Available online: April 11, 2019

Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat.
Volume 68, Number 2, Pages 1742-[[760] (2019)

DOI: 10.31801/cfsuasmas.454232

ISSN 1303-5991 E-ISSN 2618-6470

COMMUNICATIONS
http://communications.science.ankara.edu.tr/index.php?series=A1 SERIES A1

THE CUBIC EIGENPARAMETER DEPENDENT DISCRETE
DIRAC EQUATIONS WITH PRINCIPAL FUNCTIONS

TURHAN KOPRUBASI

ABSTRACT. Let us consider the Boundary Value Problem (BVP) for the dis-
crete Dirac Equations

{ an+1yf¢2)1 by + Pyt = Ayl

( ) + qny1(’l2) = Aygf) , N S N7

(0.1)
anflysfl + bnynl

(Yo +71A + 722 + 73)\3)952) + (Bo + B1A + B2A% + ﬂ3>\3)y(()1) =0, (0.2)
where (an), (bn), (pn) and (gn), n € N are complex sequences, v,;, 8; € C,
i = 0,1,2 and X is a eigenparameter. Discussing the eigenvalues and the
spectral singularities, we prove that the BVP (0.1), (0.2) has a finite number
of eigenvalues and spectral singularities with a finite multiplicities, if

o0
> exp(en®) (11 = an| + [1 4 ba| + |pn| + |gn]) < oo,

n=1

holds, for some € > 0 and % <6< 1.

1. INTRODUCTION

Difference equations are well suited to be solved with the computers since they
become easily to an algorithmic form and they help to solve differential equations
approximately with making discretizations. Also they arise as mathematical models
of many practical problems arising in engineering, biology, economics and control
theory. On the other hand, studies related on them lead to the rapid development
of the theory of discrete difference equations. In the last decade, discrete boundary
value problems have been intensively studied and the spectral analysis of the differ-
ence equations have been treated by various authors in connection with the classical
moment problem ([1 — 5]). Moreover the spectral theory of the difference equations
have been applied to the solution of classes of nonlinear discrete Korteveg-de Vriez
equations and Toda lattices ([6,7]).
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Let the discrete boundary value problem (BVP)

{ il = s+ pa = w1
—y oy + gyt = a) '

yi =0, (1.2)
is considered where (p,,) and (g,) are complex sequences for n = 1,2,... and \ is
a spectral parameter. The spectral analysis of the BVP (1.1)-(1.2) with spectrum
and principal functions has been investigated in [8]. Moreover the authors in [8]
found the integral representation for the Weyl function and the spectral expansion
of (1.1)-(1.2) in terms of the principal functions. Some problems related to the
spectral analysis of difference equations with spectral singularities have been studied
in [9—14]. The spectral analysis of eigenparameter dependent non-selfadjoint BVP
for the system of difference equations of first order have been studied in [15 — 18].

Let us consider the discrete Dirac equations with cubic eigenparameter depen-
dent boundary conditions such as

an+1yfﬁl by + ooyl = Ayl

(1.3)
an71y,(,1_)1 + bnyng) + qny7(1,2) = )‘y7(12) , n €N,
(Yo + 1A + 7222 + 15202 + By + BN+ B2 + B0y =0, (14)

(1)
where ?2) , n € N are vector sequences, a, # 0, b, # 0 for all n. Also
Yn

(Yo, 715725 73) and (B, By, Ba, B3) are linearly independent with [y;] + [B5] # 0
and 7yg # % where v,, 8, € C, i =10,1,2. If a,, =1 and b, = —1 for all n € N,

then the system (1.3) reduces to

Ayy(f) +pny7(zl) = )\yr(zl)
(1.5)

—Ayfll_)l + o =P neN

where A is a forward difference operator. The system (1.5) is the discrete analogue
of the well-known Dirac system

() G0 ) () ().

