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SEQUENTIALLY HAUSDORFF AND FULL SEQUENTIALLY
HAUSDORFF SPACES

H. FULYA AKIZ AND LOKMAN KOÇAK

Abstract. In this paper, we define the notions of sequentially Hausdorff Space
and full sequentially Hausdorff space. Also we give the relationships between
these notions and Hausdorffness.

1. Introduction

Hausdorffness is one of the most important properties of topological spaces. A
number of topological spaces encountered are Hausdorff. In a Hausdorff space,
sequential limits are unique[1, 3, 4]. Sequences are useful for studying functions,
spaces, and other mathematical structures using the convergence properties of se-
quences.
On the other hand, in topology and related fields of mathematics, a sequential

space is a topological space that satisfies a very feeble axiom of countability. Every
open set in a topological space is also a sequentially open set[5, 6, 7]. A sequential
space is a space in which every sequentially open set is open. Every first countable
space is a sequential space.
The notion of sequentially continuity is wider than the notion of continuity that

is; every continuous function is sequential continuous. In general topology the
notions of sequentially continuity, sequentially compactly and sequentially connect-
edness play important roles. Despite the fact that in first countable spaces these
notions are equal to the notions of continuity, compactly and connectedness, respec-
tively, there is no any generalization for other spaces. The relations between these
notions give us some useful results. They are explained by using sequentially open
and sequentially closed sets[8, 9, 10, 12]. We also refer to [13, 14]. The concept
of G-sequential compactness was introduced in [9]. On the other hand the notion
of G-sequential continuity was investigated in [11] and the definition of sequential
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connectedness was given in [10]. Also in [15], Mucuk and Şahan gave a further
investigation of G-sequential continuity in topological groups.
In this study, we first define the notion of sequentially Hausdorff spaces and

give some related properties and examples. We explain the relationship between
Hausdorfness and sequentially Hausdorfness on topological spaces. We also define
full sequentially Hausdorff spaces and give the relationships with both Hausdorff
spaces and sequentially Hausdorff spaces.

2. Preliminaries

In a Hausdorff space, given any two distinct points, there are disjoint open sets
containing the two points respectively.

Definition 2.1. [1, 2, 3, 4] Let X = (X, τ) be a topological space, (xn) a sequence
in X and x ∈ X. If, for every open neighborhood G of x, there is a natural number
n0 such that xn ∈ G whenever n ≥ n0, then we say that the sequence (xn) converges
to x.

In other words, the sequence (xn) converges to x if (xn) is eventually in each
open neighborhood of x.

Definition 2.2. [13]Let X be a topological space and let A be a subset of X. We
say that A is sequentially open if each sequence in X converging to a point in A
is eventually in A; that is, if whenever (xn) is a sequence in X that converges
to a point in A, then there exists a natural number n0 such that xn belongs to A
whenever n ≥ n0.

Definition 2.3. [13]Let X be a topological space and let F be a subset of X. F is
called sequentially closed if no sequence in F converges to a point not in F .

By the Definition 2.2 and Definition 2.3, it is easy to see that in a topological
space every open set is sequentially open and every closed set is sequentially closed.

Proposition 2.4. [13]Let X be a topological space and A ⊆ X. Then A is sequen-
tially open if and only if X\A is sequentially closed.

Hence we observe the following proposition:

Proposition 2.5. [13]Let X be a topological space. Then the followings are equiv-
alent:

(i) Each sequentially open subset of X is open,
(ii) Each sequentially open subset of X is open,
(iii) Each subset of X which intersects every convergent sequence in a closed set

is closed,
(iv) Each subset of X which intersects every compact metric subspace of X in

a closed set is closed.
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Definition 2.6. [13]Let X be a topological space. Then we say X is a sequential
space or sequential if every sequentially open subset of X is open.

Example 2.7. [13]Let X be a set and τ is the discrete topology on X. Then the
topological space (X, τ) is a sequential space.

Example 2.8. [13]Let X be an uncountable set and τ is the co-countable topology
on X. Then the topological space (X, τ) is not a sequential space.

