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ABSTRACT 
 

Wiener block structure is formed by cascade of linear and nonlinear models. A novel and improved Wiener model structure 

for system identification area is proposed in this study. In proposed Wiener model, Finite Impulse Response (FIR) model 

is used as linear part and Soft Switching based Hybrid (SSH) model is used as nonlinear part. The SSH structure consists 

of a Second Order Volterra (SOV) nonlinear model, a Memoryless Polynomial (MP) nonlinear model, and a soft-switching 

part through a Neuro-Fuzzy (NF) network. In simulation studies, different types systems are identified by presented novel 

model. In addition to the mentioned identified systems, the performance of the improved model is also compared with 
Volterra model and Wiener models presented in the literature. Simulation results find out the success of the proposed model. 

 

Keywords: System identification, Wiener, Hybrid model, Optimization. 

 

SİSTEM KİMLİKLENDİRME İÇİN GELİŞTİRİLEN BİR  

WIENER MODEL 
 

ÖZET 
 

 Wiener blok yapısı doğrusal ve doğrusal olmayan modellerin kaskad bağlanması ile oluşturulmaktadır. Bu çalışmada sistem 

kimliklendirme alanı için yeni ve geliştirilmiş bir Wiener model yapısı sunulmuştur. Önerilen yapıda, doğrusal kısım olarak 

Sonlu Darbe Cevaplı model, doğrusal olmayan kısım olarak Esnek Anahtarlama Temelli Hibrit (EATH) model kullanılmıştır. 

EATH yapısı, doğrusal olmayan ikinci derece bir Volterra model, doğrusal olmayan hafızasız bir polinom model ve bir bulanık 

sinir ağı temelli esnek anahtarlama mekanizmasından oluşmaktadır. Simülasyonlarda, önerilen model ile dört farklı sistem tipi 
kimliklendirilmiştir. İlave olarak, bu sistemleri kimliklendirmek için literatürde yeralan Volterra ve Wiener modellerde ayrıca 

kullanılarak önerilen modelin performansı ile karşılaştırılmıştır. Simülasyon sonuçları, önerilen modelin başarısını ortaya 

koymaktadır. 

 

Anahtar kelimeler: Sistem kimliklendirme, Wiener, Hibrit model, Optimizasyon. 

 

 

1. INTRODUCTION 
 

 System identification process begins with the selection of suitable input signals. So in our case one or several of coup, step, 

sinus or random signals are applied to system as input and output signal is recorded [1]. Since the main work of system 

identification is to obtain the best convenient and acceptable mathematical model to demonstrate the relations between the input, 

output and noise of a system. The behaviour of systems can be determined more clearly by using different models. It can be said 

that the performance of the model is detected by the convergence of the final solution and the real solution [2], and this mentioned 

model structure can be linear or nonlinear that shows the behaviour of most physical systems [3-12]. Many systems have 

nonlinear behaviours in real life. Since linear models are insufficient in the identification of such systems, nonlinear models are 

used [6-12]. The obtained parameters of the model are determined through some estimated or statistical methods. Another 

significant step of the identification procedure is estimation of the parameters correctly. In this step, the difference between the 
model’s output and the system’s output is determined. If the difference is wide another model structure is selected. If the 

difference is small, the obtained model can be used to identify and control the system [1]. 

 Nonlinear block-oriented models are used to describe the nonlinear behaviour of the system over the entire range of operating 

conditions adequately, and the identified system is typically sectioned into linear and nonlinear blocks. Wiener model is a well-

known block oriented model [13-19]. This model is obtained by cascade connecting of a linear block and nonlinear block, 

respectively [2]. The main motivation of using Wiener models is the computational effort related with the correct parameter 
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estimation and the low suitability for control design. So, many studies have been presented on the parameters estimation of 

nonlinear systems [16,17]. Wiener model is used because of both its usefulness and its ability to effectively predict a wide 

nonlinear process [18-20]. Wiener model applied in a variety of fields, such as chemical studies [21], biological systems [22], 

control of electrical systems [23], biomedical engineering [24], wireless mobile communications [25], model predictive control 

(MPC) [26-32], pH processes [33], signal processing [34]. In addition, the Wiener structure is used frequently in control, 

particularly in advanced MPC. MPC studies based on Wiener models can be effectively applied to multivariable processes that 

have many inputs and outputs, and for processes that have difficult dynamic properties [26-32]. 

