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Abstract
In this paper we consider two different definitions of cover, one of them is Enochs’ notion of
a cover and the other is the one that initiated by Mahmoudi and Renshaw which concerned
with the coessential epimorphisms. We show that these definitions are not equivalent in
our case and restrict our attention to (P ′)-covers (coessential-covers that satisfy Condition
(P ′)). We give a necessary and sufficient condition for a cyclic act to have a (P ′)-cover
and a sufficient condition for every act to have a P′-cover (Enochs’ P′-cover where P′ is
the class of S-acts satisfying Condition (P ′)). We also obtain numerous classes of monoids
over which indecomposable acts satisfying Condition (P ′) are locally cyclic.
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1. Introduction and Preliminaries
For almost five decades, an active area of research in semigroup theory has been the

classification of monoids S by so-called flatness properties of their associated S-acts. The
properties in question, arranged in strictly decreasing order of strength, are as follows:

free ⇒ projective ⇒ strongly flat ⇒ condition (P) ⇒ flat
⇒weakly flat ⇒ principally weakly flat ⇒ torsion-free.

In [4] the authors introduced a generalization of Condition (P ), called Condition (P ′), and
gave a characterization of monoids by this condition of their (Rees factor) acts. Note that
if we know monoids over which Condition (P ′) of their acts imply Condition (P ), then we
know monoids over which torsion freeness of acts imply Condition (P ).

On the other hand, over the past several decades, the covers of modules have been
investigated by many authors and ample results have been obtained. Covers of acts over
monoids are studied in [1–3, 6, 8, 10, 11]. In [10] the authors consider almost exclusively
covers of cyclic acts and restrict their attention to strongly flat and Condition (P ) covers.
They provide a necessary and sufficient condition for the existence of such covers. In this
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paper we will focus on covers of acts over monoids with Condition (P ′) and shall obtain
some results in this respect.

Throughout this paper S denotes a monoid, all acts will be right S-acts and all con-
gruences right S-congruences. We refer the reader to [5] and [7] for basic definitions and
terminology relating to semigroups and acts over monoids.

A monoid S is called right reversible if for every s, t ∈ S there exist p, q ∈ S such that
ps = qt.

A right S-act A satisfies Condition (P ) if for all a, a′ ∈ A, s, s′ ∈ S, as = a′s′ implies
that there exist a′′ ∈ A, u, v ∈ S such that a = a′′u, a′ = a′′v and us = vs′. A right S-act
A satisfies Condition (P ′) if for all a, a′ ∈ A, s, s′, z ∈ S, as = a′s′ and sz = s′z imply that
there exist a′′ ∈ A, u, v ∈ S such that a = a′′u, a′ = a′′v and us = vs′. A right S-act A
satisfies Condition (E) if for all a ∈ A, s, s′ ∈ S, as = as′, implies that there exist a′ ∈ A,
u ∈ S such that a = a′u and us = us′. A right S-act X is said to be locally cyclic if for
all x, y ∈ X there exist z ∈ X, s, t ∈ S with x = zs, y = zt.

Let S be a monoid and A be an S-act. Let X be a class of S-acts which is closed under
isomorphisms. By an X-precover of A we mean an S-morphism g : X−→A for some X ∈ X

such that for every S-morphism g′ : X ′−→A, with X ′ ∈ X, there exists an S-morphism
f : X ′−→X with g′ = gf :

X ′

g′

��

f

~~|
|
|
|

X
g // A

If, in addition, the precover g : X−→A satisfies the condition that each S-morphism
f : X−→X with gf = g is an isomorphism, then we shall call it an X-cover. We shall
of course frequently identify the (pre)cover with its domain. Obviously an S-act A is an
X-cover of itself if and only if A ∈ X. Note that this definition of cover is the Enochs’
notion of cover. In Section 3 we replace the class X by the class P′ of Condition (P ′) acts
and consider P′-covers.

Now we recall the concept of cover which has been used in [10] by Mahmoudi and
Renshaw. Let S be a monoid and f : C−→A be an S-epimorphism. Then f is called
coessential if for each S-act B and each S-morphism g : B−→C, if fg is an epimorphism
then g is an epimorphism. We shall say that an act C together with an S-epimorphism
f : C−→A is a (P ′)-cover of A if C satisfies Condition (P ′) and f is coessential.

