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Abstract
In this paper, we consider the following boundary value problem

y(4)+q(:17)y:)\y, 0<z<l,
y" (1) = (=1)7 4" (0) + ay (0) = 0,
y (1) = (=1)7y® (0) =0, s=0,2,

where A is a spectral parameter, ¢ (x) € L1 (0, 1) is complex-valued function and o = 0, 1.
The boundary conditions of this problem are regular but not strongly regular. Asymptotic
formulae for eigenvalues and eigenfunctions of the considered boundary value problem are
established. When « # 0, we proved that all the eigenvalues, except for finite number, are
simple and the system of root functions of this spectral problem forms a Riesz basis in the
space Ls (0,1). Furthermore, we show that the system of root functions forms a basis in
the space L, (0,1), 1 < p < oo (p # 2), under the conditions o # 0 and ¢ () € W{ (0, 1).
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1. Introduction
Henceforth, L denotes the differential operator generated by the differential expression
L) =yW +q@)y, z€(0,1), (1.1)
and boundary conditions

Us (v) = " (1) ~ (~1)7 3" (0) + ay (0) = 0 "
Us (y) =y (1) — (=1)7 ) (0) = 0, '

where ¢ (z) € Ly (0,1) is complex-valued function, s = 0,2 and o = 0,1. It is easy to
verify that boundary conditions (1.2) are regular, but not strongly regular.
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In [11,14-16], Kerimov, Kaya and Gunes investigated the following problem

Yy fpo(2)y" +p1(x)y Fpo(x)y=Ny, 0<az<l,

y" (1) = (=1)7y" (0) + az 29" (0) + az1y’ (0) + a3,0y (0) = 0,

y" (1) = (=1)7y" (0) + a2y (0) + 2,0y (0) = 0,

y' (1) = (=1)7 9 (0) + o0y (0) = 0,

y(1) = (=1)%7y(0)=0
in various cases. However, the problems in [11,14-16] cannot be reduced to eigenvalue
problem for the operator (1.1)-(1.2).

In [8,19,27], it was proven that the system of root functions of a differential operator
with strongly regular boundary conditions forms a basis. Besides, the basicity of root
functions of a differential operator with non-strongly regular boundary conditions was
investigated in [3-7,9,12,17,20-26,29-33]. For more information about these papers, see
[11,14-16).

We define ¢y and &, as follows:

1
¢ = / g (&) dt, (1.3)
0

1

/q (f) .62(2n_0)ﬂi§df /q (E) ‘6—2(2n—a)7rz’§d£
0 0
Now, we give two theorems and their corollary and we will prove them.

1

+ +nL (1.4)

En =

Theorem 1.1. Ifq(z) € Ly (0,1) is a complex-valued function and o # 0, all eigenvalues
of differential operator (1.1)-(1.2), excluding a finite number, are simple and form two
sequences {\n 1} and {\, 2} and these eigenvalues have the following asymptotic formulae
for sufficiently large numbers n:

_ _ 4 €0 —4
At = ((2n— o) m)*. {1 e O (n €n)} ,
(1.5)
_ 4 co—2(-1)7a —4
)\n+n272—((2n—0)ﬂ') {1+W+O(n 677,) y
where ny, no are certain integers. Moreover, for sufficiently large numbers n, the corre-

sponding eigenfunctions up1 () and un 2 (z) have the asymptotic formulae:
Upiny 1 (T) = V2sin (2n — o) 7z + O (&,,), (1.6)
Uptny 2 (T) = V2c08 (2n — o) 7z + O () - )

Theorem 1.2. If q(x) € L;(0,1) is a complez-valued function and o # 0, the root
functions of differential operator (1.1)-(1.2) form a Riesz basis in the space Lo (0,1). In
addition, if q (x) € Wi (0,1), then the root functions form a basis in L, (0,1), 1 < p < oo,
where

