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Abstract − In this study, new formulas for the 𝑛th power of (𝑠, 𝑡)-Jacobsthal and (𝑠, 𝑡)-Jacobsthal 

Lucas special matrix sequences are established by using determinant and trace of the matrices. By these 

formulas, some identities for (𝑠, 𝑡)-Jacobsthal and (𝑠, 𝑡)-Jacobsthal Lucas sequences are obtained. The 

formulas for finding the 𝑛th power for classic Jacobsthal and Jacobsthal Lucas matrix sequences are 

also derivable if we choose 𝑠 = 𝑡 = 1.  
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1. Introduction 

In the literature, the researchers investigated the 𝑛th power of the matrices by different methods. In [1], 

Williams studied the 𝑛th power of a 2 × 2 matrix. Laughlin found identities deriving from the 𝑛th power of 

some matrices in [2,3]. Belbachir investigated linear recurrent sequences and powers of a square matrix in [4]. 

There are certainly new developments on special integer and matrix sequences by constructing recurrence 

relation. In [5], the authors studied sums and products for recurring sequences. Halıcı and Akyuz derived 

combinatorial identities by using the trace, the determinant and the 𝑛th power of a special matrix whose entries 

are Horadam numbers [6,7]. Among these integer sequences, the Jacobsthal and Jacobsthal Lucas numbers 

have been studied extensively in the last decade years in [8-12]. The Jacobsthal numbers 𝑗𝑛 are terms of the 

sequence {0,1,1,3,5,11, ⋯ }, defined by the recurrence relation, 𝑗𝑛 = 𝑗𝑛−1 + 2𝑗𝑛−2, for 𝑛 ≥ 2, beginning with 

the values 𝑗0 = 0, 𝑗1 = 1. The Jacobsthal Lucas numbers 𝑐𝑛 are the terms of the sequence {2,1,5,7,17, ⋯ }, 

defined by the recurrence relation, 𝑐𝑛 = 𝑐𝑛−1 + 2𝑐𝑛−2, for 𝑛 ≥ 2, beginning with the values 𝑐0 = 2 and 𝑐1 =

1 in [13]. (𝑠, 𝑡)-Jacobsthal and (𝑠, 𝑡)-Jacobsthal Lucas sequences are defined by using the following recurrence 

relation, 

𝑗𝑛(𝑠, 𝑡) = 𝑠𝑗𝑛−1(𝑠, 𝑡) + 2𝑡 𝑗𝑛−2 (𝑠, 𝑡)      ( 𝑗0(𝑠, 𝑡) = 0  and  𝑗1(𝑠, 𝑡) = 1) (1) 

and  

𝑐𝑛(𝑠, 𝑡) = 𝑐𝑛−1(𝑠, 𝑡) + 2𝑐𝑛−2 (𝑠, 𝑡)      (𝑐0(𝑠, 𝑡) = 2  and  𝑐1(𝑠, 𝑡) = 1)  

where 𝑠 > 0, 𝑡 ≠ 0 and 𝑠2 + 8𝑡 > 0 [8]. 
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The Binet formula enables us to state (𝑠, 𝑡)-Jacobsthal and (𝑠, 𝑡)-Jacobsthal Lucas number easily. It can 

be clearly obtained from the roots 𝑟1 and 𝑟2 of the characteristic equation as the form 𝑥2 = 𝑠𝑥 + 2𝑡, where 

 𝑟1 =
𝑠 + √𝑠2 + 8𝑡

2
  and  𝑟2 =

𝑠 − √𝑠2 + 8𝑡

2
  

The Binet formula for (𝑠, 𝑡)-Jacobsthal numbers and (𝑠, 𝑡)-Jacobsthal Lucas numbers are given, 

respectively, by 

𝑗𝑛(𝑠, 𝑡) =
𝑟1

𝑛 − 𝑟2
𝑛

𝑟1 − 𝑟2
  and  𝑐𝑛(𝑠, 𝑡) = 𝑟1

𝑛 + 𝑟2
𝑛 

In [9], for any integer 𝑛 ≥ 1, (𝑠, 𝑡)-Jacobsthal matrix sequence is defined as 

𝐽𝑛(𝑠, 𝑡) = 𝑠 𝐽𝑛−1(𝑠, 𝑡) + 2𝑡 𝐽𝑛−2 (𝑠, 𝑡) (2) 