2. (P ′)-Covers
In this section we give a necessary and sufficient condition for a cyclic act to have a

(P ′)-cover.
Recall [4] that a submonoid R ⊆ S is said to be weakly right reversible if

(∀s, s′ ∈ R)(∀z ∈ S)(sz = s′z ⇒ (∃u, v ∈ R)(us = vs′)).

Lemma 2.1. Let ρ be a right congruence on S such that the right S-act S/ρ satisfies
Condition (P ′) and let R = [1]ρ. Then R is a weakly right reversible submonoid of S.

Proof. Obviously, R is a submonoid of S. Let s, s′ ∈ R and sz = s′z for z ∈ S. Then
(1s) ρ (1s′) and by [4, Theorem 3.1] there exist u, v ∈ S such that us = vs′, u ρ 1 and
v ρ 1. It follows from u ρ 1 and v ρ 1 that u, v ∈ R. This means that R is weakly right
reversible. �

Theorem 2.2. Let R be a weakly right reversible submonoid of S. Set H = {(p, q) ∈
R×R | ∃z ∈ S ; pz = qz} ∪ {(p, 1) | p ∈ R} and let σ = σ(H) be the right congruence on
S generated by H. Then S/σ satisfies Condition (P ′).
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Proof. Set C = {(p, q) ∈ R × R | ∃z ∈ S ; pz = qz} and D = {(p, 1) | p ∈ R}. Let
(xs) σ (ys′) and sz = s′z, x, y, s, s′, z ∈ S. Then there exist p1, · · · , pn, q1, · · · , qn, w1, · · · , wn ∈
S, where for i = 1, · · · , n, (pi, qi) ∈ H or (qi, pi) ∈ H, such that

xs =p1w1, q2w2 = p3w3, · · · qnwn = ys′. (2.1)
q1w1 = p2w2, q3w3 = p4w4, · · ·

Then there are two cases as follows:
Case 1. For all i = 1, · · · , n, (pi, qi) ∈ C or (qi, pi) ∈ C. Then there exists z1 ∈ S such
that p1z1 = q1z1. Since R is weakly right reversible, then there exist u1, v1 ∈ R such that
u1p1 = v1q1. So u1xs = u1p1w1 = v1q1w1 = v1p2w2. Since (p2, q2) ∈ C or (q2, p2) ∈ C,
there exists z2 ∈ S such that p2z2 = q2z2 and v1p2z2 = v1q2z2 and so there exist u2, v2 ∈ R
such that u2(v1p2) = v2(v1q2). Since (p3, q3) ∈ C or (q3, p3) ∈ C, there exists z3 ∈ S such
that p3z3 = q3z3 and (v2v1)p3z3 = (v2v1)q3z3 and so there exist u3, v3 ∈ R such that
u3(v2v1p3) = v3(v2v1q3). Now we have

u1(xs) = v1p2w2,

u2u1(xs) = u2(v1p2w2) = (v2v1q2)w2 = v2v1(p3w3),

u3u2u1(xs) = u3(v2v1p3w3) = (v3v2v1q3)w3 = v3v2v1(p4w4).

Continuing in this way, we get u1, · · · , un, v1, · · · , vn ∈ R with

un · · ·u1(xs) = vn · · · v1(qnwn) = vn · · · v1(ys′).

Put u = un · · ·u1x and v = vn · · · v1y. Then we have uσx and vσy, since un · · ·u1, vn · · · v1 ∈
R and

(un · · ·u1, 1), (vn · · · v1, 1) ∈ σ.

Also, us = vs′. Therefore by [4, Theorem 3.1], the result follows, that is S/σ satisfies
Condition (P ′).
Case 2. There is at least one k, 1 ≤ k ≤ n, such that (pk, qk) ∈ D or (qk, pk) ∈ D and
the other pairs are in C. If two or more (pi, qi) or (qi, pi) are in D and the others are
in C then we can get the result in a similar way to the case that there exists exactly
one 1 ≤ k ≤ n such that (qk, 1) ∈ D. So we may assume without loss of generality that
there exists exactly one 1 ≤ k ≤ n such that (qk, 1) ∈ D and for i 6= k, (pi, qi) ∈ C or
(qi, pi) ∈ C. Then,

xs = p1w1
q1w1 = p2w2

· · ·
qk−1wk−1 = 1wk

qkwk = pk+1wk+1
qk+1wk+1 = pk+2wk+2

· · ·
qnwn = ys′.

