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Abstract 

Uninorms defined on bounded lattices are an important generalization of triangular norms and triangular conorms and 

these operators allow the identity to be any point in a bounded lattice. In this study, uninorms on bounded lattices are 

studied. It is proposed a method to characterize uninorms on bounded lattices having an identity and an annihilator on 

bounded lattices and some basic properties of such uninorms are investigated. Moreover, an example is provided to 

illustrate the feasibility of the proposed method. 
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Öz 

Sınırlı kafesler üzerinde tanımlanan uninormlar, üçgensel normların ve üçgensel konormların önemli bir 

genelleştirmesidir ve bu operatörler, birimin sınırlı kafesin herhangi bir noktasında olmasına olanak sağlarlar. Bu 

çalışmada, sınırlı kafesler üzerinde uninormlar konusu üzerine çalışılmıştır. Sınırlı kafesler üzerinde bir birime ve 

sıfırlayana sahip uninormları karakterize etmek için bir metot önerildi ve bu şekildeki uninormların bazı temel 

özellikleri araştırıldı. Ayrıca, önerilen metotun uygulanabilirliğini göstermek için bir örnek verildi. 

 

Anahtar kelimeler: Birim, Sıfırlayan, Sınırlı Kafes, Uninorm 
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1. Introduction 

 

The concept of uninorm appeared in (Yager and 

Rybalov, 1996) and comprehensively discussed in 

(Fodor et al., 1997) as a particular sort of 

aggregation operators which is a generalization of 

the concepts of triangular norm and triangular 

conorm. Uninorms on real unit interval with the 

identity which is any point in [0,1] such that 

uninorms having an identity 0 are known as 

triangular conorms and uninorms having an 

identity 1 are known as triangular norms. 

Uninorms are attractive due to their structure as a 

particular union of triangular norms and triangular 

conorms that was demonstrated beneficial in 

numerous areas like aggregation, expert systems, 

multicriteria decision support, neural networks, 

fuzzy logic and fuzzy system modeling (Tsadiras 

and Margaritis, 1998; De Baets and Fodor, 1999; 

Yager, 2001; Yager, 2003; Yager and Kreinovich, 

2003; Beliakov et al., 2007; Gabbay and Metcalfe, 

2007). Along with this several application areas, 

these operators were also discussed from the 

merely theoretical aspect. By this means, one of 

the aspect is the characterizations of uninorms 

having an identity (Drewniak and Drygaś, 2002; 

Grabisch et al., 2009; Mesiarová-Zemanková, 

2015; Drygaś et al., 2017). 

 

In (Karaçal and Mesiar, 2015), two methods in 

order to show that a uninorm via the presence of 

triangular norms and triangular conorms in a 

bounded lattice always exist were proposed. Via 

the proposed methods, the least uninorm and the 

greatest uninorm having an identity was obtained. 

In (Çaylı et al., 2016), several additional methods 

to characterize uninorms having an identity in a 

bounded lattice were introduced. Furthermore, a 

uninorm on some bounded lattices which an 

identity g is incomparable with an annihilator 𝑘 

need not always exist was proved. The uninorms 

on bounded lattices were also discussed by several 

researchers in other studies (Bodjanova and 

Kalina, 2014; Çaylı and Karaçal, 2017; Aşıcı, 

2018; Çaylı and Drygaś, 2018). 

 

In this paper, uninorms on bounded lattices are 

discussed. By taking a bounded lattice 𝐿, the 

possible values of uninorms having an annihilator 

𝑘 and an identity 𝑒 from 𝐿 are investigated as well 

as an examination of their basic characteristics are 

provided. Based on these characteristics, it is 

showed that there need not always be existence a 

uninorm on 𝐿 having an identity 𝑒 and an 

annihilator 𝑘 once 𝑘 and 𝑒 are comparable with 

each other (it was proposed the case of 𝑘 and 𝑒 are 

incomparable with each other in (Çaylı et al., 

2016). Also, a method for constructing uninorms 

having an identity 𝑒 and an annihilator 𝑘 on 𝐿 

such that 𝑘 is incomparable with 𝑒 is introduced 

under an additional assumption that all elements 

in 𝐿 different from 𝑒 are comparable with 𝑘.  

 

This paper comprises of three parts. After some 

basic results concerning bounded lattices and 

uninorms on them, in Section 3, some properties 

of monotone operations on a bounded lattice 𝐿 are 

examined for an annihilator 𝑘 and an identity 𝑒, 

where 𝑒, 𝑘 ≠ 0,1. The presence of uninorms on 𝐿 

which an identity 𝑒 is incomparable with an 

annihilator 𝑘 is investigated. Moreover, a 

construction method yielding uninorms on 

bounded lattices having an annihilator and an 

identity such that these elements are incomparable 

each other is proposed under an additional 

constraint. Moreover, an illustrative example is 

added to clearly understand our method. Finally, 

some conclusions are given.  

 

2. Preliminaries 

 

In this part, some main results dealing with 

bounded lattices and uninorms, triangular norms, 

triangular conorms defined on them are given. 

 

A lattice (𝐿, ≤) is bounded once 𝐿 has the top 

element and bottom element represented, 

respectively, 1 and 0, namely, there are two 

elements 1, 0, where 0 ≤ 𝑎 ≤ 1 for all 𝑎 ∈ 𝐿. 

 

Throughout this paper, 𝐿 always represents any 

given general bounded lattice with the top element 

1 and bottom element 0 unless otherwise stated. 

 

Definition 2.1. (Birkhoff, 1967) Let 𝑝, 𝑞 ∈ 𝐿. If 𝑝 

and 𝑞 are incomparable, this is denoted by 𝑝||𝑞.  

The set of elements the fact that are incomparable 

with 𝑘 ∈ 𝐿 is denoted by 𝐼𝑘. So, 𝐼𝑘 = {𝑝 ∈ 𝐿 | 𝑝 ∥
𝑘}. In the similar way, the set of elements the fact 

that are incomparable with 𝑒 ∈ 𝐿 is denoted by 𝐼𝑒. 

So, 𝐼𝑒 = {𝑝 ∈ 𝐿 | 𝑝 ∥ 𝑒}. 
 