with initial conditions 𝐽0 = ( 
1 0 
0 1

)  and  𝐽1 = ( 
𝑠 2 
𝑡 0

) and (𝑠, 𝑡)-Jacobsthal Lucas matrix sequence is 

defined as 

𝐶𝑛(𝑠, 𝑡) = 𝑠 𝐶𝑛−1(𝑠, 𝑡) + 2𝑡 𝐶𝑛−2 (𝑠, 𝑡) 
(3) 

with initial conditions 𝐶0 = ( 
𝑠 4 

2𝑡 −𝑠
)   and  𝐶1 = ( 𝑠

2 + 4𝑡 2𝑠 
𝑠𝑡 4𝑡

). Some important properties for (𝑠, 𝑡)-

Jacobsthal and (𝑠, 𝑡)-Jacobsthal Lucas matrix sequences are given as in [9] 

a) 𝐽𝑛 = ( 
𝑗𝑛+1(𝑠, 𝑡) 2𝑗𝑛(𝑠, 𝑡)

𝑡 𝑗𝑛(𝑠, 𝑡) 2𝑡𝑗𝑛−1(𝑠, 𝑡)
)  

b) 𝐶𝑛 = ( 
𝑐𝑛+1(𝑠, 𝑡) 2𝑐𝑛(𝑠, 𝑡)

𝑡 𝑐𝑛(𝑠, 𝑡) 2𝑡𝑐𝑛−1(𝑠, 𝑡)
)  

c) 𝐽𝑚+𝑛 =  𝐽𝑚 𝐽𝑛 

d) 𝐽𝑛 = 𝐽1
𝑛 

e) 𝐶𝑛+1 = 𝐶1 𝐽𝑛 

2. The 𝒏th Power of Generalized (𝒔, 𝒕)-Jacobsthal and (𝒔, 𝒕)-Jacobsthal Lucas Matrix 

Sequences and Some Combinatorial Properties 

In [1], Williams gave a well-known formula for any integer 𝑛 ≥ 1, if 𝐴 =  [
𝑎 𝑏
𝑐 𝑑

], then 

𝐴𝑛 =  {

𝑟1
𝑛 − 𝑟2

𝑛

𝑟1 − 𝑟2
𝐴 −

𝑟1
𝑛−1 − 𝑟2

𝑛−1

𝑟1 − 𝑟2
𝐼2,                         𝑟1 ≠ 𝑟2

𝑛𝑟𝑛−1𝐴 − (𝑛 − 1) det(𝐴) 𝑟𝑛−2𝐼2,                    𝑟1 = 𝑟2

 (4) 

where 𝑟1, 𝑟2 being the roots of the associated characteristic equation 𝑟2 − (𝑎 + 𝑑)𝑟 + det(𝐴) = 0 of the matrix 

𝐴 and 𝐼2 is the identity matrix 2 × 2. 

Corollary 1. For any integer 𝑛 ≥ 1, the 𝑛th power of 𝐽1(𝑠, 𝑡) and 𝐶1(𝑠, 𝑡) are 

𝐽1
𝑛(𝑠, 𝑡)  =

𝑟1
𝑛 − 𝑟2

𝑛

𝑟1 − 𝑟2
 ( 

𝑠 2 
𝑡 0

) −
𝑟1

𝑛−1 − 𝑟2
𝑛−1

𝑟1 − 𝑟2
𝐼2 (5) 

where 𝑟1 =
𝑠+√𝑠2+8𝑡

2
 and 𝑟2 =

𝑠−√𝑠2+8𝑡

2
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𝐶1
𝑛(𝑠, 𝑡)  =

𝑠1
𝑛 − 𝑠2

𝑛

𝑠1 − 𝑠2
 ( 𝑠

2 + 4𝑡 2𝑠 
𝑠𝑡 4𝑡

) −
𝑠1

𝑛−1 − 𝑠2
𝑛−1

𝑠1 − 𝑠2
𝐼2 (6) 

where 𝑠1 =
𝑠2+8𝑡+𝑠√𝑠2+8𝑡

2
 and 𝑠2 =

𝑠2+8𝑡−𝑠√𝑠2+8𝑡

2
. 