([19], Chap. 2). Therefore the system (1.5) (also (1.3)) is called the discrete Dirac
system. In this article, we intend to investigate of spectrum and principal functions
of the BVP (1.3)-(1.4) under the condition

Zexp(sn‘s) (11 = an| + |14+ bn| + |pn] + gn|) < oo,
n=1



1744 TURHAN KOPRUBASI

forsomee>0and%§6§1.

2. JOST SOLUTION OF (1.3)

Suppose that the condition
Zexp (en®) (11 = an| + 1+ ba| + [pa] + [gn]) < 00 (2.1)

is satisfied for some & > 0 and 1 < & < 1. It is well-known that [14], eq. (1.3) has
the bounded solution

(1) o iz
falz) = (fé)(z)) = ay, (IQ + > Anmeimz> (e 2) e neN, (2.2)
n (Z) m=1 -t

(2) = ol { 1+2A53n ] zAa%n } (2.3

under the condition (2.1) for A = 2sinZ and z € C; = {z:2€C, Imz >0},
where

all a12 1 0 All A12
Ap = < 0[21 22 > ’ I, = ( 0 1 ) 5 An'm = < A72Lj}rn Aggn )

n

Note that o and A% = (i,j = 1,2) are expressed in terms of (ay), (b,), (pn) and
(¢n), n € N. Also

|A7 | <C Z (11 = ax| + |1+ bk| + [px| + |ax]) (2.4)
k=n+[| 2]

holds, where C' > 0 is a constant and [| =z |] is the integer part of %. Therefore f,
is vector-valued analytic function with respect to z in C4 :={z:2€ C, Imz > 0}

_ (1)
and continuous in C4 ([14]). The solution f,(z) = (f?Q)EZD is called Jost solution
n (2

of (1.3).
)
Let ¢,,(A\) = A?Q)(/\) ,n € NU{0} be the another solution of (1.3) subject to
Pn

the initial conditions

BN = =0+ 1A+ 1 47507 BP0 = (B + Bid+ Bo + B0P).
If we characterize
—~ .z
eu(z) = {Ba2sin D)}, neNU{0},

then ¢,, is an entire function and is 47 periodic.
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Let us take the semi-strips Ty :={2: 2 € C, z=x + iy, 0 <z <4rm, y >0} and
T := Ty U [0, 4x]. Then the Wronskian of the solutions f,(z) and ¢,,(z) is given by

W 1fa(2), 6a(2)] = an [Bir](2sin )£ (2) = £ (20500 (250 )]

~ ag [@§>(2s1n2) () - 122 2sin )]
If we define .
f(z) =3P (2sin = )f<1>() 1(2)(z)@é1)(2sin§),

then f is analytic in C,, contmuous in C; and f(z) = f(z +4m). When f(2) #0
for all z € S, fn(z) and ¢,,(2) are linearly independent. Here

F(2) = W [1a(2), 9u(2)] = a0 () (2.5)
is called Jost function of the BVP (1.3)-(1.4). Moreover, if we define g,, = (gﬁll), g,(f))

then,
ap—1, (1) (1)
1 1 (2 P fr
Ry(L)gn = —= { (G209 )| 2
7(2) 2_: ! o £

6., o) ares f ) o)
+ Z k19 @) @)
k=n+1 k Pn

is the resolvent of the BVP (1.3)-(1.4).

3. EIGENVALUES AND SPECTRAL SINGULARITIES OF (1.3)-(1.4)

From (2.5), we clearly obtain that the function
f2) = a0 [17(2) (0 + 1A+ 7207 795X

+ F0(2)(Bo+ Bid+ BN + B3N] (3.1)

is analytic in C,, continuous up to the real axis and is 47 periodic. Also if we
denote the set of all eigenvalues and spectral singularities of the BVP (1.3)-(1.4)
by o4 and o5 respectively, then it is clear that