Definition 2.2. (Birkhoff, 1967) Let 𝑝, 𝑞 ∈ 𝐿 and 

𝑝 ≤ 𝑞. In that case, it is defined a subinterval 

[𝑝, 𝑞] in 𝐿 as below: 

 

[𝑝, 𝑞] = {𝑎 ∈ 𝐿: 𝑝 ≤ 𝑎 ≤ 𝑞}. 

 

In the same way, it is defined ]𝑝, 𝑞] = {𝑎 ∈ 𝐿 ∶
 𝑝 < 𝑎 ≤ 𝑞}, [𝑝, 𝑞[= {𝑎 ∈ 𝐿 ∶  𝑝 ≤ 𝑎 < 𝑞} and 

]𝑝, 𝑞[= {𝑎 ∈ 𝐿 ∶  𝑝 < 𝑎 < 𝑞}.  
 

Definition 2.3. (Çaylı et al., 2016) Define a 

function 𝐹: 𝐿2 → 𝐿. 
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i) A fixed element 𝑒 ∈ 𝐿 is called an identity 

(sometimes called neutral element) of 𝐹 provided 

that 𝐹(𝑝, 𝑒) = 𝐹(𝑒, 𝑝) = 𝑝 for all 𝑝 ∈ 𝐿. 

 

ii) A fixed element 𝑘 ∈ 𝐿 is called an annihilator 

(sometimes called absorbing element or zero 

element) of 𝐹 provided that 𝐹(𝑝, 𝑘) = 𝐹(𝑘, 𝑝) =
𝑘 for all 𝑝 ∈ 𝐿.  

 

Definition 2.4. (Karacal and Mesiar, 2015; Çaylı 

et al., 2016) If an operation 𝑈 on 𝐿 having an 

identity is associative, commutative, monotone, 

then it is called a uninorm on 𝐿 (briefly uninorm, 

where 𝐿 is fixed).  

 

Denote the set of all uninorms having an identity 

𝑒 in 𝐿 by 𝒫(𝑒). 
 

Definition 2.5. (Karacal and Mesiar, 2015; Çaylı 

et al., 2016) If an operation 𝑇 on L having an 

identity 1 is associative, commutative, monotone, 

then it is called a triangular norm (t-norm, briefly) 

on 𝐿.  

 

Definition 2.6. (Aşıcı and Karaçal, 2016; Aşıcı, 

2017; Çaylı, 2018a,b) If an operation 𝑆 on 𝐿 

having an identity 0 is associative, commutative, 

monotone, then it is called a triangular conorm (t-

conorm, briefly) on 𝐿.  

 

Example 2.7. The least triangular norm 𝑇𝑊 and 

the greatest triangular norm 𝑇∧ on 𝐿 are defined 

as, respectively: 

 

𝑇𝑊(𝑝, 𝑞) = {
𝑞 𝑖𝑓 𝑝 = 1,
𝑝 𝑖𝑓 𝑞 = 1,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

𝑇∧(𝑝, 𝑞) = inf {𝑝, 𝑞}. 
 

The least triangular conorm 𝑆∨ and the greatest 

triangular conorm 𝑆𝑊 on 𝐿 are defined as, 

respectively: 

 

𝑆∨(𝑝, 𝑞) = sup {𝑝, 𝑞}. 
 

𝑆𝑊(𝑝, 𝑞) = {
𝑞 𝑖𝑓 𝑝 = 0,
𝑝 𝑖𝑓 𝑞 = 0,
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

 

The undermentioned sets is represented by 𝐷𝑘 and 

𝐷𝑒, respectively: for 𝑘, 𝑒 ∈ 𝐿\{0,1} 
 

𝐷𝑘 = [0, 𝑘] × [𝑘, 1] ∪ [𝑘, 1] × [0, 𝑘] 
 

and 

𝐷𝑒 = [0, 𝑒] × [𝑒, 1] ∪ [𝑒, 1] × [0, 𝑒]. 
 

Denote the set of all uninorms on 𝐿 by 𝒫 and 

define the order on 𝒫 in the undermentioned: For 

the uninorms 𝑈1,  𝑈2 ∈ 𝒫 

 

𝑈1 ≤  𝑈2 ⟺  𝑈1(𝑎, 𝑏) ≤  𝑈2(𝑎, 𝑏) for all 𝑎, 𝑏 ∈
𝐿. 

It is obvious that 𝒫 is a partially ordered set which 

has the top element and bottom element, 

respectively, 𝑆𝑊 and 𝑇𝑊. 

 

In the same way, it can be clearly seen that each 

𝒫(𝑒) is a partially ordered set, too. 

 

Proposition 2.8. (Karacal and Mesiar, 2015) 

Given a uninorm 𝑈: 𝐿2 → 𝐿 for an identity 𝑒 ∈ 𝐿 

such that 𝑒 ≠ 0,1. In that case, it is obtained that 

 

i) The restriction of 𝑈 on [0, 𝑒] is a triangular 

norm. 

 

ii) The restriction of 𝑈 on [𝑒, 1] is a triangular 

conorm. 

 

Proposition 2.9. (Karacal and Mesiar, 2015) 

Given a uninorm 𝑈: 𝐿2 → 𝐿 for an identity 𝑒 ∈ 𝐿 

such that 𝑒 ≠ 0,1. In that case, it is obtained the 

undermentioned properties: 

 

i) inf {𝑝, 𝑞} ≤ 𝑈(𝑝, 𝑞)  ≤ sup {𝑝, 𝑞} for all 

(𝑝, 𝑞) ∈ 𝐷𝑒. 

 

ii) 𝑈(𝑝, 𝑞)  ≤ 𝑝 for all 𝑝 ∈ 𝐿 and 𝑞 ∈ [0, 𝑒]. 
 

iii) 𝑈(𝑝, 𝑞)  ≤ 𝑞 for all 𝑝 ∈ [0, 𝑒] and 𝑞 ∈ 𝐿. 

 

iv) 𝑝 ≤ 𝑈(𝑝, 𝑞) for all 𝑝 ∈ 𝐿 and 𝑞 ∈ [𝑒, 1]. 
 

v) 𝑞 ≤ 𝑈(𝑝, 𝑞)for all 𝑝 ∈ [𝑒, 1] and 𝑞 ∈ 𝐿.  