Proposition 2.9. [13] Each subspace of a sequential space is sequential.

Definition 2.10. [5, 6, 7]Let X and Y be topological spaces, f : X → Y be a func-
tion and x ∈ X. If for each sequence (xn) converging to the point x, the sequence
(f(xn)) converges to f(x), then the function f is called sequentially continuous.

Every continuous function is sequentially continuous.

Definition 2.11. [5, 6, 7]Let f : X → Y be a function. If for each sequentially open
subset A of X, f(A) is sequentially open, then the function f is called a sequentially
open function. In a similarly way if for each sequentially closed subset F of X, f(F )
is sequentially closed, then the function f is called a sequentially closed function.

3. Sequentially Haussdorf Spaces

In this section, we define sequentially Haussdorff spaces and give some properties
by using the notions of sequentially open set and sequentially closed set.

Definition 3.1. A topological space X is called a sequentially Haussdorf space
or sequentially Haussdorf if given any two distinct points x, y in X, there exist
sequentially open subsets G 3 x and H 3 y such that G ∩H = ∅.

Example 3.2. Since every open set is sequentially open, the discrete topology on
a set is sequentially Haussdorf.

Example 3.3. Let X 6= ∅ be a set and τ be the co-countable topology on X. Then
every subset of X is sequentially open. Let x, y ∈ X are distinct points and G = {x}.
Since y ∈ Gc and G ∩Gc = ∅, then (X, τ) is sequentially Hausdorff.

Example 3.4. Let us consider the topology τ = {Ga = (a,∞) |a ∈ R} ∪ {∅} on R
for every a ∈ R. Then the topological space (R, τ) is not sequentially Hausdorff.

Example 3.5. Every first countable space is sequentially Hausdorff.

The notion of sequentially Hausdorff space is wider than the notion of Hausdorff
space. We now give the following proposition:

Proposition 3.6. Every Hausdorff space is sequentially Hausdorff.

Proof: Let (X, τ) be a topological space. Since any two distinct points x, y in
X, there exist open subsets G 3 x and H 3 y such that G ∩H = ∅ and also every
open set is sequentially open, then (X, τ) is sequentially Hausdorff.
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On the contrary, the following example shows us that every sequentially Haus-
dorff space does not have to be a Hausdorff space.

Example 3.7. Let R be the set of all real numbers and τ be the co-countable
topology on R. We know that (X, τ) is a sequentially Haussdorf space but not a
Hausdorff space.

Proposition 3.8. If (X, τ) is sequentially Hausdorff, then sequential limits in X
are unique, that is whenever (xn) converges to x and y, then x = y.

Proof: Suppose that (X, τ) be sequentially Hausdorff. Let (xn) be a sequence
in X converging to some point x and y and let x 6= y. Then there is a disjoint
sequential open sets G and H such that x ∈ G and y ∈ H. Since G is sequentially
open, each sequence (xn) in X converging to x is eventually in G; that is, there
exists a natural number n1 such that xn ∈ G whenever n ≥ n1. On the other hand
since H is sequentially open, each sequence (xn) in X converging to y is eventually
in H; that is, there exists a natural number n2 such that xn ∈ H whenever n ≥ n2.
If we choose n0 as maximum of the numbers n1 and n2, then there exists a natural
number n ≥ n0 we obtain that xn ∈ G ∩ H. But we know that G ∩ H = ∅. So
sequential limits in X are unique.

Proposition 3.9. Let (X, τ) be a sequential space. Then (X, τ) is sequentially
Hausdorff if and only if (X, τ) is Hausdorff.

Proposition 3.10. Let (X, τ) be a sequentially Hausdorff space and A ⊆ X. Then
the subspace topology τA on A is sequentially Hausdorff.

Proof: The proof is clear.

Proposition 3.11. Let (X, τ) and (Y, σ) be topological spaces and let the function
f : (X, τ)→ (Y, σ) be sequentially open, one-to-one, onto and continuous. If (X, τ)
is sequentially Hausdorff then (Y, σ) is sequentially Hausdorff.