(2.2)

Since (p1, q1) ∈ C or (q1, p1) ∈ C, there exists z1 ∈ S such that p1z1 = q1z1 and then
qkp1z1 = qkq1z1, and so, by the assumption, there exist u1, v1 ∈ R such that u1qkp1 =
v1qkq1. Similarly, there exists z2 ∈ S such that p2z2 = q2z2 and then (v1qk)p2z2 =
(v1qk)q2z2, and so there exist u2, v2 ∈ R such that u2(v1qkp2) = v2(v1qkq2). Continuing in
this way, we get uk−1, vk−1 ∈ R such that

uk−1(vk−2 · · · v1qkpk−1) = vk−1(vk−2 · · · v1qkqk−1).
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Hence,

un−1 · · ·ukuk−1 · · ·u1qkxs = un−1 · · ·ukuk−1 · · ·u1qk(p1w1)
= un−1 · · ·ukuk−1 · · ·u2(v1qkq1)w1

= un−1 · · ·ukuk−1 · · ·u2v1qk(p2w2)
= un−1 · · ·ukuk−1 · · ·u3(v2v1qkq2)w2

= un−1 · · ·ukuk−1 · · ·u3v2v1qk(p3w3)
...

= un−1 · · ·uk−1vk−2 · · · v1qk(pk−1wk−1)
= un−1 · · · (vk−1vk−2 · · · v1qkqk−1)wk−1

= un−1 · · ·ukvk−1vk−2 · · · v1qk(wk)
= un−1 · · ·ukvk−1vk−2 · · · v1(pk+1wk+1).

Now, since (pk+1, qk+1) ∈ C or (qk+1, pk+1) ∈ C, there exists zk ∈ S such that pk+1zk =
qk+1zk and then

(vk−1 · · · v1)pk+1zk = (vk−1 · · · v1)qk+1zk,

so there exist uk, vk ∈ R such that

uk(vk−1. · · · v1pk+1) = vk(vk−1 · · · v1qk+1).

Continuing in this way, we get

un−1 · · ·uk · · ·u1qkxs = un−1un−2 · · ·ukuk−1 · · ·1 qk(p1w1)
= un−1 · · ·ukuk−1 · · ·u2(v1qkq1)w1

= un−1 · · ·ukuk−1 · · ·u2v1qk(p2w2)
...

= un−1 · · ·ukuk−1vk−2 · · · v1qk(pk−1wk−1)
= un−1 · · ·uk(vk−1vk−2 · · · v1qkqk−1)wk−1

= un−1 · · ·ukvk−1vk−2 · · · v1qk(wk)
= un−1 · · ·uk+1ukvk−1vk−2 · · · v1(pk+1wk+1)
= un−1 · · ·uk+1(vkvk−1 · · · v1qk+1)wk+1

= un−1 · · ·uk+1vkvk−1 · · · v1(pk+2wk+2)
...

= un−1vn−2 · · · v1(pnwn)
= (vn−1vn−2 · · · v1qn)wn
= vn−1 · · · v1(ys′).

Put u = un−1un−2 · · ·u1qkx and v = vn−1vn−2 · · · v1y. Then us = vs′. Note that, since
qk, un−1 · · ·u1, vn−1 · · · v1 ∈ R,

(un−1un−2 · · ·u1qk, 1), (vn−1vn−2 · · · v1, 1) ∈ σ.

Consequently, u σ x and v σ y. Hence S/σ satisfies Condition (P ′), by [4, Theorem
3.1]. �

Theorem 2.3. Let S be a monoid. Then the cyclic S-act S/ρ has a (P ′)-cover if and only
if [1]ρ contains a weakly right reversible submonoid R such that for all u ∈ [1]ρ, uS∩R 6= ∅.
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Proof. First of all, it is easy to observe that any (P ′)-cover of a cyclic act is cyclic.
Suppose that S/ρ has a (P ′)-cover S/σ. Then, by [10, Theorem 2.7], we can assume that
R = [1]σ ⊆ [1]ρ and for all u ∈ [1]ρ, uS ∩ R 6= ∅. Moreover, R is weakly right reversible,
by Lemma 2.1.