1
Ly(0,1) = {flf £ (0,1) —><C,/|f(£)\pd£ < +oo},
0
W2 (0,1) = {f|f:(o,1) ~C, f™ eLp(o,1)}.

Corollary 1.3. Ifq(x) € L2 (0,1) is a complez-valued function and o # 0, then ny+ng =
1 — 0. Hence, we can choose ny =0, no =1 —o0.
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2. Some auxiliary formulae
We denote the set
{pEC:OSargpﬁZ} (2.1)

by Sy and the different four roots of the algebraic equation w* +1 = 0 by wy, k = 1,4.
The numbers wy, k = 1,4, can be ordered so that the inequalities

R (pw1) < R (pw2) < R (pws) < R (pwa) (2.2)

hold for all p € Sy, where R (z) denotes the real parts of a complex number z (see [28,
Chapter 11, §4.2]). From now on, the numbers wy, k = 1,4, will be chosen by satisfying the
inequalities (2.2) for all p € Sp. Then, we get by [28, Chapter II, §4.8] that the numbers
w1, ws,ws, wy are determined as

3mi _ 3mi us’ s}

wy=e1t, wo=¢e 4, w3 =e4, wg =€ 4. (2.3)

One can easily see that
W1 = —Ww4, W2 = —Ws. (2.4)

Lemma 2.1 ([16]). For all p € Sp, the inequalities

5

Ripwn) < 1ol Rl = Ll 29

are valid.
Let
To={p—c:p€ So},

where ¢ is a complex number. The inequalities (2.2) and (2.5) will be rewritten in the
forms

R((p+ o) <R (o1 c)n) R((p+uws) R((p 4 wr), (26
R+ <—Llore,  R(p+un) 2L lp+d 27)

for all p € Tp.
For each p € Ty, the equation
L(y)+p'y=0 (2.8)
has four solutions y; (z, p), y2 (z,p), y3 (x, p), y4 (x, p). These solutions are linearly inde-
pendent and analytic when |p| > M)y, where My is a positive constant [28, Chapter II, §4.5-
4.6]. Besides, the derivatives of these functions satisfy the following integro-differential
equations

TIED) _ o 1 L / PR o ) (e, p) d

dx® oS
" (2.9)
1 [0°Ky (2,6, p) B
4/)3/ 9r5 (&) vk (&, p)dS, 5=0,3,
where
.CU , &, p Zw epwa T— ’ JJ L€, p Z W, epwa T— ) (210)
a=k+1

Let zi s (z,p) ,k =1,4,s = 0,3, be functions that satisfy the equations

d*yy (x, p)

e pieP Rz s (2, p) . (2.11)
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By [28, Chapter II, §4.5], the functions 2z s (x, p) are analytic with respect to p and satisfy

s (@ p)=wi+0(p7"), 5=03, k=T1

By (2.9)-(2.11), we have

s+1
i (.0) =0 + g [4(O) 200 (€ ) et
0

St [0 €) 0 6 )

4
p 0
1 o 1
s O wit [0 (6) 0 (€, p)
Plasirn %

Note that, by (2.6), we get

R(p(wa —wp)) =R((p+¢) (wa = wp)) = R(c(wa —wp)) < 2]e,

(2.12)

(2.13)

where 1 < a < § < 4. By using the above inequality and (2.12), we obtain for k = 1,4

T

Ja(©) 2o (& p) ereemne0ag — 0.1), a <k,

0

1

/q(ﬁ)zko(ép)ep(“’a “w)@=8ge = 0 (1), a> k.

T

By using the last relations and the formulae (2.12)-(2.13), we get

tks (@ p) =wi+0(p7), 5=0,3, k=T41

If we now put (2.14) in (2.13), then (2.13) takes the form

ws—i—l
snte =i+ 5 Jat@ae s T fatg s
0
1

4
b 3 wfjl/q (&) ePlwewr)@=8 ge 1 O (p—fi) '

(2.14)
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By the last relation, we have

s+1 1
2 (0.0) = = S [ () et
0
ws—i—l 1
- 44,03 / g (&) e’ %de + 0 (p°)
0
s+1 1
50 0.0) = = S [a(© X %ag 10 (7).
0 (2.15)
ws—l—l
205 (1,p) = ws + 41p3 /q (€) eﬂ(wl_WQ)(l_f)df +0 (p—6> ’
0
wierl 1 L
e (L) =i+ S [a(€) Xm0 9agy
0
WSH 1 2pw2(1—8) 6
pwa(1— -
g [a@e de+0 ().
0
where we assume that c¢g = 0. The case ¢y # 0 will be investigated later.
3. Proof of Theorem 1.1
Let
Us(y1) Us(y2) Us(ys) Us(ya)
Uz (y1) U2(y2) Uz(ys) Usz(ya)
A = . 3.1
(p) Ui (y1) Ui(y2) Ui(ys) Ui (ys) (8:1)
Uo (y1) Uo(y2) Uo(ys) Uo(ya)