If we choose 𝑠 = 𝑡 = 1 in (5) and (6), we get the 𝑛th power of classic Jacobsthal and Jacobsthal Lucas 

matrix sequences: 

( 
1 2 
1 0

)
𝑛

=  
2𝑛 − (−1)𝑛

3
( 

1 2 
1 0

) −
2𝑛−1 − (−1)𝑛−1

3
𝐼2  

and 

( 
5 2 
1 4

)
𝑛

=  
2𝑛 − (−1)𝑛

3
( 

5 2 
1 4

) −
2𝑛−1 − (−1)𝑛−1

3
𝐼2  

 

PROOF. The proof is obtained by using the eigenvalues of 𝐽1(𝑠, 𝑡) and 𝐶1(𝑠, 𝑡) and (2), (3), (4).                        □     

Corollary 2. For any integer 𝑛 ≥ 1, the determinants of 𝐽1
𝑛(𝑠, 𝑡) and 𝐶1

𝑛(𝑠, 𝑡) are 

det( 𝐽1
𝑛(𝑠, 𝑡)) = (−2𝑡)𝑛  and det(𝐶1

𝑛(𝑠, 𝑡)) = (2𝑡)𝑛(𝑠2 + 8𝑡)𝑛 

PROOF. By using the property of the determinant of a matrix is the product of eigenvalues of this matrix, we get 

the determinant of 𝐽1(𝑠, 𝑡) and 𝐶1(𝑠, 𝑡) is −2𝑡 and (2𝑡)( 𝑠2 + 8𝑡), respectively. The determinant of the 𝑛th 

power of a matrix is the 𝑛th power of the product of the eigenvalues. So, the results are easily seen.                    

□ 

If we choose 𝑠 = 𝑡 = 1, we get classic Jacobsthal and Jacobsthal Lucas matrix sequences, and the 

determinant of them are obtained as  

det( 𝐽1
𝑛) = (−2)𝑛 ,  det( 𝐶1

𝑛 ) = (18)𝑛  

Laughlin, in [2,3] gave if 𝐴 is a 2 × 2 matrix as 𝐴 =  ( 
𝑎 𝑏
𝑐 𝑑

 ) then the 𝑛th power of 𝐴 is given by 

𝐴𝑛 = ( 
𝑥𝑛 − 𝑑𝑥𝑛−1 𝑏𝑥𝑛−1

𝑐𝑥𝑛−1 𝑥𝑛 − 𝑎𝑥𝑛−1
 ) (7) 

where 𝑥𝑛 = ∑ (
𝑛 − 𝑖

𝑖
) 𝑇𝑛−2𝑖(−𝐷)𝑖,

⌊
𝑛

2
⌋

𝑖=0
 𝑇 is the trace of 𝐴, and D is the determinant of 𝐴. 

Corollary 3. The 𝑛th power of 𝐽1(𝑠, 𝑡) and 𝐶1(𝑠, 𝑡) are 

𝐽1
𝑛(𝑠, 𝑡) = ( 

𝑥𝑛 2𝑥𝑛−1

𝑡𝑥𝑛−1 𝑥𝑛 − 𝑠𝑥𝑛−1
 ) (8) 

where 𝑥𝑛 = ∑ (
𝑛 − 𝑖

𝑖
) 𝑠𝑛−2𝑖(2𝑡)𝑖,

⌊
𝑛

2
⌋

𝑖=0
 and 

𝐶1
𝑛(𝑠, 𝑡) =  ( 

𝑦𝑛 − 4𝑡 𝑦𝑛−1 2𝑠 𝑦𝑛−1

𝑠𝑡 𝑦𝑛−1 𝑦𝑛 − (𝑠2 + 4𝑡) 𝑦𝑛−1
 ) (9) 

such that 𝑦𝑛 = ∑ (
𝑛 − 𝑖

𝑖
) (𝑠2 + 4𝑡)𝑛−𝑖(2𝑡)𝑖

⌊
𝑛

2
⌋

𝑖=0
. 

If we choose 𝑠 = 𝑡 = 1 in (8) and (9), we get the 𝑛th power of classic Jacobsthal and Jacobsthal Lucas 

matrix sequences, 
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( 
1 2 
1 0

)
𝑛

= ( 
𝑥𝑛 2𝑥𝑛−1

𝑥𝑛−1 𝑥𝑛 − 𝑥𝑛−1
 ) 

where 𝑥𝑛 = ∑ (
𝑛 − 𝑖

𝑖
) (2)𝑖 

⌊
𝑛

2
⌋

𝑖=0
 and 

( 
5 2 
1 4

)
𝑛

= ( 
𝑦𝑛 − 4 𝑦𝑛−1 2 𝑦𝑛−1

 𝑦𝑛−1 𝑦𝑛 − 5 𝑦𝑛−1
 ) 

such that 𝑦𝑛 = ∑ (
𝑛 − 𝑖

𝑖
) 𝔤𝑛−𝑖2𝑖.
 