 

3. Uninorms having an annihilator 𝒌 and an 

identity 𝒆 

 

In this part, taking a bounded lattice 𝐿, some 

properties of monotone operations on 𝐿 having an 

annihilator 𝑘 and an identity 𝑒 in 𝐿 such that 

𝑒, 𝑘 ≠ 0,1 are researched. Furthermore, a 

construction method for uninorms on 𝐿 having an 

annihilator 𝑘 and an identity 𝑒 in 𝐿 is proposed 

where 𝑒 ≠ 0,1, 𝑘||𝑒 and all elements in 𝐿 

different from 𝑒 are comparable with 𝑘. 

 

The next Proposition 3.1 and Proposition 3.2 can 

be found in (Drygaś, 2004; Karaçal and Mesiar, 

2015). 
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Proposition 3.1. Consider the elements 𝑒, 𝑘 ∈ 𝐿 

such that 𝑒, 𝑘 ≠ 0,1 and 𝑘 ≤ 𝑒. If F is a monotone 

operation on 𝐿 having an annihilator 𝑘 and an 

identity 𝑒, in that case, it is obtained the 

undermentioned properties: 

 

i) 𝑘 ≤ 𝐹(𝑝, 𝑞) ≤ inf {𝑝, 𝑞} for all (𝑝, 𝑞) ∈ [𝑘, 𝑒]2. 
 

ii) 𝑝 ≤ 𝐹(𝑝, 𝑞) ≤ 𝑞 for all  (𝑝, 𝑞) ∈ [𝑘, 𝑒] × [𝑒, 1]. 
 

iii) 𝑞 ≤ 𝐹(𝑝, 𝑞) ≤ 𝑝 for all  (𝑝, 𝑞) ∈ [𝑒, 1] ×
[𝑘, 𝑒]. 
 

iv) 𝑘 ≤ 𝐹(𝑝, 𝑞) ≤ 𝑞 for all (𝑝, 𝑞) ∈ [𝑘, 𝑒] × 𝐿. 

 

v) 𝑘 ≤ 𝐹(𝑝, 𝑞) ≤ 𝑝 for all (𝑝, 𝑞) ∈ 𝐿 × [𝑘, 𝑒]. 
 

vi) 𝑞 ≤ 𝐹(𝑝, 𝑞) for all (𝑝, 𝑞) ∈ [𝑒, 1] × 𝐿. 

 

vii) 𝑝 ≤ 𝐹(𝑝, 𝑞) for all (𝑝, 𝑞) ∈ 𝐿 × [𝑒, 1]. 
 

Proposition 3.2. Consider the elements 𝑒, 𝑘 ∈ 𝐿 

such that 𝑒, 𝑘 ≠ 0,1 and 𝑒 ≤ 𝑘. If 𝐹 is a monotone 

operation on 𝐿 having an annihilator 𝑘 and an 

identity 𝑒, in that case it is obtained the 

undermentioned properties: 

 

i) 𝑝 ≤ 𝐹(𝑝, 𝑞) ≤ 𝑞 for all (𝑝, 𝑞) ∈ [0, 𝑒] × [𝑒, 𝑘]. 
 

ii) 𝑞 ≤ 𝐹(𝑝, 𝑞) ≤ 𝑝 for all (𝑝, 𝑞) ∈ [𝑒, 𝑘] × [0, 𝑒]. 
 

iii) sup {𝑝, 𝑞} ≤ 𝐹(𝑝, 𝑞) ≤ 𝑘 for all (𝑝, 𝑞) ∈
[𝑒, 𝑘]2. 
 

iv) 𝐹(𝑝, 𝑞) ≤ 𝑞 for all (𝑝, 𝑞) ∈ [0, 𝑒] × 𝐿. 

 

v) 𝐹(𝑝, 𝑞) ≤ 𝑝 for all (𝑝, 𝑞) ∈ 𝐿 × [0, 𝑒]. 
 

vi) 𝑞 ≤ 𝐹(𝑝, 𝑞) ≤ 𝑘 for all (𝑝, 𝑞) ∈ [𝑒, 𝑘] × 𝐿. 
 

vii) 𝑝 ≤ 𝐹(𝑝, 𝑞) ≤ 𝑘 for all (𝑝, 𝑞) ∈ 𝐿 × [𝑒, 𝑘]. 
 

Proposition 3.3. Given the elements 𝑒, 𝑘 ∈ 𝐿 such 

that 𝑒, 𝑘 ≠ 0,1 and 𝑘 ≤ 𝑒. If there is an element 𝑚 

in 𝐿 which 𝑚 ∈ [0, 𝑘[, in that case there is no 

monotone operation on 𝐿 having an annihilator 𝑘 

and an identity 𝑒. 

 

Proof. Given an element 𝑚 in 𝐿 such that 

𝑚 ∈ [0, 𝑘[. Suppose that there is a monotone 

operation 𝐹 on 𝐿 having an annihilator 𝑘 and an 

identity 𝑒. Since 𝑘 ≤ 𝑒 and the fact that 𝑘 is an 

annihilator, it is obtained 𝑘 = 𝐹(𝑚, 𝑘) ≤
𝐹(𝑚, 𝑒) ≤ 𝐹(𝑘, 𝑒) = 𝑘. So, 𝐹(𝑚, 𝑒) = 𝑘. Due to 

the fact that 𝑒 is an identity, then 𝐹(𝑚, 𝑒) = 𝑚. 

Therefore, it is obtained 𝑘 = 𝑚. This is a 

contradiction. Therefore, there is no monotone 

operation 𝐹 on 𝐿 having an annihilator 𝑘 and an 

identity 𝑒 once there is an element 𝑚 in 𝐿 which 

𝑚 ∈ [0, 𝑘[. 
 

Proposition 3.4. Given the elements 𝑒, 𝑘 ∈ 𝐿 such 

that 𝑒, 𝑘 ≠ 0,1 and 𝑒 ≤ 𝑘. If there is an element 𝑚 

in 𝐿 which 𝑚 ∈]𝑘, 1], in that case there is no 

monotone operation on 𝐿 having an annihilator 𝑘 

and an identity 𝑒. 

 

It is clearly proved in the same way to Proposition 

3.3. 