If the vertex —c in the domain T} is properly chosen, then eigenvalues A of the operator
(1.1)-(1.2) whose absolute values are sufficiently large have the form A\ = —p*, where the
numbers p are the zeros of the following equation

A(p)=0 (32)

and in Tp. Conversely, the set of such numbers p contains all the zeros of (3.2) in Tp
excluding a finite number [28, Chapter II. § 4.9]. By (2.11), we have

Us (yk’) = ps {epwkzk,s (13 p) - (_1)0 Zk,s (03 p)} ) (3 3)
U3 (yk) = p3 {epwkzk,?) (11 p) - (_1)U 2k,3 (07 ,0)} + QZE0 (07 p) '

for s =0,2 and k = 1,4. By (2.7), e”* exponentially tends to zero and e”* exponentially
tends to infinity. So, the relations

Us (1) = = (=1)7p* {21, (0,0) + O (p77) }, s
Us (y1) = — (—1)7 Pg {213 (0,p) — (=1)7
Us (ya) = p*e”* {z45(1,p) + O (p7)},

3 %1,

@m+0@”ﬂ, (3.4)
, 3

o
p3
s

are valid by (2.14) and (3.3).
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Let
Zl,s (Ovp) ’ lf k = 17
As,k (p) = epwkzk,s (1a p) - (_1)0 Zk,s (07 p) ; it k= 27 37
254’5 (Lp)a 1fk:47
o & . 3.5
28 (0,) = (-1 G210 0.p), k=1, (8:5)
Az (p) = ez 5 (1, p) — (—1)° 23 (0, p) + %zk,O 0,p), ifk=2,3,
24,3 (17P)7 if k& :47

where s = 0,2. By the formulae (3.3)-(3.5), it is obvious that

Us (1) = — (1) p* {As1 (p) + O (p77)},
Us (yk) = pSAs,k (p) ) (36)
Us (ya) = p°e”* {As 4 (p) + O (p77)},

where k = 2,3 and s = 0, 3. We put these formulae of boundary conditions in the equation
(3.2). If we divide out the common multipliers p, p?, p of the rows and also divide out
the common multipliers — (—1)? and e”* of the columns of the determinant A (p), then
we get that the equation (3.2) is equivalent to

Ar(p)+0(p7) =0, (37)
where
ﬁS,l EP; ﬁ3,2 Epg ﬁa,:& Ep; ﬁ3,4 Eﬂg
_ 1P 2\P 3P A4 \p
Aulp) = Ai,i (p) Ai;(p) Aiz(p) Aii(p) ' (38)
Ao1(p) Ao2(p) Aos(p) Aoalp)

We now rewrite the formulae (35)-(36) in [14]. If p is a root of equation (3.7), we get
that the equalities

2 — (=17 =0 <p73) , ™ —(=1)7=0 (/073) (3.9)
are valid.
By using the relations (2.14), (2.15) and (3.9) for s = 0, 3, we have
k k _
Ask (p) =wi + 0 (p7°), k=14,
where
1
_1 g S+1
AR = (e - (1) + S [yt 5=02
0
1
_1\o, ,s+1
AD ) =g e = (1) + S [ mati-fag, s —o
1 0 (3.11)
o -1)w » «
A ) = e — (1) + S g et 5,
(1) wi : a
A () =i (7 = (<1)7) + =5 [a( 0 0ag 4 5,
0
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and

B () = 5 / g (€) et
(3.12)

s+11
/q ePlwr—wi)fge =103, k=2,3.
0

By the relations (3.9), (3.11) and (3.12), we have
Ak (p)=0(p), k=23, 5=0,.3 (3.13)