⌊
𝑛

2
⌋

𝑖=0
 

PROOF. The proof is obtained by (2), (3), and (7).                         □ 

Corollary 4. The 𝑛th element of (𝑠, 𝑡)-Jacobsthal Lucas matrix sequence is given as 

𝐶𝑛(𝑠, 𝑡) =  𝐶1(𝑠, 𝑡)𝐽𝑛−1(𝑠, 𝑡) = ( 
(𝑠2 + 4𝑡)𝑥𝑛−1 + 2𝑠𝑡 𝑥𝑛−2 2(𝑠 𝑥𝑛−1 + 4𝑡 𝑥𝑛−2)

𝑡(𝑠 𝑥𝑛−1 + 4𝑡  𝑥𝑛−2) 2𝑡(𝑥𝑛−1 − 𝑠 𝑥𝑛−2)
 ) 

or 

𝐶𝑛(𝑠, 𝑡) =  𝑠 𝐽𝑛(𝑠, 𝑡) + 4𝑡 𝐽𝑛−1(𝑠, 𝑡) = ( 
𝑠 𝑥𝑛 + 4𝑡  𝑥𝑛−1 2(𝑠 𝑥𝑛−1 + 4𝑡 𝑥𝑛−2)

𝑡(𝑠 𝑥𝑛−1 + 4𝑡  𝑥𝑛−2)  𝑥𝑛 − 𝑠 𝑥𝑛−1+ 4𝑡(𝑥𝑛−1 − 𝑠 𝑥𝑛−2)
 ) 

where 𝑥𝑛 = ∑ (
𝑛 − 𝑖

𝑖
) 𝑠𝑛−2𝑖(2𝑡)𝑖,

⌊
𝑛

2
⌋

𝑖=0
 for any integer 𝑛 ≥ 1. 

PROOF. By (d, e), (2-3), (7), the proofs are easily obtained.                         □           

Theorem 5. For any integer 𝑛 ≥ 1, the following property is satisfied, 

∑ (
𝑛 − 𝑖

𝑖
) 

𝑛 − 𝑖

𝑖
𝑠𝑛−2𝑖(2𝑡)𝑖 =  

1

2𝑛−1
 ∑ (

𝑛
2𝑖

) 𝑠𝑛−2𝑖(𝑠2 + 8𝑡)𝑖

⌊
𝑛
2

⌋

𝑖=0

 

⌊
𝑛
2

⌋

𝑖=0

      (10) 

PROOF. The eigenvalues of 𝐽1(𝑠, 𝑡) are 𝑟1 =
𝑠+√𝑠2+8𝑡

2
 and 𝑟2 =

𝑠−√𝑠2+8𝑡

2
. The eigenvalues of 𝐽1

𝑛(𝑠, 𝑡) are 𝑟1
𝑛 

and 𝑟2
𝑛. By using (8), it is obtained that 𝐽1

𝑛(𝑠, 𝑡) = ( 
𝑥𝑛 2𝑥𝑛−1

𝑡𝑥𝑛−1 𝑥𝑛 − 𝑠𝑥𝑛−1
 ). The trace of 𝐽1

𝑛(𝑠, 𝑡) is 

tr(𝐽1
𝑛(𝑠, 𝑡)) =2𝑥𝑛- s𝑥𝑛−1. Because the sum of the eigenvalues is equal to the trace of the matrix, 𝑟1

𝑛 + 𝑟2
𝑛 = 

2𝑥𝑛 − 𝑠𝑥𝑛−1 

2𝑥𝑛 − 𝑠 𝑥𝑛−1 = 2 ∑ (
𝑛 − 𝑖

𝑖
)

⌊
𝑛
2

⌋

𝑖=0

 𝑇𝑛−2𝑖 (−𝐷)𝑖 − 𝑠 ∑ (
𝑛 − 1 − 𝑖

𝑖
)