 

Remark 3.5. Consider the elements 𝑒, 𝑘 ∈ 𝐿 such 

that 𝑒, 𝑘 ≠ 0,1. 

 

i) If 𝑘 ≤ 𝑒 and there is an element 𝑙 in 𝐿 which 

𝑙 ∈ [0, 𝑘[, there does not exist any uninorm having 

an annihilator 𝑘 and an identity 𝑒 in 𝐿 due to 

Proposition 3.3.. 

 

ii) If 𝑒 ≤ 𝑘 and there is an element 𝑙 in 𝐿 which 

𝑙 ∈]𝑘, 1], there does not exist any uninorm having 

an annihilator 𝑘 and an identity 𝑒 in 𝐿 due to 

Proposition 3.4.. 

 

iii) If 𝑒 ∈ 𝐼𝑘, it can be seen that there does not 

exist any uninorm on 𝐿 which contains the 

sublattices that are isomorphic to the sublattices 

depicted in (Çaylı et al., 2016) having an 

annihilator 𝑘 and an identity 𝑒 in 𝐿. 

 

Let us introduce these sublattices that is given in 

Theorem 3.6 and Theorem 3.7 proposed by (Çaylı 

et al., 2016). 

 

Theorem 3.6. (Çaylı et al., 2016) If 𝐿 comprises a 

sublattice which is isomorphic to the sublattice 

depicted with the given order in Figure 1, in the 

present case, there does not exist any uninorm 

having an annihilator 𝑘 and an identity 𝑒 in 𝐿. 

 

 

 

 
 

Figure 1. The lattice 𝐿 
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Theorem 3.7. (Çaylı et al., 2016) If 𝐿 comprises a 

sublattice which is isomorphic to the sublattice 

depicted with the given order in Figure 2 in the 

present case, there does not exist any uninorm 

having an annihilator 𝑘 and an identity 𝑒 in 𝐿. 

 

 
 

Figure 2. The lattice 𝐿 

 

Remark 3.8. Consider the elements 𝑒, 𝑘 ∈ 𝐿 such 

that 𝑒, 𝑘 ≠ 0,1 and 𝑘 ∈ 𝐼𝑒. Note that there are 

some elements different from 𝑒 which are 

incomparable with the annihilator 𝑘 in bounded 

lattices depicted by Figure 1 and Figure 2. A 

natural question occurs: If all elements in 𝐿 

different from 𝑒 is comparable with 𝑘, is there 

always a uninorm 𝑈 on 𝐿 having an annihilator 𝑘 

and an identity 𝑒? 

 

It can be seen that the below theorem provides a 

positive answer to the above question. 

 

Theorem 3.9. Take the elements 𝑒, 𝑘 ∈ 𝐿𝑓 such 

that 𝑒, 𝑘 ≠ 0,1 and 𝑘 ∈ 𝐼𝑒. If all elements in 𝐿 

different from 𝑒 are comparable with 𝑘, in the 

present case, the undermentioned function 

𝑈𝑙 ∶ 𝐿
2 → 𝐿 

 

𝑈𝑙(𝑝, 𝑞) =

{
 
 

 
 
inf {𝑝, 𝑞} 𝑖𝑓 𝑝, 𝑞 ∈  [0, 𝑘[
sup {𝑝, 𝑞} 𝑖𝑓 𝑝, 𝑞 ∈ ]𝑘, 1]
𝑘 𝑖𝑓 𝑝, 𝑞 ∈ 𝐷𝑘
𝑝 𝑖𝑓 𝑝 ∈  𝐿 and 𝑞 =  𝑒
𝑞 𝑖𝑓 𝑝 =  𝑒 and 𝑞 ∈  𝐿

 (1) 

 

is a uninorm on 𝐿 having an annihilator 𝑘 and an 

identity 𝑒. 

 

Proof. i) Monotonicity: It is demonstrated the fact 

that if 𝑝 ≤ 𝑞 then 𝑈𝑙(𝑝, 𝑡) ≤ 𝑈𝑙(𝑞, 𝑡) for all 𝑡 ∈ 𝐿. 

If 𝑡 = 𝑒, in that case it is obtained 𝑈𝑙(𝑝, 𝑡) =
𝑈𝑙(𝑝, 𝑒) = 𝑝 ≤ 𝑞 = 𝑈𝑙(𝑞, 𝑒) = 𝑈𝑙(𝑞, 𝑡) for all 

𝑝, 𝑞 ∈ 𝐿. 

 

If 𝑡 = 𝑘, in that case it is obtained 𝑈𝑙(𝑝, 𝑡) =
𝑈𝑙(𝑝, 𝑘) = 𝑘 = 𝑈𝑙(𝑞, 𝑘) = 𝑈𝑙(𝑞, 𝑡) for all 

𝑝, 𝑞 ∈ 𝐿. 

So, it is examined other all possible cases. 

 

Case 1.. Let 𝑝 < 𝑘. In the present case, 

Case 1.1.. 𝑞 < 𝑘, 

Case 1.1.1.. 𝑡 < 𝑘, 

𝑈𝑙(𝑝, 𝑡) = inf {𝑝, 𝑡} ≤ inf {𝑞, 𝑡} = 𝑈𝑙(𝑞, 𝑡) 
Case 1.1.2.. 𝑡 > 𝑘, 

𝑈𝑙(𝑝, 𝑡) = 𝑘 = 𝑈𝑙(𝑞, 𝑡) 
Case 1.2.. 𝑞 > 𝑘, 

Case 1.2.1.. 𝑡 < 𝑘 

𝑈𝑙(𝑝, 𝑡) = inf {𝑝, 𝑡} ≤ 𝑘 = 𝑈𝑙(𝑞, 𝑡) 
Case 1.2.2.. 𝑡 > 𝑘, 

𝑈𝑙(𝑝, 𝑡) = 𝑘 ≤ sup {𝑞, 𝑡} = 𝑈𝑙(𝑞, 𝑡) 
Case 1.3.. 𝑞 =  𝑒, 

Case 1.3.1.. 𝑡 < 𝑘 

𝑈𝑙(𝑝, 𝑡) = inf {𝑝, 𝑡} ≤ 𝑡 = 𝑈𝑙(𝑞, 𝑡) 
Case 1.3.2.. 𝑡 > 𝑘, 

𝑈𝑙(𝑝, 𝑡) = 𝑘 ≤ 𝑡 = 𝑈𝑙(𝑞, 𝑡) 
Case 1.4.. 𝑞 =  𝑘 

Case 1.4.1.. 𝑡 < 𝑘, 

𝑈𝑙(𝑝, 𝑡) = inf {𝑝, 𝑡} ≤ 𝑘 = 𝑈𝑙(𝑞, 𝑡)  
Case 1.4.2.. 𝑡 > 𝑘, 

𝑈𝑙(𝑝, 𝑡) = 𝑘 = 𝑈𝑙(𝑞, 𝑡)  
 