If we put the equalities (3.10) in the determinant (3.8), then, by using (3.13), we get
that the equation (3.7) is equivalent to

A2 (p)+0(p77) =0, (3.14)
where
Wt AR () By (o) Ayg (o) + By (o) ]
Bo(p) = | F Azp (o) (22) () A3 (o) + Byg () wf
wi Ao (p) + By 2 (p) Ais(p)+Bis(p) wa
L AR (o) + B3 () AG3 () + Bi3 (o) 1
By the definition of nglz (p) (see: (3. 12)) it can be easily proven that the columns

and .
(B (). B (). B (). B ()

are two linear combinations of the first and fourth columns of the determinant As (p).
Consequently, the determinant As (p) can be rewritten as follows:

w AE; () A%f’%,() wj
2 2
Da(p) = | <1 Aigl0) Ada() e (3.15)
wi Ay (p) Ajz(p) wa
1 4B AP ) 1

)

If we put (3.11) in the determinant (3.15) and calculate it, then we get that the equation
(3.14) is reduced to

~16 (e = (=1)7) (e (1)%)
(3.16)

dwna <p (-1)) , 4ena <p EDD 40 (50 ) =0,

where

1
— | [a(eyetrntag| + + o7 (3.17)
0

e(p)=o(1)
can be easily proved by using the proof of Riemann-Lebesque Lemma.
After some calculations, the equation (3.16) splits into the following two equations:

e = (=1)7 +0 (p~*= (p) . (3.18)

1
/q () 62”“2(1_5)d§
0

Note that the formula
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e = (—1)7 + % +0(p~e(p)). (3.19)

Consider the equation (3.18). By Rouche’s theorem, we can get that the roots of the
equation (3.18) in Tp with sufficiently large absolute values lie in the sets G,, C Tp, where
G, is O (n~1)-neighborhood of — (2n — o) mi /w2, n = ng,ng + 1,... and ny is sufficiently
large positive integer [28, Chapter II, § 4.9]. Besides, the equation (3.18) has a unique
root in Gy,. Assume that p is the unique root of (3.18) in G,,. By the equalities (40) and
(41) in [14], we obtain

_ (2n — o) mi _3
P St r=0(n7) (3.20)
If we use the formulae (3.20) in (3.17), we obtain

e(p) = O (en), (3.21)

where ¢, is the sequence defined in (1.4).
Now, we find more accurate formula for the number r. The following formulae

ﬁ13 " @0 _wz—)?’ So() (3:22)
e = (=1)7 {1+ 1w+ 0 (n7%)} (3.23)

can be easily obtained by using (3.20). By putting p = p in (3.18) and using the relations
(3.21) and (3.23), we have

r=0 <n_36n> . (3.24)
Thus, the equation (3.18) has the unique root
_ (2n — o) mi _3
= —enmo)m . 2
Pn,1 o +0 (n € ) (3.25)

in O (n~1)-neigbourhood G,, of z, = — (2n — o) wi/w2, n = ng,ng + 1,... by (3.20) and
(3.24).
Similarly, we conclude that the equation (3.19) has the unique root

Pn2 = S {(Qn — o) i — (—1)”204} +0 (n_35n) (3.26)

wa 2(2n — o) w3
in O (nil)—neigbourhood G, of the point z,, n = ng,no + 1,... by the formulae (3.20)-
(3.23).
Now, we investigate the eigenfunction u,; (z) corresponding to the eigenvalue A =
— (Pn1)*. We use the following determinant for this eigenfunction

vi (@, p) y2(z,p) ys(x,p) ya(z,p)
iy CDTYR | Us() Us() Uss) Us (o)
T T S giap® Uz (y1) U2(y2) Ua(ys) U2(ys) |’
Ur(y1) Ui(y2) Ui(ys) Ui (va)

where p = pp, 1 and n is sufficiently large positive integer. Easily, we can rewrite

p*V2

dwotc

( D7y (z,p)  w2(z,p)  ws(z,p) e ™ys(z,p) (3.27)
—1)7 p3Us(y1) p3Us(y2) p2Us(ys) p e P4Us (y4)
—1)7p2Us (y1) p2U2(y2) p 2Ua(ys) p 2e P4Uz () |
1) p U (y1) p UL (y2) p UL (ys) p e P4UL (ya)