 Generally, MP (Memoryless Polynomial) or SOV (Second Order Volterra) model as a nonlinear part and FIR or IIR (Infinite 
Impulse Response) linear model as a linear part is used in Wiener models [13-19, 35-40]. Most of the studies in literature, MP 

representation is preferred for nonlinear parts of block oriented structure because of its flexibility and simple usage [2, 16]. In 

addition to these advantages MP also decreases the number of parameters to be determined, therefore decreases computational 

complexity and convergence time of the Wiener block model. However once SOV model is used instead of MP model, 

identification performances of block models increases [38, 41].  

 In the last decade, many applications of soft computing techniques have been used to solve the problems in many areas like 

neural networks (NN) and fuzzy inference system (FIS) [42]. Neural network and FIS have robust learning and adaptation 

capabilities to solve linear or nonlinear problems. Neuro-Fuzzy (NF) system which integrates both NN and FIS has the potential 

to combine the advantages of NN and FIS in a single structure [43-45]. Thus, NF systems can be used as very powerful tools for 

identification areas. In literature there are various studies about NF based on Wiener [31, 40, 46-49] model types applied to 

system identification.  

 The main motivation of this study is to propose a robust and successful model structure. At this point authors designed an 
original Wiener model by combining linear FIR model and nonlinear Soft Switching Based Hybrid (SSH) model in which 

different types of memory and memoryless nonlinear models are used that previously proven Wiener block models in literature. 

The structure of the proposed Wiener model is shown in Figure 5. The SSH structure consists of a SOV nonlinear model, a MP 

nonlinear model, and a soft-switching mechanism through a NF network. Soft switching mechanism in SSH model increases the 

success of block model by selecting the best results of both nonlinear model outputs. This is due to enhanced features; the 

proposed Wiener model is a new block model different from the other models in literature. 

 

 

2. WIENER MODEL TYPES  
 

2.1. Wiener model with FIR and MP 

 

 In this Wiener model’s structure, FIR model and MP model are used as a linear and nonlinear block, respectively. This block 

model is illustrated in figure 1 [13-19, 35, 36]  

 

 

Figure 1. Wiener model with FIR-MP 

FIR model [50,51] output; 
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m is model length, MP model output [52,53]; 
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where p is MP model length [13-19, 35, 36].  

 

2.2. Wiener model with FIR and SOV 

 

 In this Wiener model’s structure, FIR model and SOV model are used as a linear and nonlinear block, respectively. This 

block model is illustrated in figure 2 [38].  

 
Figure 2. Wiener model with FIR-SOV 
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FIR model output; 
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m is model length. SOV model output [54,55]; 
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r is SOV model length [38] .  

 

 

3. NEURO-FUZZY (NF) NETWORK 
 

 Fuzzy logic is a popular computation system that is based on fuzzy IF-THEN rules, set theory and reasoning concepts. NF 

network is a fuzzy logic system that is developed by adaptable NF network framework. NF network is a combination of modelling 

uncertain features of fuzzy logic systems and learning ability of neural networks. Thus NF networks bring together the benefits 

of neural networks and fuzzy logic systems in one model. Fast and accurate learning, using data and expert knowledge together, 

and well generalization ability make the NF networks more popular in recent years [42-45, 56-58]  

 A typical NF network structure is shown in figure 3. In the above figure circle cells represent stable cells and square cells 

represent adaptive cells. For simplicity, the system has two inputs x and y, which can be considered as two canonical system. 

Sugeno’s model is the first and most demanding model because of its well applicability, computational efficiency and 

optimization problems [59,60]. 

 

 

Figure 3. NF network structure 

 

 Since Sugeno’s fuzzy model allows composing fuzzy rules based on input-output data couples, first degree of Sugeno model 

is used as NF network. According to this model, IF-THEN rules of the system can be written as follows [56]; 

 

Rule 1: If (x, A1) and (y, B1) then f1 = p1x + q1y + r1                           (5) 
 

Rule 1: If (x, A2) and (y, B2) then f2 = p2x + q2y + r2                        (6) 

 

Here Ai and Bi define fuzzy sets and pi, qi and ri define designed parameters. As seen in figure 3 NF network consists of 5 layers. 