.z -
Jd:{)\.)\:2sm§, z €Ty, f(z)fO}, (3.2)
={xia=2sinZ, 2 e 0,47, flz) =0} (3.3)
From (2.2), (2.3) and (3.1) we obtain
f(z) = ao {fz‘aélﬂge*” - wzaél +attys)e s
+4 [(By +383) ag' — y307" 4+ 79037]
- [_ (Bo +283) 050 + 05" — (v, + 373) 0‘%2] e's
[ (B1+3B3) o' + (71 + 373) af' — (79 + 273) 0&2] e
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32
— [5204(1)1 — (Y0 + 2v2) o' + (71 + 373) ‘3@2} e’z
+1 [/3304(1)1 — (71 +3y3) ol + 72“?2] e

5z _3
_ [ 21 _7305%2] i85z + i, a216132 2531412 11 1 m—3)z

4+ (ﬁQAlgn _ 63A11 ) 11 z(m 1)z

- 2
M %

1

{[BQAH — (B1 +3B3) A(l)gn] agt +y3Ain el + ’YsA%EnO‘%Q} ¢l(m=3)

SME;%

+1 Z {[(B1 + 3B3) Abr, — (Bo +282) Ajm] g
m=1

(72A1m All ) ('YzAlm 7314%7171) 6@2} e'm*

- Z {[(B1 +383) Agp, — (B + 282) Agi] g + [v2 415, — (11 + 373)A10,] af!

m=1

8

+ [12 A2k — (11 + 37,) AR ] o2} et 3)
i Z (18,412, — (8, + 383) AL ] adl + [(, + 39)ALL, — (70 + 295) A2 ] 021
st
+ (71 + 373)AZE, — (70 + 272) AR ] @32} eilmH D)z
_ Z {(BoALL, — BiAR2) ot + (7, + 3v5) A2, — (7o + 27,) AL ] 02!
+ [ +39) A%, — (70 + 29)A3%,] a2} el ):
o Z {B3Agman’ + [12A15, — (71 +373) Afp] of!

+ [12A15, = (71 + 373) AT, ] af?}

_ Z I:(FYQA% A12 ) Ly (nyAlm 'YSA%%L) ng] ei(m+g)z
=1
+i ) (At + AT, ) e, (3.4)
m=1
Let A |
F(2):= f(2)e', (3.5)

then, the function F is analytic in C,, continuous in C,

F(z) = ao {—iaél,83 - (ﬁzO‘(l)l + 0‘%2’73)61%
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+i [(By +3B3) ag" — y30i’ + 75077 e
_ [_ (Bo +285) a(lJl + yoadt — (v, + 373) o? ] &
+i[= (81 +3B83) agt + (71 + 3v3) 3" — (70 + 272) a7?] €%
- [5204) — (Y + 272) o' + (71 + 373) @ ] i
+i[B3ap" — (71 +373) of' + yp07?] €7

1
_ [7204%1 ,’yga%Q] iz JF,L,-YSal iz ZBSAU 11 z m— 5)2

i3z
2

o0

+1 Z ﬁ2A12 — )a(l)lezmz

m=1
00

= 3 {828~ (3 493 AR ! sl £ it} 70D

05 {[(B+ 3248, — (B +26,) AR, o
m=1

+ (1AL, — 7y AlL) 0 + (1,4, — 0,42, @B} el 02

- i {[(B1 +3B3) Agi, — (Bo + 282) Absn) a0 + [12415, — (71 +373)Al%] it
1
+ [12A%, = (71 + 373) AT a?z} eilm+1):
+i Z {[B2Abn, — (81 +383) Ad,] @ + [(v1 + 375)Als, — (30 + 272) A7 ] of!
o
+ [(71+ 373)ATh — (Y0 + 272) AT, ] o} €102
- i {(B2400 — B3Abm) ab" + (1 +375) At — (0 + 272) ALy, ] oF!