Conversely, suppose that R is a weakly right reversible submonoid of [1]ρ such that for
all u ∈ [1]ρ, uS ∩R 6= ∅. Set

C = {(p, q) ∈ R×R | ∃z ∈ S ; pz = qz} , D = {(p, 1) | p ∈ R}
and define a right congruence σ on S by σ = σ(H) (the right congruence generated by H)
where H = C ∪ D . Then clearly R ⊆ [1]σ. By a similar proof of [10, Theorem 2.8], we
get that S/σ is a cover of S/ρ. Further, S/σ satisfies Condition (P ′), by Theorem 2.2. �
Corollary 2.4. The one-element S-act ΘS has a (P ′)-cover if and only if there exists a
weakly right reversible submonoid R of S such that for all u ∈ S, there exists s ∈ S with
us ∈ R.

Recall, from [7], that a submonoid R of a monoid S is said to be left unitary if for every
r ∈ R, s ∈ S we have rs ∈ R only if s ∈ R.

Proposition 2.5. Let S be a monoid. Then every cyclic S-act has a (P ′)-cover if and
only if every left unitary submonoid T of S contains a weakly right reversible submonoid
R such that for all u ∈ T , uS ∩R 6= ∅.

Proof. By [7, Corollary 1.4.39], every left unitary submonoid of S is a ρ-class containing
1S , for some right congruence ρ on S. Hence the result follows. �

Since commutative monoids are necessarily weakly right reversible, we can deduce that

Theorem 2.6. Let S be a commutative monoid. Then every cyclic S-act has a (P ′)-cover.

Proof. It is clear from Theorem 2.3. �
Remark 2.7. Let S be a monoid.

(1) If S has a right zero then every S-act that satisfying Condition (P ′), satisfies
Condition (P ).

(2) If S has a left zero then the only (P ′)-cover of ΘS is ΘS itself. In fact if S/σ−→ΘS

is a (P ′)-cover of ΘS , then [1]σ contains the left zero by Theorem 2.3, hence
σ = S × S.

(3) If S is right cancellative then all its submonoids are weakly right reversible and so
every cyclic S-act has a (P ′)-cover.

Let X be a non-empty set, X+ be the free semigroup generated by X, for each w in
X+, the content C(w) is defined as the (necessarily finite) set of elements of X appearing
in w. Let R be a subsemigroup of a free semigroup X+. We recall the content C(R) of R
as

C(R) =
∪
w∈R

C(w).

It was shown in [11, Lemma 2.2] that if X+ is the free semigroup generated by a non-empty
set X, and R is a subsemigroup of X+ then R is right reversible if and only if |C(R)| = 1.
If X = {x, y} and R = 〈xy〉 is the subsemigroup of X+ generated by xy, then R is right
reversible but |C(R)| 6= 1. So their result is false and we have the following lemma.

Lemma 2.8. Let X be a non-empty set, X∗ the free monoid generated by X and R be a
submonoid of X∗. Then R is right reversible if and only if R is generated by one element.

Proof. Necessity. If R is generated by more than one element, say R = 〈x, y〉, then the
elements x2 and xy belong to R, and so by the property of the free monoid X∗, R is not
right reversible which is a contradiction. Hence, R is generated by one element.
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Sufficiency. Suppose R = 〈x〉, x ∈ X∗. For any s, t ∈ R, there exist p, q ∈ N such that
s = xp and t = xq. It is clear that xq · xp = xp · xq. Hence R is right reversible. �
Lemma 2.9. Let X be a set with at least two elements and S = X∗, the free monoid
generated by X. Then, the one-element S-act ΘS has no (P )-cover.

Proof. Suppose R is a right reversible submonoid of S = X∗. By Lemma 2.8, R is
generated by one element, suppose R = 〈x〉, x ∈ S. There exists u ∈ S such that
uS ∩R = ∅. By [10, Corollary 4.3], the result follows. �

It is clear that every (P )-cover is also a (P ′)-cover and so all of the (P )-covers considered
in [10] are also (P ′)-covers. The following example shows that the converse is not true.

Example 2.10. Let X = {x, y} and S = X∗. Then S is a cancellative monoid and so
it is weakly right reversible, but it is not right reversible. Hence, by Remark 2.7 (3),
every cyclic S-act has a (P ′)-cover. However, the one-element act ΘS has no (P )-cover,
by Lemma 2.9. Therefore S is a monoid over which all cyclic right acts have (P ′)-cover
and not all cyclic acts (for example ΘS) have (P )-covers.

