime p and so, by Proposition 1.1, it is efficient.

Suppose that p is an odd prime. Then, in particular, PE is not efficient if

detM = expS(BS,x) ≡ 0 or p− 1 mod p.

Therefore our another main result in this paper is the following.



3.1. Theorem. The presentation PE, as in (3.1), is minimal but inefficient if p is an
odd prime and

either


α11 = p− 1,
α12 = α21 = 0,
α22 = 1,

or


α11 = 1,
α12 = α21 = 0,
α22 = p− 1.

3.2. Preliminaries for the minimality result. Let M be a monoid with a presen-
tation P = [y; s], and let P (l) =

⊕
S∈s

ZMeS be the free left ZM -module with bases

{eS : S ∈ s}. For an atomic monoid picture, say A = (U, S, ε, V ) where U, V ∈
F (y), S ∈ s, ε = ±1, the left evaluation of the positive atomic monoid picture A is
defined by eval(l)(A) = εÛeS ∈ P (l), where Û ∈ M . For any spherical monoid picture
P = A1A2 · · ·An, where each Ai is an atomic picture for i = 1, 2, · · · , n, we then define

eval(l)(P) =
n∑
i=1

eval(l)(Ai) ∈ P (l). Let δP,S be the coefficient of eS in eval(l)(P). So we

can write eval(l)(P) =
∑
S∈s

δP,SeS ∈ P (l). Let I(l)2 (P) be the 2-sided ideal of ZM generated

by the set
{δP,S : P is a spherical monoid picture, S ∈ s}.

Then this ideal is called the second Fox ideal of P.
The fact of the following lemma has also been discussed in [4].

3.2. Lemma. If Y is a trivializer of D(P) then second Fox ideal is generated by the set
{δP,S : P ∈ Y, S ∈ s}.

The concept of the second Fox ideals is needed for a test of minimality for monoid
presentations (see [4]). The group version of this test has been proved by M. Lustig ([9]).

3.3. Theorem. Let Y be a trivializer of D(P) and let ψ be a ring homomorphism from
ZM into the ring of all n× n martices over a comutative ring L with 1, for some n ≥ 1,
and suppose ψ(1) = In×n. If ψ(λP,S) = 0 for all P ∈ Y, S ∈ s then P is minimal.

3.3. Proof of Theorem 3.1. As previously, let K2 denotes the free abelian monoid
rank two with a presentation PK2 = [y1, y2, ; y1y2 = y2y1] and, for an odd prime p, let A
denotes the finite cyclic monoid with a presentation PA = [x, ; x2p+1 = x]. Moreover let
M be the matrix representation of K2 with the assumption M2p+1 ≡ M mod p. Then
we have a semi-direct product E = K2 oθ A with a presentation PE as in (3.1).

Suppose that α11 = 1, α12 = α21 = 0 and α22 = p− 1 in PE .
Let us consider the picture PS,x, as drawn in Figure 2-(a), and also consider the

generating set {y1, y2} of PK2 . For a fixed element yi in this set, let us assume that
∂

∂yi

denotes the Fox derivation with respect to yi, and let
∂E

∂yi
be the composition

ZF ({y1, y2})
∂

∂yi−→ ZF ({y1, y2}) −→ ZE,

where F ({y1, y2}) is the free monoid on {y1, y2}. Furthermore, for the relator S : y1y2 =

y2y1, let us define
∂ES

∂yi
to be ∂ES+

∂yi
− ∂ES−

∂yi
. Thus, for a fixed yi ∈ {y1, y2}, the coefficients

of eTyix
in eval(l)(PS,x) is

∂ES

∂yi
. In fact

∂ES

∂y1
= y2 − 1 and

∂ES

∂y2
= 1− y1.



We then have the following proposition.

3.4. Proposition. The second Fox ideal I(l)2 (PE) of PE is generated by the elements

1− x(eval(l)(BS,x)), 1− xk−1, 1− xk−2, · · · , 1− x,
∂ES

∂y1
,

∂ES

∂y2
,

eval(l)(AR+,y1)− eval
(l)(AR−,y1), eval(l)(AR+,y2)− eval

(l)(AR−,y2).