+[(71 + 375) A2, — (70 + 272) A3, ] 02} €1(m 1)
40D (B ol + 1AL, — (3, +37,) AlL] 02
m=1
+ [12 A2, — (1 + 375) A2 ] @22} i)z
=3 [ Ath, ~15AR) 0+ (1,4, — 70T, o] 074 D):
]

+i yg ALl 021 4~ A21 (22) gilmtd)z 56
1 3
m:l
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and
F(z +47) = F(2).
Using (3.2)-(3.5),

od:{)\:)\:2sin§, z€T, F(z)zo}, (3.7)

USS:{)\:)\:2sin§, z € [0, 4], F(z)zO}. (3.8)

Definition 3.1. The multiplicity of a zero of F in T is called the multiplicity of
the corresponding eigenvalue or spectral singularity of the BVP (1.3)-( 1.4).

It follows from (3.2) and (3.3) that, in order to investigate the quantitative
properties of the eigenvalues and the spectral singularities of the BVP (1.3)-(1.4),
we need to discuss the quantitative properties of the zeros of F' in T.

Let

My :={z:2€Ty, F(z) =0},
(3.9
My :={z:2z€0,4n], F(z) =0}.
We also denote the set of all limit points of M; by M3 and the set of all zeros of F
with infinite multiplicity by Mjy.
From (3.2), (3.3) and (3.9) we get that

o4 = {)\:)\:2$in§, zeMl},
(3.10)

USS:{)\:)\:2sin§, zEMg}.

Theorem 3.1. If (2.1) holds, then

(i) The set My is bounded and countable.

(i) MiNMs =@, MyNMy=02.

(iii) The set My is compact and p(Ms) = 0, where p denotes the Lebesque
measure in the real axis.

(ZU) M3 C My, My C My ; ,u(M3) = /,(,(M4) =0.

(1}) Ms C My,
Proof. Using (1.4), (2.4) and (3.6), we have
—iog' B v s Me 0; € Ta
F(z) = { 1% ff +0(262 ) | Os# 0, zely=o0 gy
—(Brop" +ai?yz)e’s +o(e7V), f3=0, z€T, y — .

Eq. (3.11) shows that M; is bounded. Since F' is analytic in C and is a 47 periodic
function we get that M; has at most a countable number of elements. This proves
(i).
From the uniqueness theorems of analytic functions we obtain (ii)-(iv) [20].
Using the continuity of all derivatives of F' on [0,47] we get (v). O

From (3.10) and Theorem 3.1, we have the following.
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Theorem 3.2. Under the condition (2.1)

(i) the set of eigenvalues of the BVP (1.3)-(1.4) is bounded and countable and
its limit points can lie only in [-2,2].

(11) oss C[—2,2], 05s = Tss and p(oss) = 0.

For 6 = 1 condition (2.1) reduces to

oo
Zexp(en) (11 = an| + |14 bp| + [pn| + [gn]) < o0. (3.12)
n=1
Theorem 3.3. Under the condition (3.12) the BVP (1.3)-(1.4) has a finite number
of eigenvalues and spectral singularities and each of them is of finite multiplicity.

Proof. Using (2.4) we find that

—%(n—i—m)] Li,j=1,2, n,meN, (3.13)

|A | < Cexpl
where C' > 0 is a constant. From (3.6) and (3.13) we observe that the function F'
has an analytic continuation to the half-plane Im z > —£. Since F' is a 47 periodic
function, the limit points its zeros in T cannot lie in [0, 47]. Using Theorem 3.1 we
have the bounded sets M; and M have a finite number of elements. From analytic-
ity of F'in Im z > —£, we get that all zeros of F' in T' a finite multiplicity. Therefore
using (3.10), we obtain the finiteness of eigenvalues and spectral singularities of the

BVP (1.3)-(1.4). O

It is seen that the condition (3.12) guaranties of the analytic continuation of F'
from the real axis to lower half-plane. So the finiteness of eigenvalues and spec-
tral singularities of the BVP (1.3)-(1.4) are obtained as a result of this analytic
continuation.

Now let us suppose that

o0

1
E exp(en®) (|1 = ap| + |14 bp| + |pn] + |gn]) < 00, >0, 3 <5<l (3.14)
n=1

which is weaker than (3.12). It is evident that under the condition (3.14) the
function F is analytic in C and infinitely differentiable on the real axis. But F' does
not have an analytic continuation from the real axis to lower half-plane. Therefore
under the condition (3.14) the finiteness of eigenvalues and spectral singularities of
the BVP (1.3)-(1.4) cannot be shown in a way similar to Theorem 3.3.