 

Layer 1: Each cell in this layer defines the cell function as; 

 

     On,i =   )(x
iA ,   i = 1, 2 

       )(
2

y
iB 

 ,  i = 3, 4           

 

        (7) 

 

 Here )(x
iA  and )(

2
y

iB 
  shows fuzzy membership functions, On,i, represents i. Output of n. layer. Data from this layer 

output is the blurred version of selected data of NF input through membership functions. These values define selected values’ 

membership degree of the sets. The membership function of the NF network presented in this study is as follows; 
 

generalized bell 
b

a

cx
cbax

2

1

1
),,;(





                   (8) 

{a, b, c} parameters that change the shape of membership function is named as rest parameters. 
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Layer 2: Each cell in this layer performs AND process in input signals (in fuzzy IF-THEN rules). So, trigger force of each rule 

can be calculated. Here fuzzy AND corresponds to multiplication process:  

)()(,2 yxwO
ii BAii    , i = 1, 2 (9) 

Layer 3: i cell in this layer finds the trigger rate of i rule to sum of all trigger forces. So the i rule of trigger force is normalized:  
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 , i = 1,2 
       
        

   (10) 

Here every iw~  is described as normalized trigger force of i rule.  

Layer 4: Each cell in this layer has the following cell function:  

)(~~
,4 iiiiiii ryqxpwfwO   , i = 1, 2 (11) 

Here iw~  is the output of layer 3. Parameter set of this layer is named as {pi , qi , ri} result parameter.  

Layer 5: The sole cell in this layer calculates the sum of all signals and sends to output. This can be described as [56];  

21

2211
2

1
5

~

ww

fwfw
fwfO i

i
i








    
       

        

(12) 

During training, rest parameters in layer 1 and result parameters in layer 4 are adjusted until the NF network produce the desired 
response. In this study, in NF network training (parameter optimization) Levenberg-Marquardt algorithm [61, 62] is used [56]. 

 

 

4. PROPOSED WIENER MODEL 
 
 Proposed Wiener model is shown in figure 4. In inner structure of the model, FIR model and SSH model are used as linear 

and nonlinear part, respectively. The SSH structure consists of a SOV nonlinear model, a MP nonlinear model, and a NF network 

which uses output of the SOV model and the MP model to compute the Wiener model output.  

 

Figure 4. Proposed Wiener model 

 
 Soft switching mechanism of the system is a Sugeno typed NF network with first degree 2 input and 1 output. In each input 

of the network, there are 2 generalized bell typed membership function (13) and in output there is a linear membership function 

(14) [63-66].  
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 , (j= 1,...., 10 ; k=1,2) (13) 

 

zt (u1, u2) = dt1u1 + dt2u2 + dt3 , (t= 1,......, 10)   

     

   (14) 

 

 In above equations ajk is sigma of membership function, bjk is dispersion of membership function, cjk is center of membership 

function and dt is the t th consequence of fuzzy rule. These parameters are used to adapt the type of membership functions. Mjk 

is the j th antecedent membership function of the k th input, and zt is the consequent membership function of the t th rule. Rule 

base of the system consists of 10 rules that is the combination of inputs and the membership functions of these inputs. If x1, x2 

represent 2 inputs of NF network and y represents output of NF network, the rule base of the NF network is as;  
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1) If (x1 ϵ M11) & (x2 ϵ M12) then 

     z1 =d11x1 + d12x2 + d13  

   (15) 

2) If (x1 ϵ M21) & (x2 ϵ M22) then 
z2 =d21x1 + d22x2 + d23  

   (16) 

3) If (x1 ϵ M31) & (x2 ϵ M32) then 

z3 =d31x1 + d32x2 + d33  

 . 

 . 

   (17) 

10) If (x1 ϵ M101) & (x2 ϵ M102) then 

z4 =d101x1 + d102x2 + d103 

   (18) 

 

the NF network’s parameters are optimized by using the hybrid learning optimization algorithm that combines the gradient 

method and the least squares estimate [63]. The NF network’s output is the weighted average of rule outputs [63-66]. Weighted 

factor of each rule wt is calculated through the past membership functions. For this process, first input values are converted to 

fuzzy membership and then AND operator is applied this membership values. AND operator is equal to multiplication of input 

membership values. So, weighted factors of rules are calculated as;  

 
 NF network‘s output y can be obtained by calculating weighted average of rules when weighted factors are identified [63-