Proof: Let (X, τ) be sequentially Hausdorff and distinct points y1, y2 ∈ Y .
Then there exist two distinct points x1, x2 ∈ X such that f(x1) = y1 and f(x2) =
y2, since the function is one-to-one and onto. Hence, there exist sequentially open
subsets x1 ∈ G1 and x2 ∈ G2 such that G1 ∩ G2 = ∅. For the sequences (xn) and
(x′n) converging to x1 and x2 are eventually in G1 and G2, respectively. Since f
is continuous, so it is sequentially continuous. Then we have that the sequences
f(xn) and f(x′n) converge to f(x1) and f(x2), respectively. So they are eventually
in sequential open sets f(G1) and f(G2), respectively. Since f(G1) ∩ f(G2) = ∅,
the proof is completed.

Corollary 3.12. Sequentially Hausdorffness of a space is a topological property.

Proof: Let (X, τ) and (Y, σ) be topological spaces and the function f : (X, τ)→
(Y, σ) be a homeomorphism; that is, f be one-to-one, onto and continuous and the
inverse function f−1 be continuous. The conditions of the Proposition 3.11 are
suffi cient to preserve the structure of sequentially Hausdorfness.
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Definition 3.13. Let X be an infinite set and (X, τ) be a topological space. Let
for any two distinct points x, y ∈ X, there exist sequentially open sets G 3 x and
H 3 y such that G ∩H = ∅. If there exist sequences xn and yn, whose terms are
several and converging to x and y, respectively, such that xn has no term in H and
also yn has no term in G, then (X, τ) is called a full sequentially Hausdorff space.

Proposition 3.14. Every full sequentially Hausdorff space is sequentially Haus-
dorff.

Proof: By the Definition 3.13, for any two distinct points x, y ∈ X, if there
are two distinct sequentially open sets G 3 x and H 3 y such that G∩H = ∅, then
(X, τ) is a sequentially Hausdorff space.

Example 3.15. The discrete topology on a set X is full sequentially Hausdorff.

Example 3.16. Let X 6= ∅ be a set and τ be the co-countable topology on X. Then
(X, τ) is full sequentially Hausdorff.

Example 3.17. Let us consider the usual topology U on R and distinct points x,
y and x < y. Let the distance between the points x and y be α. Then for x and
y, there exists disjoint sequentially open sets (x − α

3 , x +
α
3 ) and (y −

α
3 , y +

α
3 ),

respectively. For a chosen sequence (xn) = (x− 1
n ), it has no term in (y−

α
3 , y+

α
3 ).

Similarly, for a chosen sequence (yn) = (y + 1
n ), it has no term in (x− α

3 , x+
α
3 ).

So the usual topology on R is full sequentially Hausdorff.

Example 3.18. Let us consider Example 3.4. Then the topological space (R, τ) is
not a sequential Hausdorff space.

Proposition 3.19. Let (X, τ) be Hausdorff. If every open subset of X is sequen-
tially closed, then (X, τ) is full sequentially Hausdorff.

Proof: If (X, τ) is Hausdorff, then given any two distinct points x, y in X,
there exists sequentially open subsets G 3 x and H 3 y such that G∩H = ∅. Since
G is sequentially closed, then there exist a sequence (xn) converging to x is in G
exactly. So H does not include any term of (xn). Since H is sequentially closed,
then there exists a sequence (yn) converging to y is in H exactly. So G does not
include any term of (yn).

Corollary 3.20. In a full sequentially Hausdorff space, sequential limits are unique.

Proof: We know that every full sequentially Hausdorff space is sequentially
Hausdorff. By the Proposition 3.8, if (X, τ) is sequentially Hausdorff, then sequen-
tial limits in X are unique.