Under the condition (3.14), to prove that the eigenvalues and the spectral sin-
gularities of the BVP (1.3)-(1.4) are of finite number we will use the following.

Theorem 3.4. ([8]) Let us assume that the 4w periodic function g is analytic in
C4, all of its derivatives are continuous in Cy and

<Ay , keNU{0}.

sup [¢4)(2)
z€T
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If the set G C |0, 47r] with Lebesque measure zero is the set of all zeros the function
g with infinite multiplicity in T, if

w

/an(s)du(Gs) = —00, (3.15)

0

where K(s) = ir’;f A,’;fk and p(Gs) is the Lebesque measure of s-neighborhood of G

and w € (0,4m) is an arbitrary constant, then g =0 in C,.
Under the condition (3.14) from (2.4) and (3.6) we find

‘FU“)(Z)) <A, , keNU{0}
where
5
Ay, =5%C Z m” exp(—gm‘s)

m=1

and C' > 0 is a constant. We can obtain the following estimate,
A, < 5’“C/xk exp(—%x‘g)dx < dek!kk¥, (3.16)
0

where D and d are constants depending C, € and 6.
Theorem 3.5. If (3.14) holds, then My = &.

Proof. The function F' satisfies all conditions of Theorem 3.4 except (3.15). But F
is not identically equal to zero. In this case the function F' satisfies the condition

w

/an(s)du(le’s) > —00 (3.17)
0

instead of (3.15), where K(s) = iI]:f A,’;‘—f’k, ke NU{0} and p(My ) is the Lebesque

measure of s-neighborhood of My and Ay, is defined by (3.16). Substituting (3.16)
in the definition of K (s), we get

1—
K(s) =Dexp{—566_1d_1655_165}. (3.18)
It follows from (3.17) and (3.18) that

)

sT T dp(My ) < oo. (3.19)

—¢

w o

Since 1‘%5 > 1, consequently (3.19) holds for arbitrary s if and only if p(My ) =0
or My = @. U
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Theorem 3.6. Under the condition (3.14) the BVP (1.3)-(1.4) has a finite number
of eigenvalues and spectral singularities and each of them is of finite multiplicity.

Proof. To be able to prove the theorem we have to show that the function F' has a
finite number of zeros with finite multiplicities in 7.

From Theorem 3.1 and Theorem 3.5 we get that M3 = &. So the bounded sets
My and M5 have no limit points, i.e., the function F' has only a finite number of
zeros in T'. Since My = &, these zeros are of finite multiplicity. O

4. PRINCIPAL FUNCTIONS OF (1.3)-(1.4)

Let A1, Az, ..., Ap and Agy1, Akt2, ..., A, denote the zeros of F in T and [0, 47]
with multiplicities m1, mo, ..., my and mg41, Mi42, ..., My, respectively.

(1)
Let us define £ := < /2) > where
(699) = ansayZy + by + paylh, neN

and
@@@n:%qﬁL+MWLWW9,n€N

Definition 4.1. Let A = \g be an eigenvalue of the BVP (1.8)-(1.4). If the vectors

2 v

Yn, %yn; jﬁyna-ua ddﬁyn;
d’ {dﬂ' } ,
—Y =1 —Yn ,j=0,1,...,v; neN
dN AN e

satisfy the conditions

(Ey)n - )‘0yn = Oa

@ d’ =1 .
<£ <d)\jy>)n_)\0d)\jyn_ Fyn =0, j=12,...,v ; neN
then the vector y, is called the eigenvector corresponding to the eigenvalue A = Xg
2 v
of the BVP (1.3)-(1.4). The vectors d—d)\yn, dd?yn, ceey jﬁyn are called the associ-
ated vectors corresponding to X = X\g. The eigenvector and the associated vectors
corresponding to A = Ao are called the principal vectors of the eigenvalue A = Xg.