66]; 
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5. SIMULATION STUDIES 
 
 The performance of Wiener model proposed in this paper is compared with known models in literature which are Wiener 

model with FIR-MP (in figure 1), Wiener model with FIR-SOV (in figure 2) and second order Volterra model. So, firstly, the 

optimization framework of known models are given in figure 5 for system identification. The identification processes for these 

known models are performed on unknown system. In simulations, white Gaussian noise and Chirp-type signals are used as x(n), 

input signal, separately. The white Gaussian noise is shown in figure 6. The Chirp-type signal is given as x(n) = sin[(π/3)[L/(L-
1)][n/L-1]5], n = 0,1,…. ,L-1, and as shown in figure 7. These models that are used for identification to unknown systems are 

optimized by Recursive Least Square (RLS) algorithm [41, 67].  

 

 
Figure 5. Optimization structure of system identification 

w1 = M11(x1). M12(x2)           (19) 

w2 = M21(x1). M22(x2)           (20) 

w3 = M31(x1). M32(x2)           (21) 

    . 

    . 
 

w10 = M101(x1). M102(x2)            (22) 
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 Wiener model with FIR-MP (ym1), Wiener model with FIR-SOV (ym2) and second order Volterra model (ym3) are given below 

in equation (24), (25), (27) respectively. Equation (24) is obtained from equation (2) with p=3, m=1, equation (25) is obtained 

from equation (4) with r=1, m=1 and equation (27) is obtained from equation (26) with r=1. 

 

𝑦𝑚1(𝑛) = 𝑐1[𝑎0𝑥(𝑛) + 𝑎1𝑥(𝑛 − 1)] + 𝑐2[𝑎0
2𝑥2(𝑛) + 𝑎0𝑎1𝑥(𝑛)𝑥(𝑛 − 1) + 𝑎1𝑎0𝑥(𝑛 − 1)𝑥(𝑛) + 𝑎1

2𝑥(𝑛 − 1)𝑥(𝑛 − 1)] +
𝑐3[𝑎0

3𝑥3(𝑛) + 𝑎0
2𝑎1𝑥2(𝑛) 𝑥(𝑛 − 1) + 𝑎1𝑎0

2𝑥2(𝑛) 𝑥(𝑛 − 1) + 𝑎0𝑎1
2𝑥(𝑛)𝑥2(𝑛 − 1) + 𝑎1𝑎0

2𝑥2(𝑛) 𝑥(𝑛 − 1) +
𝑎0𝑎1

2𝑥(𝑛)𝑥2(𝑛 − 1) + 𝑎0𝑎1
2𝑥(𝑛)𝑥2(𝑛 − 1) + 𝑎1

3𝑥3(𝑛 − 1)                     (24) 
 

𝑦𝑚2(𝑛) = ℎ0[𝑎0𝑥(𝑛) + 𝑎1𝑥(𝑛 − 1)] + ℎ1[𝑎0𝑥(𝑛 − 1) + 𝑎1𝑥(𝑛 − 2)] + 𝑞00[𝑎0
2𝑥2(𝑛) + 𝑎0𝑎1𝑥(𝑛)𝑥(𝑛 − 1) + 𝑎1𝑎0𝑥(𝑛 −

1)𝑥(𝑛) + 𝑎1
2𝑥2(𝑛 − 1)] + 𝑞01[𝑎0

2𝑥(𝑛)𝑥(𝑛 − 1) + 𝑎0𝑎1𝑥(𝑛)𝑥(𝑛 − 2) + 𝑎1𝑎0𝑥(𝑛 − 1)𝑥(𝑛 − 1) +  𝑎1
2 𝑥(𝑛 − 1) 𝑥(𝑛 − 2)] +

𝑞10[𝑎0
2𝑥(𝑛 − 1) 𝑥(𝑛) + 𝑎0𝑎1𝑥(𝑛 − 1)𝑥(𝑛 − 1) + 𝑎1𝑎0𝑥(𝑛 − 2) 𝑥(𝑛) + 𝑎1

2𝑥(𝑛 − 2)𝑥(𝑛 − 1)] + 𝑞11[𝑎0
2𝑥(𝑛 − 1)𝑥(𝑛 − 1) +

𝑎0𝑎1𝑥(𝑛 − 1)𝑥(𝑛 − 2) + 𝑎1𝑎0𝑥(𝑛 − 2)𝑥(𝑛 − 1) + 𝑎1
2𝑥(𝑛 − 2)𝑥(𝑛 − 2)]                    (25) 

 
SOV model [54,55]; 
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r is SOV model length [38].  