Theorem 2.11. Let S be a monoid with a right zero. The cyclic S-act S/ρ has a (P )-cover
if and only if S/ρ has a (P ′)-cover.

Proof. Necessity. Obvious.
Sufficiency. This follows from Remark 2.7 (1). �
Now we show that (P ′)-covers of cyclic S-acts need not be unique.

Remark 2.12. 1) If S is a group then, by [4, Theorem 2.5], all S-acts satisfy Condition
(P ′) and so S/ρ is a (P ′)-cover of itself for any congruence ρ on S. However [1]ρ is a
subgroup of S and so S is a (P ′)-cover of S/ρ, by [10, Theorem 2.10]. Furthermore, if S/ρ
is a proper cyclic S-act and S/σ−→S/ρ is onto then S/σ is trivially a (P ′)-cover of S/ρ.
2) If S is a monoid and S/σ−→S/ρ is a (P ′)-cover then S/ψ−→S/ρ, given by [s]ψ 7→ [s]ρ,
is a (P ′)-cover, where ψ = ψ(H) is the right congruence on S generated by H,

H = {(p, q) ∈ R×R | ∃z ∈ S; pz = qz} ∪ {(p, 1) | p ∈ R}
and R = [1]σ.

In the above remark we see that ψ ⊆ σ, but they need not to be equal.

Lemma 2.13. If S is a monoid, KS is a proper right ideal of S and ρKS
is the Rees

congruence on S then for any σ ⊆ ρKS
, S/σ−→S/ρKS

is a coessential epimorphism.

Proof. Since σ ⊆ ρKS
, then S/σ−→S/ρKS

, given by [s]σ 7→ [s]ρKS
, is a well-defined epi-

morphism. For any u ∈ [1]ρKS
, uS ∩ [1]σ 6= ∅. Hence, by [10, Theorem 2.7], S/σ−→S/ρKS

is a coessential epimorphism. �
By Theorem 3.7 of [12], each indecomposable act satisfying Condition (P ) is locally

cyclic. A question that could be brought up is whether this is valid for indecomposable
acts satisfying Condition (P ′). The following example answers this question negatively.
We do not know what the structure of indecomposable acts satisfying Condition (P ′) is,
and we leave it as an open problem.

Example 2.14. Let S = (N, ·), AS = N\{1} with multiplication by natural numbers as its
action. It is easily seen that AS dose not satisfy Condition (P ), but it satisfies Condition
(P ′). Since there is no z ∈ AS such that 2N ∪ 3N ⊆ zN, AS is not locally cyclic. By the
fact that the set of all prime numbers is a generating set for AS , we conclude that AS is
indecomposable.
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Theorem 2.15. Let S be a monoid. Then every indecomposable S-act satisfying Condi-
tion (P ′) is locally cyclic if S satisfies any of the following:

(1) S has a right zero.
(2) S is a group.
(3) S is a right nil monoid.
(4) S is a commutative aperiodic monoid.
(5) S is a commutative idempotent monoid.

Proof. (1) It follows from Remark 2.7 (1) and the discussion provided before Example
2.14.

(2) It follows from Lemma 2.3 in [9].
(3) Let A be an indecomposable S-act satisfying Condition (P ′) and S be a right nil

monoid. Let a, a′ ∈ A. Since A is indecomposable, there exists a set of equations
a = a1u1

a1v1 = a2u2
· · ·

amvm = a′.

Since S is right nil, there exists n1 ∈ N such that un1
1 is a right zero of S, so 1un1

1 = u1u
n1
1 .