Case 2.. Let 𝑝 > 𝑘. In the present case, 𝑞 > 𝑘. 
Case 2.1.. 𝑡 < 𝑘, 

𝑈𝑙(𝑝, 𝑡) = 𝑘 = 𝑈𝑙(𝑞, 𝑡) 
Case 2.2.. 𝑡 > 𝑘, 

𝑈𝑙(𝑝, 𝑡) = sup {𝑝, 𝑡} ≤ sup {𝑞, 𝑡} = 𝑈𝑙(𝑞, 𝑡) 
 

Case 3.. Let = 𝑒. In the present case, 

Case 3.1.. 𝑞 > 𝑘, 

Case 3.1.1.. 𝑡 < 𝑘, 

𝑈𝑙(𝑝, 𝑡) = 𝑡 ≤ 𝑘 = 𝑈𝑙(𝑞, 𝑡) 
Case 3.1.2.. 𝑡 > 𝑘, 

𝑈𝑙(𝑝, 𝑡) = 𝑡 ≤ sup {𝑞, 𝑡} = 𝑈𝑙(𝑞, 𝑡) 
Case 3.2.. 𝑞 = 𝑒, then for all 𝑡 ∈ 𝐿, it is obtained 

𝑈𝑙(𝑝, 𝑡) = 𝑈𝑙(𝑒, 𝑡) = 𝑡 = 𝑈𝑙(𝑒, 𝑡) = 𝑈𝑙(𝑞, 𝑡) 
 

Case 4.. Let = 𝑘. In the present case, 

Case 4.1.. 𝑞 > 𝑘, 

Case 4.1.1.. 𝑡 < 𝑘, 

𝑈𝑙(𝑝, 𝑡) = 𝑘 = 𝑈𝑙(𝑞, 𝑡) 
Case 4.1.2.. 𝑡 > 𝑘, 

𝑈𝑙(𝑝, 𝑡) = 𝑘 ≤ sup {𝑞, 𝑡} = 𝑈𝑙(𝑞, 𝑡) 
Case 4.2.. 𝑞 = 𝑘, then it is obtained 𝑡 ∈ 𝐿. 
𝑈𝑙(𝑝, 𝑡) = 𝑈𝑙(𝑘, 𝑡) = 𝑘 = 𝑈𝑙(𝑘, 𝑡) = 𝑈𝑙(𝑞, 𝑡) 
 

ii) Associativity: For all 𝑝, 𝑞, 𝑡 ∈ 𝐿, it is proved 

𝑈𝑙(𝑝, 𝑈𝑙  (𝑞, 𝑡)) = 𝑈𝑙(𝑈𝑙(𝑝, 𝑞), 𝑡). 
If the at least one of the elements 𝑝, 𝑞, 𝑡 is equal to 

𝑘, then it is obtained 𝑈𝑙(𝑝, 𝑈𝑙  (𝑞, 𝑡)) =
𝑈𝑙(𝑈𝑙(𝑝, 𝑞), 𝑡). 
If the at least one of the elements 𝑝, 𝑞, 𝑡 is equal to 

𝑒, then it is obtained 𝑈𝑙(𝑝, 𝑈𝑙  (𝑞, 𝑡)) =
𝑈𝑙(𝑈𝑙(𝑝, 𝑞), 𝑡). 
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So, it is examined the case that not the elements 

𝑝, 𝑞, 𝑡 is equal to 𝑘 and 𝑒. 

 

Case 1.. Let 𝑝 < 𝑘. In the present case, 

Case 1.1.. 𝑞 < 𝑘, 
Case 1.1.1.. 𝑡 < 𝑘, 

𝑈𝑙(𝑝, 𝑈𝑙(𝑞, 𝑡)) = 𝑈𝑙(𝑝, inf {𝑞, 𝑡}) = inf{𝑝, 𝑞, 𝑡}

= 𝑈𝑙(inf {𝑝, 𝑞}, 𝑡)
= 𝑈𝑙(𝑈𝑙(𝑝, 𝑞), 𝑡) 

Case 1.1.2.. 𝑡 > 𝑘, 

𝑈𝑙(𝑝, 𝑈𝑙(𝑞, 𝑡)) = 𝑈𝑙(𝑝, 𝑘) = 𝑘 = 𝑈𝑙(inf {𝑝, 𝑞}, 𝑡)
= 𝑈𝑙(𝑈𝑙(𝑝, 𝑞), 𝑡) 

Case 1.2.. q  > 𝑘, 

Case 1.2.1.. 𝑡 < 𝑘, 

𝑈𝑙(𝑝, 𝑈𝑙(𝑞, 𝑡)) = 𝑈𝑙(𝑝, 𝑘) = 𝑘 = 𝑈𝑙(𝑘, 𝑡)

= 𝑈𝑙(𝑈𝑙(𝑝, 𝑞), 𝑡) 
Case 1.2.2.. 𝑡  > 𝑘, 

𝑈𝑙(𝑝, 𝑈𝑙(𝑞, 𝑡)) = 𝑈𝑙(𝑝, sup {𝑞, 𝑡}) = 𝑘 = 𝑈𝑙(𝑘, 𝑡)

= 𝑈𝑙(𝑈𝑙(𝑝, 𝑞), 𝑡) 
 

Case 2.. Let 𝑝  > 𝑘. In the present case, 

Case 2.1.. 𝑞 < 𝑘 

Case 2.1.1.. 𝑡 < 𝑘 

𝑈𝑙(𝑝, 𝑈𝑙(𝑞, 𝑡)) = 𝑈𝑙(𝑝, inf {𝑞, 𝑡}) = 𝑘 = 𝑈𝑙(𝑘, 𝑡)