𝑦𝑚3(𝑛) = ℎ0𝑥(𝑛) + ℎ1𝑥(𝑛 − 1) + 𝑞00𝑥(𝑛)𝑥(𝑛) + 𝑞01𝑥(𝑛)𝑥(𝑛 − 1) + 𝑞10𝑥(𝑛 − 1)𝑥(𝑛) + 𝑞11𝑥(𝑛 − 1)𝑥(𝑛 − 1)      (27) 
  

 Secondly, figure 6 infers the training and testing structure representing the optimization of the proposed Wiener model for 

system identification. The identification process for this model is performed on as unknown systems. In simulations, two different 

types of input signal are used; white Gaussian noise (in figure 7) and noiseless Chirp-type signal (in figure 8). The NF network 

uses the output of the SOV model and the MP model to compute the Wiener model output. This model is optimized with RLS 

and hybrid learning optimization algorithms.  

 

Figure 6. Training and testing of proposed Wiener model for adaptive optimization. 
 

 
Figure 7. White Gaussian noise signal 
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Figure 8. Noiseless Chirp-type signal 

 

 

5.1. Example-I 

 

 A Wiener system (equation 29) is used as an unknown system in the structure of figure 5,6 [14].  

The linear part, 

)2(5.0)1(433.0)(75.0)(  nxnxnxnz   (28) 

and the memoryless nonlinearity of Wiener system, 

)()()( 2 nznznd   
               

          (29) 

For White Gaussian noise input signal, MSE (Mean Square Error) and correlation results are given in table 1. Model outputs are 

shown in figure 9. 

 

Table 1. MSE and correlation results 
 

Model MSE Correlation 

Volterra Model 0.98630 0.78526 

Wiener Model with FIR-MP 0.98049 0.78541 

Wiener Model with FIR-SOV 0.47824 0.91628 

Proposed Wiener Model 0.28106 0.94294 

 

 
 

Figure 9. Simulation results [(a) Volterra model (b) Wiener model with FIR-MP (c) Wiener model with FIR-SOV (d) 

Proposed Wiener model] 
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For Chirp-type input signal, MSE and correlation results are given in table 2. Model outputs are shown in figure 10. 

 

Table 2. MSE and correlation results 

Model MSE Correlation 

Wiener Model with FIR-MP 0.39486 0.83407 

Volterra Model 0.22557 0.85223 

Wiener Model with FIR-SOV 0.09758 0.93408 

Proposed Wiener Model 0.06176 0.95952 
 

 

 

 
Figure 10. Simulation results [ (a) Wiener model with FIR-MP (b) Volterra model (c) Wiener model with FIR-SOV (d) 

Proposed Wiener model ] 

 

5.2. Example-II 

 
 A Hammerstein system (equation 31) is used as an unknown system in the structure of figure 5,6 [68]. The 

memoryless nonlinearity of Hammerstein system, 

)(5.0)()( 3 nxnxnz     (30) 

and a linear component with the transfer function 

21
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zz

z
zH   (31) 

 

For White Gaussian noise input signal, MSE and correlation results are given in table 3. Model outputs are shown in figure 11. 

 
Table 3. MSE and correlation results 

Model MSE Correlation 

Volterra Model  0.53478 0.77142 

Wiener Model with FIR-MP 0.43585 0.82348 

Wiener Model with FIR-SOV 0.42313 0.82510 

Proposed Wiener Model 0.32238 0.87221 
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Figure 11. Simulation [ (a) Volterra model (b) Wiener model with FIR-MP (c) Wiener model with FIR-SOV (d) Proposed 

Wiener model ] 
 

For Chirp-type input signal, MSE and correlation results are given in table 4. Model outputs are shown in figure 12. 

 

Table 4. MSE and correlation results 

Model MSE Correlation 

Wiener Model with FIR-MP 0.12535 0.81874 

Volterra Model 0.12427 0.82079 

Wiener Model with FIR-SOV 0.08005 0.87279 

Proposed Wiener Model 0.07635 0.87860 

 

 
Figure 12. Simulation results [ (a) Wiener model with FIR-MP (b) Volterra model (c) Wiener model with FIR-SOV (d) 
Proposed Wiener model ] 
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5.3. Example-III 

 

 An ARMA system (equation 32) is used as an unknown system in the structure of figure 5,6 [69-73].  