From a = a1u1 and un1
1 = u1u

n1
1 we conclude that there exist b1 ∈ AS , s1, t1 ∈ S with

a = b1s1, a1 = b1t1 and s1 = t1u1, since A satisfies Condition (P ′). Hence (b1t1)v1 = a2u2
and, since u2 is a right nilpotent element of S, there exists n2 ∈ N such that un2

2 is a right
zero of S, so (t1v1)un2

2 = u2u
n2
2 , and hence there exist b2 ∈ AS , s2, t2 ∈ S with b1 = b2s2,

a2 = b2t2 and s2t1v1 = t2u2. Continuing in this way, we deduce that there exists nm+1 ∈ N
such that tmvmvnm+1

m = 1vnm+1
m , and hence there exist bm+1 ∈ AS , sm+1, tm+1 ∈ S with

bm = bm+1sm+1, a′ = bm+1tm+1 and sm+1(tmvm) = tm+1. Consequently,
a = b1s1 = b2s2s1 = · · · = bmsm · · · s2s1 = bm+1sm+1sm · · · s2s1

and a′ = bm+1tm+1, as required.
(4) Let A be an indecomposable S-act satisfying Condition (P ′) and S be a commutative

aperiodic monoid. Let a, a′ ∈ A. Since A is indecomposable, there exists a set of equations
a = a1u1

a1v1 = a2u2
· · ·

amvm = a′.

Since S is aperiodic, there exists n1 ∈ N such that un1
1 = un1+1

1 , and so 1un1
1 = u1u

n1
1 .

From a = a1u1 and un1
1 = u1u

n1
1 , we conclude that there exist b1 ∈ AS , s1, t1 ∈ S with

a = b1s1, a1 = b1t1 and s1 = t1u1, since A satisfies Condition (P ′). Hence (b1t1)v1 = a2u2
and, since u2 and t1v1 are aperiodic elements of S, there exist n2, n3 ∈ N such that
un2

2 = un2+1
2 and (t1v1)n3 = (t1v1)n3+1, so t1v1(un2

2 (t1v1)n3) = u2(un2
2 (t1v1)n3), and hence

there exist b2 ∈ AS , s2, t2 ∈ S with b1 = b2s2, a2 = b2t2 and s2t1v1 = t2u2. Continuing
in this way, we get bm+1 ∈ AS , sm+1, tm+1 ∈ S with bm = bm+1sm+1, a′ = bm+1tm+1 and
sm+1(tmvm) = tm+1. Consequently,

a = b1s1 = b2s2s1 = · · · = bmsm · · · s2s1 = bm+1sm+1sm · · · s2s1

and a′ = bm+1tm+1, as required.
(5) Since every idempotent monoid is aperiodic, then the proof is similar to (4). �
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3. P′-covers
In this section we study Enochs’ notion of cover in the category of acts over monoids

and focus on P′-covers where P′ is the class of S-acts satisfy Condition (P ′).
It is easy to show that P′-covers, when they exist, are unique up to isomorphism, whereas

this is not true, in general, for (P ′)-covers by Remark 2.12. Now it follows that not every
P′-cover is a (P ′)-cover.

The following theorem illustrates a close relationship between covers and precovers.
Theorem 3.1. Let A be an S-act and X be a class of S-acts. Then the X-cover of A, if
it exists, is a retract of any X-precover of A.
Proof. Let X−→A be the X-cover and X ′−→A be an X-precover. Since X and X ′ are
precovers then there exist S-morphisms g : X → X ′ and f : X ′ → X such that the
following diagram is commutative.

X

g
���
�
�

  A
AA

AA
AA

A

X ′

f
���
�
�

// A

X

>>}}}}}}}}

But then X
g−→ X ′ f−→ X is an automorphism. So fg has a right inverse h, and so

f(gh) = idX . We conclude that X is a retract of X ′. �
Recall that CP-covers are coessential-covers that satisfy Condition (P ) and considered

by Mahmoudi and Renshow in [10].
Lemma 3.2. If A is a right S-act and g : X−→A is a P′-cover, where X satisfies Con-
dition (P ), then X is a CP-cover.
Proof. If X ′ is an S-act satisfies Condition (P ) and f : X ′−→A is an S-morphism then
X ′ satisfies Condition (P ′) and so there exists h : X ′−→X with gh = f and so g : X−→A
is a CP-cover. �

The concept of directed colimits in the category of S-acts, Act − S, is identical to that
in the category of R-modules, where R is a ring with identity. We refer the reader to [13]
for more details.

Let I be a set with a preorder (that is, a reflexive and transitive relation). A direct
system is a collection of S-acts (Xi)i∈I together with S-morphisms ϕi,j : Xi−→Xj for all
i ≤ j ∈ I such that

1. ϕi,i = 1Xi , for all i ∈ I; and
2. ϕj,kϕi,j = ϕi,k whenever i ≤ j ≤ k.