The principal vectors of the spectral singularities of the BVP (1.83)-(1.4) are defined
analogously.

We define the vectors

1) & (1)

oo (HEEo),

d)\] n()\z)_ 1 & E(Q) A\ ‘ 5 neN
ERE LG NN

i=0,1,...omi—1:i=12,... kk+1,...,v (4.1)
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where A = 2sin § and

(1)
E,(\) = < gzz) 8; > = fn (2arcsin \/2)

_ fr(bl) (2 arcsin \/2)
B ( 72 (2aresin\/2) | (4.2)

If

_ T Rey
y(A) ={yn (N} = ( 42 () -

is a solution of (1.3), then
. . 49 (1)
& @ o7 )yn” (V)
= {(G5) 0 L (e
neN ad ) Yn (M)
satisfies

3 2 i 2 ; L
@125y ) + bzl (

)
B0 () 4 B ()
= ( Vi (Agijﬁwf ey ) ) (4.3)

From (4.1)-(4.3) we get that

(CV (X)), — AoVn (M) =0,
& & a1
Ll —V (N —d—Va(N)— ——V, (X)) =0, neN
( (dAJ ( )>)n 0w Vi) = eV ()
i=12...om;—1;1=12,...,v.
The vectors %Vn (N) for j=0,1,2,...,m; —1;i=1,2,...,k and %Vn (\;) for
i=0,1,2,...,m;—1;i=k+1,k+2,...,v are the principal vectors of eigenvalues
and spectral singularities of the BVP (1.3)-(1.4), respectively.

Theorem 4.1.

di
an(/\i)eéQ(N,Cz), j=0,1,2,....m;—1;i=1,2,....k
and

j
%Vn(/\i)géég(N,(y), j=0,1,2,....omi—1;:i=k+1,k+2,...,v.
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Proof. Using (4.2) we get that

d J
@ p } { } neN
{ dAJ " ( ) A=N\; g d/\t ) z2=z; "

47
& e A} _ D{ 2) ( } . neN
{0 LD ey

where \; = 2sinz;/2, z; € T fori = 1,2,...,k and C;, D, are constants depending
on \. From (2.2) we obtain that

dt iz;(n
S @)  —abtierayenen

=%z

and

+ Z 11 {All -t m+n+ 1/2)75 ei(m—i—n—i—l/Z)zi

m=1

~ A2 L (i 4 )t ez‘(m+'n)21:} (4.4)
and

dt izi(n inz;
{0} =it 1/ @ i n)' e

=i

n Z 21 {All it (m+n+ 1/2)t6i(m+n+1/2)zi

_A’}l%nit—i-l (m + n)t i(m+n)z; }

+ Z {A21 it (m+n+1/2)" ellmAntl/2)z
m=1

— A2 L (g 4 )t gilmAn)z } . (4.5)

For the principal vectors %Vn (\) = {dd/\JJ Vi ()\1)} for 7 =0,1,...,m; — 1;
i=1,2,...,k corresponding to the eigenvalues of the BVP (1.3)-(1.4) we get

1 (& 1< dt
1 _E(lu} o c{ B i}
]'{d}\J n ( ) Y ]'; t d/\tfn (Z)

F=0,1,....mi—1:i=12...k (4.6)

and

1[d 0 } _1 {dt@),}
{d)\jEn (/\) )\:)\._ . ;Dt d)\tfn (zl)
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j=0,1,....mi—13i=12... k (4.7)

Since Im \; > 0 for ¢ = 1,2,...,k from (4.6) and (4.7) we obtain that

S (3o [
)

j) [2; max {|C4] | D}

(
(e mm )] as

(L) {fj [gmaxuctuwt}{uam +la)

% (\n + 1/2|te—(n+1/2) Imzi) n ’aiz‘ |n\t e—nlmzi}

n

[

IN

or

|

oo

+Zmax{|ct|,|Dt|} {Z (o' | + [a2t])