Proposition 3.21. Let R be the set of real numbers and d(x, y) = |x − y| be the
usual metric on R. Then (R, d) is full sequentially Hausdorff.
Proof: Let x, y ∈ X and d(x, y) = 1. Chosen open discs G = D(x, 13 ) and

H = D(y, 13 ) are sequentially open neighborhoods of x and y, respectively. It is
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easy to see that G ∩H = ∅. Then for the sequence (xn) = (x+ 2
3n ) converging to

x, it has no term in H. Similarly for the sequence (yn) = (y+ 2
3n ) converging to y,

it has no term in G. Then (X, d) is full sequentially Hausdorff.

Proposition 3.22. Let (X, τ) and (Y, σ) be topological spaces and let the function
f : (X, τ)→ (Y, σ) be sequentially open, one-to-one, onto and continuous. If (X, τ)
is full sequential Hausdorff then (Y, σ) is full sequential Hausdorff.

Proof: Chosen distinct points y1, y2 ∈ Y , since the function f is one-to-one
and onto, there exist two distinct points x1, x2 ∈ X such that f(x1) = y1 and
f(x2) = y2. By the proposition 3.11, we know that (Y, σ) is sequentially Hausdorff;
that is, there exist sequentially open subsets x1 ∈ G1 and x2 ∈ G2 such that G1 ∩
G2 = ∅. Since (X, τ) is full sequentially Hausdorff, then the sequences (xn) and (x′n)
converging to x1 and x2 have no element in H and G, respectively. So the sequences
(f(xn)) and (f(x′n)) converging to f(x1) and f(x2) have no element in f(H) and
f(G), respectively, where f(H) 3 f(x1) and f(G) 3 f(x2) are sequentially open.
So (Y, σ) is also full sequentially Hausdorff.

4. Sequentially Compact Spaces

In this section we give a new definition of sequentially compact spaces which are
defined by sequentially open sets.

Definition 4.1. Let X be a topological space and G = {Gi|i ∈ I} be a class of any
sequentially open subsets of X. If

X ⊆
⋃
i∈I

Gi,

then G is called a sequentially open cover of X.

Definition 4.2. Let X be a topological space. If each of sequentially open covers
of X has a finite subcover, then X is called a sequentially compact space.

Proposition 4.3. Every sequentially compact space is compact.

Proof: Let X be a sequentially compact space and the class G = {Gi|i ∈ I}
be an open cover of X. Since every open set is sequentially open, ∀Gi ∈ G is
sequentially open. So the class G is a sequentially open cover of X. Since X is
sequentially compact, G has a finite subcover. Also it means that if G = {Gi|i ∈ I}
be an open cover of X, then G has a a finite subcover. So X is compact.

Example 4.4. Let (X, d) be a metric space where X is unbounded. Then X is
not sequentially compact. Because the class of all sequentially open sets D(a, 1),
for every a ∈ X, is a sequentially open cover of X, but does not have any finite
subcover.

Example 4.5. Every finite set is sequentially compact.
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Example 4.6. Let X be a nonempty set, τ = P (X) be the discrete topology on X
and A be a subset of X. If A is finite, then is sequentially compact. On the other
hand if A is infinite, then is not sequentially compact.

Example 4.7. Let R be the set of all real numbers and U be the usual topology on
R. Then R is not sequentially compact. Because for all natural number n,

G = {Gn|n ∈ N},
such that Gn = (−n, n), is a sequentially open cover of R. But it does not have
any finite subcover.

Proposition 4.8. The finite union of sequentially compact sets in a topological
space is sequentially compact.

Proof: Let (X, τ) be a topological space and G = {Gi|i ∈ I} be a sequentially
open cover of A = A1∪A2∪ ...∪An such that the sets A1, A2, ..., An are sequentially
compact. Then the class G is a sequentially open cover of each Ai for 1 ≤ i ≤ n.
Since Ai is sequentially compact then it has a finite cover Gi. Then G′ = G1 ∪ G2 ∪
... ∪ Gn is a finite subcover of A. So A is sequentially compact.

Proposition 4.9. Let X and Y be topological spaces, f : X → Y be a continuous
function and A be a sequentially compact subset of X. Then the image f(A) of the
set A is sequentially compact in Y .