The colimit of the system (Xi, ϕi,j) is an S-act X together with S-morphisms αi :
Xi−→X such that

1. αjϕi,j = αi, whenever i ≤ j, and
2. If Y is an S-act and βi : Xi−→Y , i ∈ I, are S-morphisms such that βjϕi,j = βi

whenever i ≤ j, then there exists a unique S-morphism ψ : X−→Y such that the
diagram

Xi

βi

��

αi // X

ψ~~}
}
}
}

Y

commutes for all i ∈ I.
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If the indexing set I satisfies the property that for all i, j ∈ I there exists k ∈ I such that
k ≥ i, j then we say that I is directed. In this case we call the colimit a directed colimit.

In what follows, we shall show that the directed colimit and coproduct of acts that
satisfy Condition (P ′), satisfies Condition (P ′), too. For this purpose we will use the
following basic property of directed colimits. For more details we refer the reader to [13].

Theorem 3.3 ([1, Theorem 2.2]). Let S be a monoid, let (Xi, ϕi,j) be a direct system of
S-acts with directed index set I and let X be an S-act and αi : Xi−→X be S-morphisms
such that

Xi

αi   A
AA

AA
AA

ϕi,j // Xj

αj~~}}
}}
}}
}

X

commutes for all i ≤ j in I. Then (X,αi) is the directed colimit of (Xi, ϕi,j) if and only if
1. for all x ∈ X there exists i ∈ I and xi ∈ Xi such that x = αi(xi),
2. for all i, j ∈ I, αi(xi) = αj(xj) if and only if ϕi,k(xi) = ϕj,k(xj) for some k ≥ i, j.

The proof of the following result is easy, because of Theorem 3.3.

Theorem 3.4. Let S be a monoid. Every directed colimit of a direct system of acts that
satisfy Condition (P ′), satisfies Condition (P ′).

Proof. Let (Xi, ϕi,j) be a direct system of S-acts satisfying Condition (P ′) with directed
index set and with directed colimit (X,αi). Suppose that xs = x′t in X and sz = tz for
some z ∈ S. Then, there exists xi ∈ Xi, xj ∈ Xj with x = αi(xi), x′ = αj(xj). Then, by
Theorem 3.3, there exists k ≥ i, j with ϕi,k(xi)s = ϕj,k(xj)t in Xk. Consequently, there
exist y ∈ Xk, u, v ∈ S with ϕi,k(xi) = yu, ϕj,k(xj) = yv, us = vt. Hence,

x = αi(xi) = αk(ϕi,k(xi)) = αk(yu) = αk(y)u.

In a similar way, x′ = αk(y)v, and the result follows. �

It is a direct consequence of the definition that the following lemma holds.

Lemma 3.5. Let S be a monoid and let X =
∪̇
i∈IXi be the coproduct of S-acts (Xi)i∈I .

Then X satisfies Condition (P ′) if and only if each Xi satisfies Condition (P ′).

It is clear that a necessary condition for an S-act A to have an X-precover is that there
exists X ∈ X with homS(X,A) 6= ∅. This condition is always satisfied in the category
of modules over a ring (or indeed any category with a zero object), as every hom-set is
always non-empty, but this is not always the case for S-acts.

Now, let X be the class P′. We know, from [7, Theorem II.3.3], that every S-act A
is a surjective image of a free S-act and every free S-act is isomorphic to

∪̇
i∈ISi, where

Si ∼= SS for all i ∈ I, for some non-empty set I ([7, Theorem I.5.13]) and it is clear
that

∪̇
i∈ISi ∈ P′. Hence, by the above discussion and Lemma 3.5, conditions (1) and

(2) of [1, Theorem 4.14] hold. It remains to provide situations under which condition (3)
of [1, Corollary 4.14] holds.

Theorem 3.6. Let S be a right cancellative monoid, Then, every S-act has a P′-cover.

Proof. By Theorem 3.4 and [1, Theorem 4.11], if an S-act has a P′-precover then it
has a P′-cover. By the above discussion and [1, Corollary 4.14], we just prove that ev-
ery indecomposable S-act which satisfies Condition (P ′) has a bound on its cardinal-
ity. Since every S-act which satisfies Condition (P ′) is torsion free, the result follows by
[2, Theorem 5.4]. �
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