= 𝑈𝑙(𝑈𝑙(𝑝, 𝑞), 𝑡) 
Case 2.1.2.. 𝑡  > 𝑘, 

𝑈𝑙(𝑝, 𝑈𝑙(𝑞, 𝑡)) = 𝑈𝑙(𝑝, 𝑘) = 𝑘 = 𝑈𝑙(𝑘, 𝑡)

= 𝑈𝑙(𝑈𝑙(𝑝, 𝑞), 𝑡) 
Case 2.2.. 𝑞 > 𝑘, 

Case 2.2.1.. 𝑡 < 𝑘, 

𝑈𝑙(𝑝, 𝑈𝑙(𝑞, 𝑡)) = 𝑈𝑙(𝑝, 𝑘) = 𝑘 = 𝑈𝑙(sup {𝑝, 𝑞}, 𝑡)

= 𝑈𝑙(𝑈𝑙(𝑝, 𝑞), 𝑡) 
Case 2.2.2.. 𝑡  > 𝑘, 

𝑈𝑙(𝑝, 𝑈𝑙(𝑞, 𝑡)) = 𝑈𝑙(𝑝, sup {𝑞, 𝑡}) = sup {𝑝, 𝑞, 𝑡}

= 𝑈𝑙(sup {𝑝, 𝑞}, 𝑡)
= 𝑈𝑙(𝑈𝑙(𝑝, 𝑞), 𝑡) 

 

It is clear to prove that the commutativity holds, 𝑘 

is an annihilator and 𝑒 is a an identity of 𝑈𝑙. So, 

𝑈𝑙 is a uninorm having an annihilator 𝑘 and an 

identity 𝑒 on 𝐿. 

 

Corollary 3.10. Take the elements 𝑒, 𝑘 ∈ 𝐿 such 

that 𝑒, 𝑘 ≠ 0,1 and 𝑘 ∈ 𝐼𝑒. Let all elements in 𝐿 

different from 𝑒 be comparable with 𝑘. 

 

i) If 𝑘 is a coatom of 𝐿, from Theorem 3.9 it is 

obtained the uninorm 𝑈𝑙 is as below 

 
𝑈𝑙(𝑝, 𝑞)

=

{
 
 

 
 
inf {𝑝, 𝑞} 𝑖𝑓 𝑝, 𝑞 ∈  [0, 𝑘[

1 𝑖𝑓 𝑝, 𝑞 ∈ ]𝑘, 1]

𝑘 𝑖𝑓 𝑝, 𝑞 ∈ [0, 𝑘]  ×  {𝑘, 1}  ∪  {𝑘, 1}  ×  [0, 𝑘]

𝑝 𝑖𝑓 𝑝 ∈  𝐿 and 𝑞 =  𝑒
𝑞 𝑖𝑓 𝑝 =  𝑒 and 𝑞 ∈  𝐿

 

ii) If 𝑘 is a atom of 𝐿, from Theorem 3.9 it is 

obtained the uninorm 𝑈𝑙 is as below 

 
𝑈𝑙(𝑝, 𝑞)

=

{
 
 

 
 
0 𝑖𝑓 𝑝, 𝑞 ∈  [0, 𝑘[

sup {𝑝, 𝑞} 𝑖𝑓 𝑝, 𝑞 ∈ ]𝑘, 1]

𝑘 𝑖𝑓 𝑝, 𝑞 ∈ [𝑘, 1] × {0, 𝑘} ∪ {0, 𝑘} × [𝑘, 1]

𝑝 𝑖𝑓 𝑝 ∈  𝐿 and 𝑞 =  𝑒
𝑞 𝑖𝑓 𝑝 =  𝑒 and 𝑞 ∈  𝐿

 

 

Example 3.11. Take a lattice 

𝐿 = {0, 𝑝, 𝑞, 𝑟, 𝑘, 𝑒,𝑚, 𝑡, 1} with Hasse diagram 

shown in Figure 3 and consider a function 

𝑈: 𝐿2 → 𝐿 as Table 1. Then 𝑈 is a uninorm having 

an annihilator 𝑘 and an identity 𝑒 in 𝐿 via 

Theorem 3.9.  

 

 
 

Figure 3. The lattice 𝐿 

 

 

Table 2. The uninorm 𝑈 on 𝐿 

𝑈 0 𝑝 𝑞 𝑟 𝑒 𝑘 𝑚 𝑡 1 
0 0 0 0 0 0 𝑘 𝑘 𝑘 𝑘 

𝑝 0 𝑝 0 𝑝 𝑝 𝑘 𝑘 𝑘 𝑘 
q 0 0 𝑞 0 𝑞 𝑘 𝑘 𝑘 𝑘 

𝑟 0 𝑝 0 𝑟 𝑟 𝑘 𝑘 𝑘 𝑘 
𝑒 0 𝑝 𝑞 𝑟 𝑒 𝑘 𝑚 𝑡 1 
𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 
𝑚 𝑘 𝑘 𝑘 𝑘 𝑚 𝑘 𝑚 1 1 
𝑡 𝑘 𝑘 𝑘 𝑘 𝑡 𝑘 1 𝑡 1 
1 𝑘 𝑘 𝑘 𝑘 1 𝑘 1 1 1 

 

Remark 3.12. Consider the elements 𝑒, 𝑘 ∈ 𝐿 

which 𝑒, 𝑘 ≠ 0,1 and 𝑘 ∈ 𝐼𝑒. It is known that there 

need not always exist a uninorm on 𝐿 having an 

annihilator 𝑘 and an identity 𝑒 due to the fact that 

Theorem 3.6 and Theorem 3.7, if it is choosen the 

special elements in 𝐿 that are different from 𝑒 and 

incomparable with 𝑘. For this reason, it is 

introduced in Theorem 3.9 a method for 

constructing uninorms on 𝐿 having an annihilator 

𝑘 and an identity 𝑒, under a constraint that all 
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elements in 𝐿 different from 𝑒 are comparable 

with 𝑘. In the present case, another elemental 

question occurs: once there exist some elements in 

𝐿 different from 𝑒 that are incomparable with 𝑘, is 

there a uninorm having an annihilator 𝑘 and an 

identity 𝑒 on 𝐿. It is provided a positive example 

approving to the above hypothesis. 