Proof: Let {Hi|i ∈ I} be a sequentially open cover of f(A). Since the function
f is continuous, then is sequentially continuous. So each f−1(Hi), for i ∈ I, is
sequentially open. Then {f−1(Hi)|i ∈ I} is a sequentially open cover of A. Since
A is sequentially compact in X, this sequentially open cover has a finite subcover

{f−1(Hi1 , f
−1(Hi2 , ..., f

−1(Hin}.
Thus the finite subcover {Hi1 , Hi2 , ...,Hin} of {Hi|i ∈ I} covers f(A). So f(A) is
sequentially compact.

Theorem 4.10. A closed subset of a sequentially compact space is sequentially
compact.

Proof: Let (X, τ) be a sequentially compact space, A be a closed subset of X
and G = {Gi|i ∈ I} be a sequentially open cover of A. Since A is closed, then is
sequentially closed and the class

A = {Gi|i ∈ I} ∪ {Ac}
is a sequentially open cover of X. Since X is sequentially compact, then this
sequentially open cover has a finite subcover

A = {Gi1 , ..., Gin} ∪ {Ac}.
So G′ = {Gi1 , ..., Gin} is a sequentially open cover of A and A is sequentially
compact.
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Corollary 4.11. The arbitrary intersection of both closed and sequentially compact
sets in a topological space is sequentially compact.

Proof: Let X be a topological space and {Ai|i ∈ I} be a set of compact and
sequentially closed sets. For a chosen set Ai0 , since Ai0 is sequentially compact,⋂
i∈I Ai is closed and

⋂
i∈I Ai ⊆ Ai0 , then

⋂
i∈I Ai is sequentially compact.

Theorem 4.12. A sequentially compact subset of a sequentially Hausdorff space is
closed.

Proof: Let (X, τ) be a sequentially Hausdorff space and A be a compact subset
of X. We have to prove that Ac is open. Let x ∈ Ac. Since (X, τ) is a sequentially
Hausdorff space, then for every a ∈ A there are sequentially open neighborhoods
Ga and Ha of a and x respectively such that Ga ∩ Ha = ∅. Then we obtain the
class {Ga|a ∈ A} and it is a sequentially open cover of A. Since A is sequentially
compact, then this sequentially open cover has a finite subcover Ga1 , ..., Gan ; that
is, A ⊆

⋃n
i=1Gai . Then we have Gx ∩ Hx = ∅ such that Gx =

⋃n
i=1Gai and

Hx =
⋂n
i=1Hai . Since A ∩Hx = ∅, then x ∈ Hx ⊆ Ac. So A is closed.

Example 4.13. Let us consider the usual topology U on R. Then (R,U) is se-
quentially Hausdorff. But the set of all rational numbers is not sequentially compact
since it is not closed.

Corollary 4.14. A subset of a sequentially compact and sequentially Hausdorff
space is sequentially compact if and only if it is closed.

Proof: By the Theorem 4.10, a closed subset of a sequentially compact space
is sequentially compact. On the other hand by the Theorem 4.12 a sequentially
compact subset of a sequentially Hausdorff space is closed.

Corollary 4.15. The arbitrary intersection of sequentially compact subsets of a
sequentially Hausdorff space is sequentially compact.

Proof: LetX be sequentially Hausdorffand {Ai|i ∈ I} be a class of sequentially
compact set. By the Theorem 4.12 each subset Ai of X is closed. Then

⋂
i∈I Ai is

closed. So by the Theorem 4.10,
⋂
i∈I Ai is sequentially compact.

Theorem 4.16. A function from a sequentially compact space than a sequentially
Hausdorff space is closed.

Proof: Let X be a sequentially compact space, Y be a sequentially Hausdorff
space and f : X → Y be a function. Let K be closed subset of X. Considering the
Theorem 4.10, since K is closed then is sequentially compact. Since f is continuous,
by the Proposition 4.9 f(K) ⊆ Y is sequentially compact. By the Theorem 4.12
since Y is sequentially Hausdorff, then f(K) is closed. So f is closed.
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