(|A ‘|m+n+1/2|t —(m+n+1/2)1mzl)

A5 et i)

+Zmax{|Ct| |Dt}{z ’aQQ‘ (|A72£ﬂ| ‘m+n+ 1/2'75 —(m+n+1/2)Im z;

t=0

+|A22 || + |t e~ (i) Im )H }2. (4.9)

From (4.9), if we say

%ZZmaxﬂCﬂ ‘Dt|}{<’a11‘+|a21’)

( 1/2| e~ (n+1/2) Imzl) 4 }0422| |n|t —TLIrnzl}
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then
AG+1) & ; .
Y S (‘7;’_ ) Z |:(’I7,+ 1/2)J ef(n+1/2)1mzi +nj€7nlmzi:|
J: n=1
< 00 (4.10)

holds where
A = max {|Cy], |Dt\}max{(|oz}f| + |oz?ll ) , |ozflz|} .

Now we define the function

gn (2) = Zmax{|ct| | Del} { Z (|a5z1| + |O‘3L1 )
t=0 m=1

nm

% (|A11 ||m—|—n+ 1/2| o—(m4n+1/2)Im z;

48l e )

J 00
—I—ZmaxﬂCt\ , Dt|}{z a22| (‘Ai'lrn} Im +n + 1/2|f e~ (m+n+1/2)Imz,
t=0 m=1

+‘A%§n‘ |m+n\te_(m+")1mzi)}. (4.11)
So we get,
1 oo J 0o
3 S st o0y { 3 ol o)
"n=1 Lt=0 m=1

% (|A11 |m—|—n—|— 1/2|t67(m+n+1/2)1mzi + |A3ﬁn |m+n‘t€7(m+n)lmzi)}

nm

J oo
+ Zmax{|0t\ NAN { Z |ai2| (‘Aiin‘ Im+n+ 1/2‘t o~ (m+n+1/2)Imz;
t=0 m=1

A2, [ 4+t e ) ]

:%Zgn(z)

Using the boundedness of A% and o/ for i,j = 1,2, we obtain that
gn (2) < max{|Cy|,|D:|} Mi i {\m +n+ 1/2|t e~ (mAn+1/2)Imz;
t=0 m=1
-+ nff e Omimima)
where
M = e { (o] + o) |42

nm

221 | 421
lei?| A

nm

)
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(Jewn [+ e[} [ A [ [ A7zl } -
If we take max {|C|,|D;|} M = N, we can write

J [e%s)
< NZe*"Imzi Z {(m+n+ 1/2)te*m1mz" + (m+n)te*m1mz’i}
t=0

m=1

= Ne nim= {Z 2™ Im A 4N eI ((m 0+ 1/2) + (m+ n))

m=1 m=1

+...+ ie*mlmzi ((m+n+1/2)j+(m+n)j>}

m=1

oo J
SNe—nImzl Zze m Im z; (m+n+1/2)t+(m+n)t>

1¢=0
< Be ™™ Im z;

where

J
B = NZe‘mImzi ((m +n+1/2)" + (m+ n)t) .
t=0
Therefore, we have,

2 2
1 = 1 — —nlImz;
" n=1 n=1

From (4.10) and (4.12), 25V, (\) € €5 (N,C?) for j = 0,1,...,m; — 1 ;i =
1,2,... k.

On the other hand; since Imz; =0 for j =0,1,...,m;—1;i=k+1,k+2,...,v
using (4.4), we find that

. 2
allit (n+1/2)" e”i("“m‘ — %

n=1
but the other terms in (4.4) belong to l2 (N,C?), so W EY (A) € €5 (N, C?) .Similarly,
from (4.5), we get %E (A) ¢ €2 (N,C?), then we obtain that %V (\i) ¢
l(N,C*) for j=0,1,....m; —1;i=k+1,k+2,...,v. O

Let us introduce Hilbert space H_; (N), 7 =0,1,2,...,

(1)
H—j(N)Z{y=<z?2) ) D> A+~ <
n neN

W2, = 3 @+ nl) (
neN

|

Y @

y?L

)

_|_

)<

with

m|?

ys s
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Now we have the following result:

Theorem 4.2. d)\]V (M) € H_(j41)(N) for j=0,1,2,....m; —1; i=k+1,k+
2,...,V.