’LNLn’l (l’) = —
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By (2.11)-(2.12), we can obtain
ye (x,p)=0(1), k=1,2,3, e Py, (z,p) =0 (1), (3.28)

where p = pp1. Putting the formulae (3.6) in (3.27) and using (3.28), we get that the
formulae (3.27) has the form

—(=1)%y1 (2, p) w2(x,p) y3(x,p) e ™ys(z,p)
it (2) = — P°V2 A31( ) A32( ) Ass(p)  Asa(p) (3.29)
1 dwaice Az (p) Az (p) A3 (p) Az4(p) ’ .
Ar1(p) A12(p) Az (p) A4 (p)

where p = pp 1. If we calculate the determinant in (3.29) by using (3.10), (3.13) and
(3.28), then we have

_ 32 _
fin () =~ 2 s (@,0) B2 ()~ 12 (.0) B3 ()} +0 (), (330
where p = p, 1 and
wi Asp(p) wi
Ey(p)=|wi Asi(p) wi|, k=23
w1 Al,k (P) Wy

By the last formula and (3.10), we get that the determinant Ej (p) can be rewritten as
follows

k k
wi AL () Wi | el B (p) i
Bi(p)=|w} AQ(p) o} |+|wd BY(0) o} |+0(p7°), k=23
wi AN ) wi| | BR() w

,2 (p) w?|+0 (p_ﬁ) , k=23, (3.31)
w1 Agk,i (p) wa

where p = pp, 1. The following formulae
k k
AR () =4l () =0 (%),

are directly obtained by using (3.11) and (3.18), where k = 2,3, p = p,1 and € = &,,. If
we calculate the determinant in (3.31) by using the last relations, we get

o)

where k = 2,3 and p = p,,1 and € = ¢,. Consequently, we have

\2/? (y3 (z, pny1) — y2 (T, pn1)) + O (en)

by (3.30). On the other hand, we can write
Yo (l'aﬁn,l) — e—(2n—a)m’:c +0 (n—l) ’ s (l‘, ﬁn,l) — e(2n—a)m’:c +0 (n—l) ’

A (p) = % +0 (p7%)

)

2w2a

Ey (p) =

Un () =

(Pra) " =0 (7Y,
by (2.11), (2.12) and (3.25). Finally, we have the expression
U1 (z) = V2sin (2n — o) 7z + O (e,) - (3.32)
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Now, we also investigate the eigenfunction %, 2 (x) corresponding to the eigenvalue
A=— (ﬁn72)4 by using the following determinant

yi(z,p) y2(z,p) ys(x,p) yal(z,p)

- (D)7 e 2| Uy(yn)  Ua(y) Us(ys)  Us(wa)
Un,2 (l‘) = —
dicy Ui(y1) Ui(y2) Ui(ys) Ui(ya)
Uo(y1) Uo(y2) Uo(ys) Uo(va)
where p = pp 2. In a similar way, we get
Upo (z) = V2cos (2n — o)z + O (e,) - (3.33)

We now prove the formulae (1.5) and (1.6). By the relation A = —p?*, we have
At == (Bn)' = (@n =) {1+0 (n7"s,)

Sz = = (ua)t = (20— o) m)* {1 -0 (n_45n)} .

2n—o)7
The above formulae are valid in case of ¢g = 0. Now, assume that ¢y # 0 (see (1.3)).
Consider the eigenvalue problem with the differential expression
vt a(e)y =Ny

(see (1.1)). We can rewrite this problem as

y W+ (q(z) —co)y = (A — o)y

One can easily see that the integral of ¢ (z) — ¢ on the line [0, 1] is zero. Then, by the
above proof, for the eigenvalues A — ¢g, the formulae

Xn,l —co = ((2n —o)m)* {1 +0 (n_45n)} ,

(3.34)

- 2(-1)7 « _
Ana —Co = ((2n—0)7r)4{1 — W+o(n 4en)}.

are valid and the eigenfunctions y do not change. On the other hand, the construction of
the integers ny and ng is similar to the way in [11,14-16]. Hence, the formulae (1.5) and
(1.6) can be obtained by (3.32), (3.33) and (3.34).