Proof. Recall that D(PE) has a trivializer XE consisting of the sets XA, XK2 , C1 and
C2 where XA (see Figure 1), XK2 (which is equal to the empty set) are the trivializer
sets of D(PA) and D(PK2), respectively and C1, C2 consist of the pictures PS,x (see
Figure 2-(a) by assuming α11 = 1, α12 = α21 = 0, α22 = p− 1), PR,y1 and PR,y2 (see
Figure 2-(b) by fixing AR+,yi and AR,yi given in Figure 5), respectively. Now we need to
calculate eval(l)(PS,x), eval(l)(PR,y1), eval(l)(PR,y2), and eval(l)(Pmk,l) (1 ≤ m ≤ k − 1).
So we have

eval(l)(PS,x) = δPS,x,SeS + δPS,x,Ty1xeTy1x + δPS,x,Ty2xeTy2x

= (1− x(eval(l)(BS,x)))eS + (
∂ES

∂y1
)eTy1x + (

∂ES

∂y2
)eTy2x

eval(l)(PR,y1) = δPR,y1
,ReR + δPR,y1

,Ty1xeTy1x + δPR,y1
,Ty2xeTy2x

= (1− y1)eR + (1 + x+ x2 + · · ·+ x2p − 1)eTy1x + 0eTy2x

= (1− y1)eR + (eval(l)(AR+,y1)− eval
(l)(AR−,y1))eTy1x .

eval(l)(PR,y2) = δPR,y2
,ReR + δPR,y2

,Ty1xeTy1x + δPR,y2
,Ty2xeTy2x

= (1− y2)eR + 0eTy1x + (1 + x+ xy2 + x2y22 + · · ·+ x2yα22−1
2 +

· · ·+ x2p + x2py2 + x2py22 + · · ·+ x2pyα22
2p

2 )eTy2x

= (1− y2)eR + (eval(l)(AR+,y2)− eval
(l)(AR−,y2))eTy2x .

Also, for each 1 ≤ m ≤ k − 1, eval(l)(Pmk,l) = δPm
k,l
,ReR, where δPm

k,l
,R = 1− xk−m.

Thus, by Lemma 3.2, we get the result as required. �

Let aug : ZE −→ Z, s 7−→ 1 be the augmentation map.

3.5. Lemma. We have the following equalities.

1) aug(eval(l)(BS,x)) = expS(BS,x).
2) i) aug( ∂

ES
∂y1

) = aug(y2 − 1) = expy1(S),

ii) aug( ∂
ES
∂y2

) = aug(1− y1) = expy2(S).

3)
i) aug(eval(l)(AR+,yi)) = expTyix

(AR+,yi),

ii) aug(eval(l)(AR−,yi)) = expTyix
(AR−,yi),

}
for i ∈ {1, 2}.

4) aug(eval(l)(Pmk,l)) = aug(1− xm) = expR(Pmk,l)), 1 ≤ m ≤ k − 1.

Proof. Since similar proofs of 1) and 2) can be found in [4], we will only show the
remaining conditions.

Proof of 3):



We will just consider i) since the proof of ii) is completely same with the first one. We
can write

eval(l)(AR+,yi) = ε1W1eTyix
+ ε2W2eTyix

+ · · ·+ εnWneTyix
,

where, for 1 ≤ j ≤ n, εj = ±1 and each Wj is the certain word on the set {y1, y2}. In the
right hand side of the above equality, each term εjWjeTyix

corresponds to a single Tyix
disc and, in fact, the value of each εj gives the sign of this single Tyix disc. Therefore,
since the Tyix discs can only be occured in the subpictures AR+,yi and AR−,yi , the sum
of each εj (which is equal to the aug(eval(l)(AR+,yi))) must give the exponent sum of
the Tyix discs in the picture PR,yi , as required.

Proof of 4):

For each 1 ≤ m ≤ k − 1, since each Pmk,l contains just two R-discs (one is positive and
the other is negative), we write

eval(l)(Pmk,l) = −W1
meR +W2

meR,

where each Wj
m is the word on x (1 ≤ j ≤ 2). As in the previous case, by considering

the each term in above equalitiy, we get the sign of this single R-disc. Then the sum of
the whole these signs (i.e the augmentation of the evaluation of each picture) must give
the exponent sum of R-discs. That is,

aug(eval(l)(Pmk,l)) = aug(1− xm) = expR(P
m
k,l),

as required. Hence the result. �

We note that detM = expS(BS,x) = p − 1, where p is an odd prime, for the picture
PS,x in Figure 2-(a).

Also let us consider the homomorphism from E onto the finite cyclic monoid Mk,l

generated by x, defined by y1, y2 7−→ 1, x 7−→ x. This induces a ring homomorphism

γ : ZE −→Mk,l[x].

Let η be the composition of γ and the mapping

Mk,l[x] −→ Zp[x], x 7−→ x, n 7−→ n (n ∈ Z),

where n is n (mod p) and p | (k − l).
We note that the restriction of η to the subring ZK2 of ZE is just the augmentation

map augp : ZK2 −→ Zp by modulo p. Therefore the following lemma is valid.

3.6. Lemma. We have the following equalities.

i) augp(eval
(l)(Pmk,l)) ≡ 0 (mod p).

ii) augp(
∂ES
∂y1

) = augp(
∂ES
∂y2

) ≡ 0 (mod p).
iii) augp(eval

(l)(PR,y1)) ≡ 0 (mod p) and augp(eval(l)(PR,y2)) ≡ 0 (mod p).