Proof. Using (2.1), (2.6) and (2.7) we have

Z (1+ \n|)_2(j+1)
neN
1 (&
+|= 9 -5 EY /\}
.7' {d)\j ( ) A=\

1+|n\ —2(j+1) {dt @ }
—Z th o (@)

neN t=0

2

2
+

§_ng { dAtf‘Q) <zz)}
g S (Sl o)

t=0

(o)) |

for j=0,1,2,...,m; —1; i=k+1,k+2,...,v. Since Im z; = 0, using (4.13) we

get
{aew e}

ﬁi{Z (14 1) 79 (a4 1/2)! ol ||

I A

(3]

t=0

Do (Z

neN 0

IA

t=0

Cyl || (1 + In) “*“Z|Am (m+n+1/2)"
:O

12 2
+A42 | m+ )}

i{(i Lt )™ (n+1/2) Ia“||ct>

t=0

2
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J
2(1+|n|)7zu+1> ’%111| [Z (n+1/2)" |Gy
t=0

J [}
Z'CHZ‘AER (m+n+1/2)" +|Az, (m +mn)
= =1

' <Z|Ct|(1+ln G o] 3 |42,

t=0 m=1
2
x(m+n+1/2)" +]A2, m+n)t) } (4.14)
Using (4.14), (2.1) and (2.4) we first obtain that

<Z|Ctlla”| (1+1n))~ J“’Z(A}ﬁn (m+n+1/2)"

m=1

+ ‘A,llm‘ (m+mn) ))2

{Z|a11| Z 1+ )" (m+n+1/2) Cexp (—s((n+m)/4)6>

o0

2
e
x Yy ef(laj|+|1+bj+lpjl+lqj)}

j=n+[m/2]

2

G (ZJ: (1+ [nf)" UV i (m 0+ 1/2) exp (~ev2 (0% 4 m*/?) /4>>
=0 —

— Oy (14 [n]) 20 exp (—6\/5711/2/2)

X (i i (m+n+1/2)"exp (—5\/§m1/2/4)>

t=0 m=1

2

— Gexp (—aﬁn1/2/2) (1 + |n]) 20+ (4.15)

where

2
[e'e] s
01=(20\a53\ > e (|1—aj|+1+bj|+|pj|+|qj|>)
j=n+m/2]

2

=0, (i i (m+n+1/2) exp (sﬁm1/2/4)>

t=0 m=1
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Hence we get from (4.15)

3 (zw (L )~ a1 3 [,
n=1 \t=0 m=1

x (m+n+1/2)" + |42 | (m—l—n)t>2

[

< GZGXP (75\@711/2/2) (1+ |n|)"20+D
n=1
< 0. (4.16)
Secondly, using (4.14) and (4.15) we obtain that

Z? { [Z o 1G] (1 + [n)) "9 (n +1/2) ]

[Z |Cy| |a11| Z 1+ |n|)” (G+1) ((m+n+ 1/2)" |A311m|>

+(m+n)' A}

n=1

i 1+ |n|) —2(j+1) (n+ 1/2)teXp (—8\/§n1/2/4>]
t=0
= (4.17)

where
T= ’oz,lll} G'? max |C}|

and also expression of the left side of (4.15) is obviously convergent. So, we get

from (4.16) and (4.17)
{Ler <>}D < oo

S (14 [n) 26+ ;)2 (Z c
(e lf) <

neN
Finally £-V,, (\;) € H_(j11)(N) for j = 0,1,2,....m; —1; i = k+ L,k +
2,0 ..,V [

and similarly

Sa+ |n|>‘2“‘+”

neN

(2l

0
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