4. Proofs of Theorem 1.2 and Corollary 1.3

First, we prove that the root functions of the operator L form a Riesz basis in L9 (0, 1)
provided ¢ (x) € L1 (0,1).
Let
v (z),v12(2),. ... on0 (), 002 (2),. .. (4.1)

be the biorthogonal system of the following system

ur (), w2 (), .. up (&), up2 (z), ..., (4.2)

ie. (Unj,Ums) = Opm-0js, n,m =1,2,...,4,s =1,2. By [19, p.84] or [28, p.99], (4.1)
is the root functions of the adjoint differential operator L*. L* consists of the differential
expression and boundary conditions

" (2) = 2% + ¢ (2)
Us (2) =z(1) = (=1)”2(0) = 0,
Ui () =2 (1) = (=1)7 2/ (0) = 0, (4.3)
Us (2) = 2" (1) — (=1)7 2" (0) = 0,
Ui (z)=2"(1)—(-1)7 2" (0) + @z (0) = 0.
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(4.3) shows that the differential operator L* provides the conditions of Theorem 1.1. So,
the formulae
Uptng1 () = Ty 1 (sin (2n — o) mx 4+ O (&) ,
Untng,2 (T) = Tpgny 2 (cos (2n — o) mx + O (g4,))
are valid for sufficiently large numbers n, where the numbers ry,,n j, 7 = 1,2 are deter-

(4.4)

mined by the inner product (unﬁn,j, funﬁmj) = 1. By these equality and (1.6), (4.4), we
have

Tntngg = V2+0(en), j=1,2,
for sufficiently large numbers n. Consequently, if we put the last equality in (4.4), we get

Uniny 1 (T) = V/2sin (2n — o)z + O (e,),
Untng2 (T) = V2cos (2n — o)z + O (&) .

Each of the systems (4.1) and (4.2) is complete in Ly (0,1) [2]. Furthermore, by (1.6)
and (4.5), we get that the sequence of the multiplication of the norms of the elements of
the systems (4.1) and (4.2) is bounded i.e. |uy||||vn| < M for all n € N, where M is
a constant. On the other hand, since all the eigenvalues, excluding a finite number, are
simple, then there are at most finitely many associate functions in the root functions of
L. Hence, the system (4.2) is a Riesz basis in Lo (0,1) by the main theorem in [18].

Now, we prove Corollary 1.3 by the assumption ¢ (z) € L2 (0,1). Let

(4.5)

g (@) =1,  gon_1(z) =V2sin2n7wz,  gon (x) = V2cos 2nmz, (4.6)
Gon—1=V2sin (2n — 1) 7wz,  Gon = V2cos (2n — 1) 7z, (4.7)
where n = 1,2,.... The systems (4.6) and (4.7) are seperately orthonormal bases in

L5 (0,1). Since q(x) € Ly(0,1), then the sum of the squares of the absolute values of
Fourier coefficients is convergent. Then, we can easily obtain the following

[e.e]
Zei < +00. (4.8)
n=1

Now, we assume o = 0. In the case 0 = 1, proof can be obtained in a similar method by
using (4.7). Let n; > 0 and ng > 0. By (1.6), (4.6) and (4.8), we obtain

o x
> (ltntns 1 = g20-1” + [t — gonl|”) < const Y- e2 < +o0. (4.9)
n=1 n=1

One can easily see that n; + ng root functions of L and one function in the system (4.6)
are absent in (4.9). Let ny + ny > 1. By (4.9), the system S generated by all functions
excluding n; + ng — 1 functions in the system (4.2) is quadratically close to the system
(4.6). Since (4.6) is a Riesz basis in Ly (0, 1), then S is also a Riesz basis in Lo (0,1) [10].
This contradicts the basicity of the system (4.2). Similarly, let ny = ny = 0. Since (4.2)
forms a Riesz basis in Ly (0, 1), then again by (4.9), the system {gj (z)},—, is a Riesz basis
in Ly (0,1). Obviously, the latter contradicts the basicity of {g (z)},— in L2 (0,1). All
other cases can be checked in a similar method.