⌊
𝑛−1

2
⌋

𝑖=0

 𝑇𝑛−1−2𝑖 (−𝐷)𝑖 

=  ∑ (
𝑛 − 𝑖

𝑖
) 𝑠𝑛−2𝑖(2𝑡)𝑖 (

𝑖

𝑛 − 𝑖
)                                

  

⌊
𝑛
2

⌋

𝑖=0

 

By binomial expansion 

𝑟1
𝑛 + 𝑟2

𝑛 =  (
𝑠 + √𝑠2 + 8𝑡

2
 )

𝑛

+ (
𝑠 − √𝑠2 + 8𝑡

2
 )

𝑛

 

          =  
1

2𝑛−1
∑ ( 

𝑛
2𝑖

 )  𝑠𝑛−2𝑖(𝑠2 + 8𝑡)𝑖 
  

⌊
𝑛
2

⌋

𝑖=0

  

The equality of the results completes the proof.                          □ 



16 

 

Journal of New Theory 34 (2021) 12-19 / The 𝑛th Power of Generalized (𝑠, 𝑡)-Jacobsthal and … 

If we choose 𝑠 = 𝑡 = 1 in (10), we get the same result for classic Jacobsthal and Jacobsthal Lucas matrix 

sequences as 

    ∑ (
𝑛 − 𝑖

𝑖
)

𝑛

𝑛 − 𝑖
 2𝑖 =

1

2𝑛−1
∑ ( 

𝑛
2𝑖

 ) 9𝑖 
 

⌊
𝑛
2

⌋

𝑖=0

⌊
𝑛
2

⌋

𝑖=0

 

By the Binet formula of (𝑠, 𝑡)-Jacobsthal Lucas sequence, the following is obtained, 

 𝑐𝑛(𝑠, 𝑡) =  
1

2𝑛−1
∑ ( 

𝑛
2𝑖

 ) 𝑠𝑛−2𝑖(𝑠2 + 8𝑡)𝑖

  

⌊
𝑛
2

⌋

𝑖=0

 

 and 

𝑐𝑛(𝑠, 𝑡) =  
1

2𝑛−1
∑ ( 

𝑛 − 𝑖
𝑖

 ) 
𝑛

𝑛 − 𝑖
 𝑠𝑛−2𝑖(2𝑡)𝑖 

  

⌊
𝑛
2

⌋

𝑖=0

 

Corollary 6. The 𝑛th element of Jacobsthal matrix sequence is also demonstrated by using the elements of 

(𝑠, 𝑡)-Jacobsthal sequences, 

𝐽𝑛(𝑠, 𝑡) = 𝑗𝑛(𝑠, 𝑡) 𝐽1 −  𝑗𝑛−1 (𝑠, 𝑡) 𝐼2 (11) 

PROOF. By (a, d) and Binet formulas, we get 

𝐽𝑛(𝑠, 𝑡) = ( 
 𝑗𝑛−1(s, t) 2 𝑗𝑛(s, t)

𝑡 𝑗𝑛(s, t) 2𝑡  𝑗𝑛−1(s, t)
 ) = 𝐽1

𝑛(𝑠, 𝑡) 

          =
𝑟1

𝑛 − 𝑟2
𝑛

𝑟1 − 𝑟2
𝐽1(𝑠, 𝑡)  −

𝑟1
𝑛−1 − 𝑟2

𝑛−1

𝑟1 − 𝑟2
𝐼2 

  =  𝑗𝑛(s, t) 𝐽1(𝑠, 𝑡) −  𝑗𝑛−1 (s, t) 𝐼2                                                                   □ 

If we choose 𝑠 = 𝑡 = 1 in (11), we get the same result for classic Jacobsthal and Jacobsthal Lucas matrix 

sequences as 

𝐽𝑛 =  𝑗𝑛−1 ( 
1 2 
1 0

) −  𝑗𝑛−1  𝐼2 

By binomial expansion, the following is derived, 

𝑟1
𝑛 − 𝑟2

𝑛

𝑟1 − 𝑟2
=

1

√𝑠2 + 8𝑡
 [(

𝑠 + √𝑠2 + 8𝑡

2
 )

𝑛

− (
𝑠 − √𝑠2 + 8𝑡

2
 )

𝑛

] =
1

2𝑛−1
∑ ( 

𝑛
2𝑖 + 1

 ) 𝑠𝑛−2𝑖−1 (𝑠2 + 8𝑡)𝑖

 