 

Let us first research the possible values of 𝒫(𝑒) 
having the indicated an annihilator 𝑘 which 𝑒 ∈ 𝐼𝑘 

for some special conditions. 

 

Proposition 3.13. Take the elements 𝑒, 𝑘 ∈ 𝐿 

which 𝑒, 𝑘 ≠ 0,1 and 𝑘 ∈ 𝐼𝑒, a uninorm 𝑈 having 

an annihilator 𝑘 and an identity 𝑒 on 𝐿 and 

𝑙, 𝑑 ∈ 𝐿 which 𝑙 ∈ [0, 𝑒[, 𝑙 ∈ [0, 𝑘[, 𝑑 ∈]𝑒, 1],
𝑑 ∈ 𝐼𝑘 and inf {𝑑, 𝑘} = 𝑙. In this case, it is 

obtained 𝑈(𝑙, 𝑑) = 𝑙 and 𝑈(𝑑, 𝑑) < 𝑘 or 

𝑈(𝑑, 𝑑) ∈ 𝐼𝑘 . 
 

Proof. Due to the monotonicity of 𝑈 and that 𝑒 is 

an identity, it is obtained 𝑙 = 𝑈(𝑙, 𝑒) ≤ 𝑈(𝑙, 𝑑) ≤
𝑈(𝑒, 𝑑) = 𝑑. Moreover, since 𝑘 is an annihilator, 

it holds 𝑈(𝑙, 𝑑) ≤ 𝑈(𝑘, 𝑑) = 𝑘. So, it is obtained 

𝑙 ≤ 𝑈(𝑙, 𝑑) ≤ inf {𝑑, 𝑘} = 𝑙, i.e. 𝑈(𝑙, 𝑑) = 𝑙. Due 

to the associativity of 𝑈, it is obtained 𝑙 =
𝑈(𝑙, 𝑑) = 𝑈(𝑈(𝑙, 𝑑), 𝑑) = 𝑈(𝑙, 𝑈(𝑑, 𝑑)). Suppose 

that 𝑈(𝑑, 𝑑) ≥ 𝑘. Then it is obtained a 

contradiction that 𝑙 ≥ 𝑘. So, it is 𝑈(𝑑, 𝑑) < 𝑘 or 

𝑈(𝑑, 𝑑) ∈ 𝐼𝑘. 

 

Proposition 3.14. Take the elements 𝑒, 𝑘 ∈ 𝐿 

which 𝑒, 𝑘 ≠ 0,1 and 𝑘 ∈ 𝐼𝑒, a uninorm 𝑈 having 

an annihilator 𝑘 and an identity 𝑒 on 𝐿 and 

𝑙, 𝑑, 𝑟 ∈ 𝐿 which 𝑙 ∈ [0, 𝑒[, 𝑙 ∈ [0, 𝑘[, 𝑑 ∈]𝑒, 1], 
𝑑 ∈ 𝐼𝑘 , inf {𝑑, 𝑘} = 𝑙, 𝑟 > 𝑒, 𝑟 ∈ 𝐼𝑘 and inf {𝑟, 𝑘} =
𝑙. In the present case, it is obtained 𝑈(𝑑, 𝑟) < 𝑘 or 

𝑈(𝑑, 𝑟) ∈ 𝐼𝑘. 

 

Proof. From Proposition 3.14, it is 𝑙 = 𝑈(𝑙, 𝑑) 
and 𝑙 = 𝑈(𝑙, 𝑟). By the associativity of 𝑈, it is 

obtained 𝑙 = 𝑈(𝑙, 𝑟) = 𝑈(𝑈(𝑙, 𝑑), 𝑟) =
𝑈(𝑙, 𝑈(𝑑, 𝑟)). Suppose that 𝑈(𝑑, 𝑟) ≥ 𝑘. Then it 

is obtained a contradiction that 𝑙 ≥ 𝑘. So, it is 

𝑈(𝑑, 𝑟) < 𝑘 or 𝑈(𝑑, 𝑟) ∈ 𝐼𝑘. 

 

Proposition 3.15. Take the elements 𝑒, 𝑘 ∈ 𝐿 

which 𝑒, 𝑘 ≠ 0,1 and 𝑘 ∈ 𝐼𝑒, a uninorm 𝑈 having 

an annihilator 𝑘 and an identity 𝑒 on 𝐿 and 

𝑙, 𝑑, 𝑟 ∈ 𝐿 which 𝑟 ∈ [0, 𝑒[, 𝑟 ∈ [0, 𝑘[, 𝑙 ∈]𝑒, 1],
𝑙 ∈ 𝐼𝑘, inf {𝑙, 𝑘} = 𝑟 and 𝑑 < 𝑘. In this case it is 

obtained 𝑈(𝑙, 𝑑) < 𝑘 or 𝑈(𝑙, 𝑑) ∈ 𝐼𝑘. 

 

Proof. From Proposition 3.14, the monotonicity 

of 𝑈 and that 𝑒 is an identity, it is obtained 

𝑈(𝑈(𝑟, 𝑙), 𝑑) = 𝑈(𝑟, 𝑑) ≤ 𝑈(𝑒, 𝑑) = 𝑑. Suppose 

that 𝑈(𝑙, 𝑑) ≥ 𝑘. Then it holds 𝑈(𝑟, 𝑈(𝑙, 𝑑)) ≥ 𝑘. 

By using the associativity of 𝑈, it is obtained 

𝑘 ≤ 𝑑. This is a contradiction. Therefore, it is 

obtained either 𝑈(𝑙, 𝑑) < 𝑘 or 𝑈(𝑙, 𝑑) ∈ 𝐼𝑘. 

 

Proposition 3.16. Take the elements 𝑒, 𝑘 ∈ 𝐿 that 

𝑒, 𝑘 ≠ 0,1 and 𝑘 ∈ 𝐼𝑒, a uninorm 𝑈 having an 

annihilator 𝑘 and an identity 𝑒 on 𝐿. In the present 

case, it is obtained 𝑈(0, 𝑟) ≤ inf {𝑟, 𝑘} and 

𝑈(1, 𝑟) ≥ sup {𝑟, 𝑘} for all 𝑟 ∈ 𝐿. 