 

d(n)=0.7x(n)-0.4x(n-1)-0.1x(n-2)+0.25d(n-1)-0.1d(n-2)+0.4d(n-3)                   (32) 

 

For White Gaussian noise input signal, MSE and correlation results are given in table 5. Model outputs are shown in figure 13. 

 
Table 5. MSE and correlation results 

Model MSE Correlation 

Wiener Model with FIR-MP 0.11292 0.89780 

Volterra Model 0.10022 0.90236 

Wiener Model with FIR-SOV 0.06813 0.93929 

Proposed Wiener Model 0.06218 0.94072 
 

 

 

 
Figure 13. Simulation results [ (a) Wiener model with FIR-MP (b) Volterra model (c) Wiener model with FIR-SOV (d) 

Proposed Wiener model ] 

 

 

For Chirp-type input signal, MSE and correlation results are given in table 6. Model outputs are shown in figure 14. 

 

Table 6. MSE and correlation results 

Model MSE Correlation 

Wiener Model with FIR-MP 0.11444 0.89375 

Volterra Model 0.08841 0.90354 

Wiener Model with FIR-SOV 0.06520 0.91946 

Proposed Wiener Model 0.06201 0.92257 
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Figure 14. Simulation results [ (a) Wiener model with FIR-MP (b) Volterra model (c) Wiener model with FIR-SOV (d) 

Proposed Wiener model ] 
 

5.4. Example-IV 

 

 A Bilinear system (equation 33) is used as an unknown system in the structure of figure 5,6 [41,70-73].  

 

d(n)= 0.25d(n-1)- 0.5d(n-1)x(n) + 0.05d(n-1)x(n-1)- 0.5x(n) + 0.5x(n-1)           (33) 

 
For White Gaussian noise input signal, MSE and correlation results are given in Table 7. Model outputs are shown in figure 15. 

 

Table 7. MSE and correlation results 

Model MSE Correlation 

Wiener Model with FIR-MP 0.05451 0.93877 

Volterra Model 0.04456 0.94861 

Wiener Model with FIR-SOV 0.02647 0.97267 

Proposed Wiener Model 0.02099 0.97664 
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Figure 15. Simulation results [ (a) Wiener model with FIR-MP (b) Volterra model (c) Wiener model with FIR-SOV (d) 

Proposed Wiener model ] 

 

For Chirp-type input signal, MSE and correlation results are given in Table 8. Model outputs are shown in figure 16. 

 

Table 8. MSE and correlation results 

Model MSE Correlation 

Wiener Model with FIR-SOV 0.01971 0.96419 

Wiener Model with FIR-MP 0.01908 0.96483 

Volterra Model 0.01697 0.96742 

Proposed Wiener Model 0.00823 0.98365 
 

 

 
 

Figure 16. Simulation results [ (a) Wiener model with FIR-SOV (b) Wiener model with FIR-MP (c) Volterra model (d) 
Proposed Wiener model ] 

 

According to results of all simulations, the proposed Wiener model is more successful in terms of MSE and correlation value 

compared to other models. In figures 9-16 and tables 1-8 the results are analysed. 
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6. CONCLUSIONS 
 
 This study aims to improve Wiener model for system identification area. Different from previous works in literature, in order 

to improve the Wiener model, FIR model is used as linear part, SSH model is used as nonlinear part. The SSH structure consists 

of a SOV nonlinear model, a MP nonlinear model, and a NF network. The NF network uses the information from the SOV model 
and the MP model to compute the Wiener model output.  

 System identification studies are carried out to determine the performance of proposed model. So, different structure unknown 

systems are identified with both proposed model and different type models. Proposed model has more complex structure 

compared to Volterra model, Wiener model with FIR-MP and Wiener model with FIR-SOV as disadvantage of the model but 

proposed model has a successful identification tool as advantage. According to MSE and correlation results, the systems can be 

identified with less error in proposed model compared to Volterra model, Wiener model with FIR-MP and Wiener model with 

FIR-SOV. In addition the author will try to identify real system problems in future studies. 
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