⌊
𝑛−1

2
⌋

𝑖=0

 

and 

 𝐽𝑛(𝑠, 𝑡) =
𝑟1

𝑛 − 𝑟2
𝑛

𝑟1 − 𝑟2
𝐽1(𝑠, 𝑡)  −

𝑟1
𝑛−1 − 𝑟2

𝑛−1

𝑟1 − 𝑟2
𝐼2                     

                =
1

2𝑛−1
∑ ( 

𝑛
2𝑖 + 1

 ) 𝑠𝑛−1−2𝑖 (𝑠2 + 8𝑡)𝑖𝐽1(𝑠, 𝑡)
 

⌊
𝑛−1

2
⌋

𝑖=0

 

       −
1

2𝑛−2
∑ ( 

𝑛 − 1
2𝑖 + 1

 )  𝑠𝑛−2−2𝑖 (𝑠2 + 8𝑡)𝑖

 

⌊
𝑛−2

2
⌋

𝑖=0

𝐼2 
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Lemma 7. In [2], for all 𝑔 𝜖 ℝ or ℤ, for any integer  𝑛 ≥ 1, if 

𝐴 =  
1

𝑔2 + 𝑇𝑔 + 𝐷
(𝐴 + 𝑔𝐼)(𝑔𝐴 + 𝐷𝐼) (12) 

then 

𝐴𝑛 = (
𝑔𝐷

𝑔2 + 𝑇𝑔 + 𝐷
 )

𝑛

∑ ∑ ( 
𝑛
𝑖

 ) ( 
𝑛

𝑟 − 𝑖
 ) (

𝐷

𝑔2
 )

𝑖

 (
𝑔

𝐷
 )

𝑟

𝐴𝑟

𝑟

𝑖=0

2𝑛

𝑟=0

 (13) 

Corollary 8. For all 𝑔 𝜖 ℝ or ℤ, for any integer 𝑛 ≥ 1, 

𝐽1
𝑛(𝑠, 𝑡) = (

−2𝑡𝑔

𝑔2 + 𝑠𝑔 − 2𝑡
 )

𝑛

∑ ∑ ( 
𝑛
𝑖

 ) ( 
𝑛

𝑟 − 𝑖
 ) ( 

(−2𝑡 )𝑖−𝑟

𝑔2𝑖−𝑟
 ) 𝐽1

𝑟 

𝑟

𝑖=0

2𝑛

𝑟=0

(𝑠, 𝑡) 

and 

𝐶1
𝑛(𝑠, 𝑡) = (

2𝑡(𝑠2 + 8𝑡)𝑔

𝑔2 + (𝑠2 + 8𝑡)𝑔 + 2𝑡(𝑠2 + 8𝑡)
 )

𝑛

∑ ∑ ( 
𝑛
𝑖

 ) ( 
𝑛

𝑟 − 𝑖
 ) ( 

(2𝑡(𝑠2 + 8𝑡) )𝑖−𝑟

𝑔2𝑖−𝑟
 ) 𝐶1

𝑟(𝑠, 𝑡) 

𝑟

𝑖=0

2𝑛

𝑟=0

 

Example 9. If 𝑠 = 𝑡 = 1, we get classic the Jacobsthal and Jacobsthal Lucas matrix sequences. For 𝑛 = 4, the 

following is obtained, 

𝐽1
4 = ( 

𝐽5 2𝐽4 
𝐽4 2𝐽3

) = (
−2𝑡𝑔

𝑔2 + 𝑔 − 2
 )

4

∑ ∑ ( 
4
𝑖

 ) ( 
4

𝑟 − 𝑖
 ) (−2)𝑖−𝑟𝑔𝑟−2𝑖  ( 

1 2 
1 0

)

𝑟

𝑖=0

𝑠

𝑟=0

 

and 

𝐶1
4 = ( 

𝑐5 2𝑐4 
𝑐4 2𝑐3

) = (
18𝑔

𝑔2 + 9𝑔 + 18
 )

4

∑ ∑ ( 
𝑛
𝑖

 ) ( 
𝑛

𝑟 − 𝑖
 ) (

18𝑖−𝑟

𝑔𝑟−2𝑖
) ( 

5 2 
1 4

)
𝑟

 

𝑟

𝑖=0

2𝑛

𝑟=0

 