Hence, the equality n; + ny = 1 is valid. So, we can assume that ny =0, ne =1—o¢
without loss of generality. Then, we obtain

Up1 () =2sin(2n — o)1z + O (&),
Unt1-02 () = V/2cos (2n — o)z + O (g,) (4.10)
U1 () =+2sin(2n — o)z + O (&), '

Vnt1-02 (T) =v/2cos (2n — o)z + O (e,) .

by (1.6) and (4.5).
Now, we show that the root functions of L form a basis in the Lebesgue space L, (0,1)
when ¢ (x) € Wi (0,1), where 1 < p < oo, p # 2. We prove the basicity in L, (0,1) in the
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case 0 = 0. In the case o = 1, the proof is similar. Since the function ¢ (z) is in the space
W1 (0,1), then it is differentiable and its derivative is integrable. So, we get

en=0(n")

by using (1.3). Thus, the formulae (4.10) turn into

Un.1 () 2sin (2n — o) x4+ O (1),
Un+1—02 (T ) V2cos (2n — o)z 4+ O (n 1) (4.11)
U1 () =+/2sin(2n — o) x4+ O (1), '

Unt1-02 (¥) = V2cos (2n — o) 7z + O (n71).
For each p € (1,00), (4.6) is a basis in Ly, (0,1) [1, Chapter VIII, §20, Theorem 2]. Then,
there exists M, > 0 such that the inequality

N

> (f.9n) gn

n=0

<M |fll,, N=1,2,..., (4.12)
p

holds for each function f(x) € L, (0,1), where ||-||, is the norm of the normed space
L, (0,1) [13, Chapter I, §4, Theorem 6]. Let p € (1,2). Since (4.2) is a complete system in
L5 (0,1), then it is also complete in L, (0, 1). Besides, one can easily see that the inequality

1(f, 0ng) tngll, < const | 1],

where j =1,2and n=1,2,....
By theorem 6 in [13, Chapter VIII, §4], for the basicity of this system in Ly (0,1), we
must prove that there exists a constant M > 0 such that the inequality

m 2

ZZ (f, Un,j) Un,j

n=1j5=1

<Mfl, m=12...,

p

holds for f(x) € L,(0,1). Instead of the above inequality, it is enough to prove the
following

I (F) =D {(f,vn1) tng + (s vns1,2) Uns12}]| <M £, » (4.13)
n=1 D
where M’ is a positive constant and m =1,2,....
By (4.6) and (4.11), we have
Im (f) < Jm,l (f) + Jm,2 (f) + Jm,3 (f) + Jm,4 (f) ) (4‘14>
where
2m 2m
Tt (1) = | (F:00) gn| I (F) = | > (Fraw) O (n7Y)]||
n=1 D n=1 D
2m 2m
Ina (F) = |3 (£0(n7)) gul| + Jma ()= | (£0(n7"))0(n )
n=1 P n=1 p
By (4.12),

Jma (f) < const || f], - (4.15)
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By Theorem 2.8 (Riesz theorem) [34, Chapter XII, §2,], the relations

2m
T2 (f) < consty_ |(f,gn)[n""
n=1

(4.16)
2m YVa /om 1/p
< const <Z |(f; gn)|q> (an> < const || f]],,,
n=1 n=1
holds, where 1/p + 1/q = 1. Moreover,
2m 2m 9 1/2
s <[ (20 ) - (£l ()
n=1 2 n=1
(4.17)
om 1/2
< const || f|l; (Zn_2> < const || f]],, -
n=1
Further,
2m
JIm,a < const || 1|4 Zn_Q < const || f]],, - (4.18)
n=1

The inequalities (4.14)-(4.18) prove the inequality (4.13). The basicity of (4.2) in
L, (0,1) is obtained when 1 < p < 2.

Assume that the relations 2 < p < oo and 1/p+ 1/¢ = 1 hold. Then, 1 < ¢ < 2 and
the biorthogonal system (4.1) is the root functions of the adjoint operator L*. Above, we
show that the system of root functions of such operator is a basis of L, (0,1). So, the
system (4.2) being biorthogonal system of (4.1) is a basis in L, (0,1).
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