 

Proof. Due to the monotonicity of 𝑈 and 𝑒 is an 

identity and 𝑘 is an annihilator, it is obtained 

𝑈(0, 𝑟) ≤ 𝑈(𝑒, 𝑟) = 𝑟 and 𝑈(0, 𝑟) ≤ 𝑈(𝑘, 𝑟) =
𝑘. So, 𝑈(0, 𝑟) ≤ inf {𝑟, 𝑘}. Similarly, it is obtain 

that 𝑈(1, 𝑟) ≥ sup {𝑟, 𝑘}. 
 

Proposition 3.17. Take the elements 𝑒, 𝑘 ∈ 𝐿 

which 𝑒, 𝑘 ≠ 0,1 and 𝑘 ∈ 𝐼𝑒, a uninorm 𝑈 having 

an annihilator 𝑘 and an identity 𝑒 on 𝐿 and 

𝑙, 𝑑 ∈ 𝐿 which 𝑙 ∈ [0, 𝑒[, 𝑑 ∈ 𝐼𝑒 , sup {𝑙, 𝑘} = 1 and 

sup {𝑑, 𝑘} = 1. In this case, it is obtained 

𝑈(𝑙, 𝑑) ≠ 0. 

 

Proof. Suppose that 𝑈(𝑙, 𝑑) = 0. By Proposition 

3.16, it is obtained 𝑈(1, 𝑙) = 1 and 𝑈(1, 𝑑) = 1. 

Then it is had 𝑈(𝑈(1, 𝑑), 𝑙) = 𝑈(1, 𝑙) = 1. 

Moreover, it is obtained 𝑈(1, 𝑈(𝑙, 𝑑)) =
𝑈(1,0) = 𝑘 by using the commutativity of 𝑈. This 

is a contradiction with the assocaitivity of 𝑈. So, 

𝑈(𝑙, 𝑑) ≠ 0. 

 

Proposition 3.18. Take the elements 𝑒, 𝑘 ∈ 𝐿 

which 𝑒, 𝑘 ≠ 0,1 and 𝑘 ∈ 𝐼𝑒, a uninorm 𝑈 having 

an annihilator 𝑘 and an identity 𝑒 on 𝐿 and 

𝑙, 𝑑 ∈ 𝐿 which 𝑙 ∈]𝑒, 1], 𝑑 ∈ 𝐼𝑒 , inf {𝑙, 𝑘} = 0 and 

inf {𝑑, 𝑘} = 0. In this case, it is obtained 𝑈(𝑙, 𝑑) ≠
1. 

 

It can be demonstrated as dual of Proposition 

3.17. 

 

By using Proposition 3.14-3.17 and considering a 

bounded lattice 𝐿 with Hasse diagram shown in 

Figure 4 in the undermentioned example, it can be 

defined a uninorm 𝑈 on 𝐿 for an annihilator 𝑘 and 

an identity 𝑒, although there exist the elements in 

𝐿 which are different from 𝑒 and incomparable 

with 𝑘. 

 

Example 3.19. Take a lattice 

𝐿 = {0, 𝑥, 𝑡, 𝑦, 𝑘, 𝑒, 1} with Hasse diagram shown 

in Figure 4 and consider a function 𝑈: 𝐿2 → 𝐿 as 

Table 2. However, there are some elements 

𝑦, 𝑡, 𝑥 ∈ 𝐿 that are incomparable with 𝑘, 𝑈 is a 
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uninorm with an annihilator 𝑘 and an identity 𝑒 on 

𝐿. 

 

 
 

Figure 4. The lattice 𝐿 

 

 

Table 2. The uninorm 𝑈 on 𝐿 

𝑈 0 𝑥 𝑒 𝑡 𝑘 𝑦 1 
0 0 0 0 0 𝑘 0 𝑘 
𝑥 0 𝑥 𝑥 𝑡 𝑘 𝑥 1 
𝑒 0 𝑥 𝑒 𝑡 𝑘 𝑦 1 
𝑡 0 𝑡 𝑡 𝑡 𝑘 𝑡 1 
𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 
𝑦 0 𝑥 𝑦 𝑡 𝑘 𝑦 1 
1 𝑘 1 1 1 𝑘 1 1 

 

 

4. Concluding remarks 

 

In this study, the structure of uninorms on 

bounded lattices having an annihilator and an 

identity is discussed. It has been also investigated 

some properties of monotone operations on 𝐿 that 

have an annihilator and an identity. As by-

product, it has been shown that it needs not exist a 

uninorm having an annihilator 𝑘 and an identity 𝑒 

on 𝐿 once 𝑘 ≤ 𝑒 or 𝑒 ≤ 𝑘. In (Çaylı et al., 2016) 

considering any bounded lattice 𝐿, it was 

presented the results that there need not always 

exist a uninorm 𝑈 ∈ 𝒫(𝑒) for an annihilator 𝑘 

once 𝑘 ∈ 𝐼𝑒in Theorem 3.6 and Theorem 3.7. 

Note that it has been showed there need not be a 

uninorm 𝑈 ∈ 𝒫(𝑒) having an annihilator in 

Theorem 3.6 and Theorem 3.7 in the case of that it 

is chosen the special elements in 𝐿 are 

incomparable with an annihilator 𝑘. For this 

reason, it has been introduced a method to 

characterize uninorms having an annihilator 𝑘 and 

an identity 𝑒 on 𝐿, where 𝑒, 𝑘 ≠ 0,1, 𝑘 ∈ 𝐼𝑒 and 

all elements in 𝐿 different from 𝑒 is comparable 

with 𝑘. Moreover, it has been exemplified that a 

uninorm having an annihilator 𝑘 and an identity 𝑒 

on a bounded lattice 𝐿 can exist while there exist 

the elements in 𝐿 different from 𝑒 are 

incomparable with 𝑘. As a future study, one can 

consider whether it is possible to characterize a 

uninorm 𝑈 ∈ 𝒫(𝑒) with an annihilator 𝑘 under 

which additional constraints on 𝐿 and/or the 

elements in 𝐿 different from 𝑒 once there exist the 

elements in 𝐿 different from 𝑒 which is 

incomparable with 𝑘. 
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