Theorem 10. For any integer 𝑛 ≥ 1, 

 𝑗𝑛𝑘(s, t) =  𝑗𝑛(s, t) ∑ ( 
𝑘 − 1 − 𝑖

𝑖
 ) 𝑐𝑛

𝑘−1−2𝑖(s, t) (2𝑡)𝑖𝑛

 

⌊
𝑘−1

2
⌋

𝑖=0

 

(14) 

PROOF. By using the property 𝑗𝑛+1(𝑠, 𝑡) + 2𝑡 𝑗𝑛−1(𝑠, 𝑡) =  𝑐𝑛(𝑠, 𝑡) and the Binet formula of (s, t)-Jacobsthal 

sequence, the following is obtained, 

(𝐽1
𝑛)𝑘 =  𝐽1

𝑛𝑘
= 𝐽𝑛𝑘 = ( 

𝑗𝑛𝑘+1(𝑠, 𝑡) 2𝑗𝑛𝑘(𝑠, 𝑡)

𝑡𝑗𝑛𝑘(𝑠, 𝑡) 2𝑡𝑗𝑛𝑘−1(𝑠, 𝑡)
) 

(𝐽1
𝑛)𝑘 =  (𝐽𝑛)𝑘 = ( 

𝑗𝑛+1(𝑠, 𝑡) 2𝑗𝑛(𝑠, 𝑡)

𝑡𝑗𝑛(𝑠, 𝑡) 2𝑡𝑗𝑛−1(𝑠, 𝑡)
)

𝑘

 

                                                                   = ( 
𝑥𝑘 − 2𝑡 𝑗𝑛−1(𝑠, 𝑡)𝑥𝑘−1 2𝑗𝑛(𝑠, 𝑡)𝑥𝑘−1

𝑡𝑗𝑛𝑘(𝑠, 𝑡)𝑥𝑘−1 𝑥𝑘 − 𝑗𝑛+1(𝑠, 𝑡)𝑥𝑘−1
) 

where 

𝑥𝑘 = 2 ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

  𝑇𝑘−2𝑖 (−𝐷)𝑖 
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                                                         = 2 ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

  [
(𝑗𝑛+1(𝑠, 𝑡) + 2𝑡 𝑗𝑛−1(𝑠, 𝑡))

𝑘−2𝑖

( 2𝑡 (𝑗𝑛+1(𝑠, 𝑡) 𝑗𝑛−1(𝑠, 𝑡) −  𝑗𝑛
2(𝑠, 𝑡))𝑖

] 

                    = 2 ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

(𝑐𝑛(𝑠, 𝑡))𝑘−2𝑖(−2𝑡)𝑖𝑛 

By the equality of the matrices, the proof is completed.            □ 

Theorem 11. 

𝑗𝑛𝑘+𝑟(𝑠, 𝑡) = ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

(𝑐𝑛(𝑠, 𝑡))
𝑘−2𝑖

(−2𝑡)𝑖𝑛 [𝑗𝑟(𝑠, 𝑡) +
𝑘 − 2𝑖

𝑘 − 𝑖

(−2𝑡)𝑟 𝑗𝑛−1(𝑠, 𝑡)

𝑐𝑛(𝑠, 𝑡)
] 

(15) 

PROOF. By using (a), (10) and [9], we get 

𝐽1
𝑛(𝑠, 𝑡) = ( 

𝑗𝑛+1(𝑠, 𝑡) 2𝑗𝑛(𝑠, 𝑡)

𝑡𝑗𝑛(𝑠, 𝑡) 2𝑡𝑗𝑛−1(𝑠, 𝑡)
) 

Then, 

𝐽1
𝑛𝑘+𝑟

(𝑠, 𝑡) = ( 
𝑗𝑛𝑘+𝑟+1(𝑠, 𝑡) 2𝑗𝑛𝑘+𝑟(𝑠, 𝑡)

𝑡𝑗𝑛𝑘+𝑟(𝑠, 𝑡) 2𝑡𝑗𝑛𝑘+𝑟−1(𝑠, 𝑡)
) 

and 

𝐽1
𝑛𝑘+𝑟

(𝑠, 𝑡) = (
𝑗𝑛+1(𝑠, 𝑡) 2𝑗𝑛(𝑠, 𝑡)

𝑡𝑗𝑛(𝑠, 𝑡) 2𝑡𝑗𝑛−1(𝑠, 𝑡)
)

𝑘

(
𝑗𝑟+1(𝑠, 𝑡) 2𝑗𝑟(𝑠, 𝑡)