Proof. By Lemma 3.5-4), for 1 ≤ m ≤ k − 1, since aug(eval(l)(Pmk,l)) = aug(1 − xm) =
expR(Pmk,l)) and since, by Figure 1, expR(Pmk,l)) = 0, it is obvious that the condition i)
holds. Similarly, by Lemma 3.5-2), aug( ∂

ES
∂y1

) = expy1(S) = 0 = expy2(S) = aug( ∂
ES
∂y2

).
Then the condition ii) clearly holds.



Let us consider the generating pictures PR,y1 and PR,y2 , as drawn in Figure 2-(b) (by
fixing the subpictures AR+,yi and AR−,yi given in Figure 5 into them). By Lemma 3.5-3),
we then have

aug(eval(l)(PR,y1)) = aug[eval(l)(AR+,y1)− eval
(l)(AR−,y1)]eTy1x

+aug(1− y1)eR
= expTy1x(AR+,y1)− expTy1x(AR−,y1) + 0

= (2p+ 1)− 1 = 2p

which is congruent to zero by modulo p. Moreover

aug(eval(l)(PR,y2)) = aug[eval(l)(AR+,y2)− eval
(l)(AR−,y2)]eTy2x

+aug(1− y2)eR
= expTy2x(AR+,y2)− expTy2x(AR−,y2) + 0

=
α2p+1
22 − 1

α22 − 1
− 1 =

α2p+1
22 − α22

α22 − 1

=
(p− 1)2p+1 − (p− 1)

(p− 2)

which is congruent to zero by modulo p. Hence the result. �

Thus, by Lemmas 3.5 and 3.6, the image of I(l)2 (PE) under η is the ideal of Zp[x] that
is generated by the element 1−x(expS(BS,x)) = 1− (p− 1)x since expS(BS,x) = detM =
α11α22 − α12α21 = p− 1. In other words,

η(I
(l)
2 (PE)) = < 1− (p− 1)x >= I, say.

3.7. Remark. A simple calculation shows that I 6= Zp[x] since 1 /∈ I.

Let ψ be the composition

ZE η−→ Zp[x]
φ−→ Zp[x]/I,

where φ is the natural epimorphism. Then

ψ(1− x̂(eval(l)(BS,x))) = φη(1− x̂(eval(l)(BS,x)))
= φ(1− x̂(expS(BS,x)) since η is a ring

homomorphism and by Lemma 3.5− 1)

= φ(1− x̂(p− 1)) since expS(BS,x) = p− 1

= 0.

Moreover, by Lemmas 3.5 and 3.6, the images of 1 − xk−1, 1 − xk−2, · · · , 1 − x, ∂ES
∂y1

,
∂ES
∂y2

, eval(l)(AR+,y1)− eval(l)(AR−,y1), eval(l)(AR+,y2)− eval(l)(AR−,y2) under ψ are all
equal to 0 since the related exponent sums are all congruent to zero by modulo p. That
means the images of the generators I(l)2 (PE) are all 0 under ψ. Therefore, by Theorem
3.3 (Pride), PE is minimal and so E = K2 oθ A is a minimal but inefficient monoid.

We note that, by using the same method as in this proof, one can see that E is a
minimal but inefficient monoid if p is an odd prime and

α11 = p− 1, α22 = 1 and α12 = 0 = α21.

These all above progress complete the proof of Theorem 3.1. ♦



3.8. Example. Let p = 3 and M =

[
1 0
0 2

]
. Thus we have M7 ≡ M mod 3 and, by

Lemma 2.3, we have E = K2oθA with a presentation PE = [y1, y2, x ; y1y2 = y2y1, x
7 =

x, y1x = xy1, y2x = xy22 ], as in (3.1), for the monoid E. It is clear that detM = 2 so,
by Theorem 2.4, PE is inefficient and also, by Theorem 3.1, PE is minimal. Moreover,

by taking the matrix M =

[
2 0
0 1

]
, it can also be obtained a minimal but inefficient

presentation.

3.9. Remark. 1) By using same progress as in the proof of Theorem 3.1, one can see
that if detM = 0 then 1 ∈ I, that is,

η(I
(l)
2 (PE)) =< 1 >= I

and so I = Zp[x] (see Remark 3.7). In fact this equality holds for any prime p. That
means the minimality test (Theorem 3.3) used in this paper cannot work for this case.
Therefore it can be remained as a conjecture whether the presentation obtained by this
case is minimal.

2) For p = 2, we have detM = 0 or 1. In the case of detM = 1, we know that PE
is efficient (see Corollary 2.12 or Corollary 2.13) and so we cannot apply Theorem 3.1.
Furthermore if detM = 0 then we need to turn back condition 1).
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