𝑡𝑗𝑟(𝑠, 𝑡) 2𝑡𝑗𝑟−1(𝑠, 𝑡)
)      

                  = ( 
𝑥𝑘 − 2𝑡 𝑗𝑛−1(𝑠, 𝑡)𝑥𝑘−1 2𝑗𝑛(𝑠, 𝑡)𝑥𝑘−1

𝑡𝑗𝑛(𝑠, 𝑡)𝑥𝑘−1 𝑥𝑘 − 𝑗𝑛+1(𝑠, 𝑡)𝑥𝑘−1
) (

𝑗𝑟+1(𝑠, 𝑡) 2𝑗𝑟(𝑠, 𝑡)

𝑡𝑗𝑟(𝑠, 𝑡) 2𝑡𝑗𝑟−1(𝑠, 𝑡)
) 

where 

𝑥𝑘 =  ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

  𝑇𝑘−2𝑖 (−𝐷)𝑖 

                          = 2 ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

  (𝑐𝑛(𝑠, 𝑡))𝑘−2𝑖(−2𝑡)𝑖𝑛 

By the equality of the matrices, 

𝑗𝑛𝑘+𝑟(𝑠, 𝑡) = ( 𝑥𝑘 − 2𝑡 𝑗𝑛−1(𝑠, 𝑡)𝑥𝑘−1)𝑗𝑟(𝑠, 𝑡) + 2𝑡𝑗𝑛(𝑠, 𝑡)𝑥𝑘−1𝑗𝑟−1(𝑠, 𝑡)  

                    = 𝑗𝑟(𝑠, 𝑡)𝑥𝑘 − 2𝑡( 𝑗𝑛−1(𝑠, 𝑡)𝑗𝑟(𝑠, 𝑡) −  𝑗𝑛(𝑠, 𝑡)𝑗𝑟−1(𝑠, 𝑡)) 𝑥𝑘−1 

                                                    = 𝑗𝑟(𝑠, 𝑡)𝑥𝑘 − (−2𝑡)𝑟 𝑗𝑛−𝑟−1(𝑠, 𝑡) 𝑥𝑘−1  

                                                    = 𝑗𝑟(𝑠, 𝑡) ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

  (𝑐𝑛(𝑠, 𝑡))𝑘−2𝑖(−1)𝑖𝑛−𝑖(2𝑡)𝑖𝑛 

                                                    +(−2𝑡)𝑟 𝑗𝑛−𝑟−1(𝑠, 𝑡) ∑ (
𝑘 − 1 − 𝑖

𝑖
)

⌊
𝑘−1

2
⌋

𝑖=0

  (𝑐𝑛(𝑠, 𝑡))𝑘−1−2𝑖(−1)𝑖𝑛−𝑖(2𝑡)𝑖𝑛  
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        =  ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

[

(𝑐𝑛(𝑠, 𝑡))
𝑘−2𝑖

(−1)𝑖𝑛−𝑖(2𝑡)𝑖𝑛

[𝑗𝑟(𝑠, 𝑡) +
𝑘 − 2𝑖

𝑘 − 𝑖

(−2𝑡)𝑟 𝑗𝑛−𝑟−1(𝑠, 𝑡)

𝑐𝑛(𝑠, 𝑡)
]
]                                       □    

If we choose 𝑠 = 𝑡 = 1 in (15), we get the property of the classic Jacobsthal sequences, 

𝑗𝑛𝑘+𝑟 = ∑ (
𝑘 − 𝑖

𝑖
)

⌊
𝑘
2

⌋

𝑖=0

(𝑐𝑛)𝑘−2𝑖(2)𝑖𝑛(−1)𝑖𝑛−𝑖 [𝑗𝑟 +
𝑘 − 2𝑖

𝑘 − 𝑖

(−2)𝑟 𝑗𝑛−𝑟−1

𝑐𝑛
]  

3. Conclusion 

The paper aims to find the 𝑛th power of 2 × 2 special matrices whose entries are the elements of (𝑠, 𝑡)-

Jacobsthal and (𝑠, 𝑡)-Jacobsthal Lucas number sequences. From the results, some properties of the (𝑠, 𝑡)-

Jacobsthal and (𝑠, 𝑡)-Jacobsthal Lucas sequences are established. We develop new methods for finding the 𝑛th 

element of (𝑠, 𝑡)-Jacobsthal sequences. 
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