The nth Power of Generalized (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas Matrix Sequences and Some Combinatorial Properties

Şükran Uygun ${ }^{1}$ ©

Article History
Received: 15 Apr 2019
Accepted: 15 Mar 2021
Published: 30 Mar 2021
Research Article

Abstract

In this study, new formulas for the $n^{\text {th }}$ power of (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas special matrix sequences are established by using determinant and trace of the matrices. By these formulas, some identities for (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas sequences are obtained. The formulas for finding the $n^{\text {th }}$ power for classic Jacobsthal and Jacobsthal Lucas matrix sequences are also derivable if we choose $s=t=1$.

Keywords - Jacobsthal numbers, recurrence relations, special matrices
Mathematics Subject Classification (2020) - 11B37, 11C20

1. Introduction

In the literature, the researchers investigated the $n^{\text {th }}$ power of the matrices by different methods. In [1], Williams studied the $n^{\text {th }}$ power of a 2×2 matrix. Laughlin found identities deriving from the $n^{\text {th }}$ power of some matrices in [2,3]. Belbachir investigated linear recurrent sequences and powers of a square matrix in [4]. There are certainly new developments on special integer and matrix sequences by constructing recurrence relation. In [5], the authors studied sums and products for recurring sequences. Halicı and Akyuz derived combinatorial identities by using the trace, the determinant and the $n^{\text {th }}$ power of a special matrix whose entries are Horadam numbers [6,7]. Among these integer sequences, the Jacobsthal and Jacobsthal Lucas numbers have been studied extensively in the last decade years in [8-12]. The Jacobsthal numbers j_{n} are terms of the sequence $\{0,1,1,3,5,11, \cdots\}$, defined by the recurrence relation, $j_{n}=j_{n-1}+2 j_{n-2}$, for $n \geq 2$, beginning with the values $j_{0}=0, j_{1}=1$. The Jacobsthal Lucas numbers c_{n} are the terms of the sequence $\{2,1,5,7,17, \cdots\}$, defined by the recurrence relation, $c_{n}=c_{n-1}+2 c_{n-2}$, for $n \geq 2$, beginning with the values $c_{0}=2$ and $c_{1}=$ 1 in [13]. (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas sequences are defined by using the following recurrence relation,

$$
\begin{equation*}
j_{n}(s, t)=s j_{n-1}(s, t)+2 t j_{n-2}(s, t) \quad\left(j_{0}(s, t)=0 \text { and } j_{1}(s, t)=1\right) \tag{1}
\end{equation*}
$$

and

$$
c_{n}(s, t)=c_{n-1}(s, t)+2 c_{n-2}(s, t) \quad\left(c_{0}(s, t)=2 \text { and } c_{1}(s, t)=1\right)
$$

where $s>0, t \neq 0$ and $s^{2}+8 t>0[8]$.

[^0]The Binet formula enables us to state (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas number easily. It can be clearly obtained from the roots r_{1} and r_{2} of the characteristic equation as the form $x^{2}=s x+2 t$, where

$$
r_{1}=\frac{s+\sqrt{s^{2}+8 t}}{2} \text { and } r_{2}=\frac{s-\sqrt{s^{2}+8 t}}{2}
$$

The Binet formula for (s, t)-Jacobsthal numbers and (s, t)-Jacobsthal Lucas numbers are given, respectively, by

$$
j_{n}(s, t)=\frac{r_{1}^{n}-r_{2}^{n}}{r_{1}-r_{2}} \text { and } c_{n}(s, t)=r_{1}^{n}+r_{2}^{n}
$$

In [9], for any integer $n \geq 1,(s, t)$-Jacobsthal matrix sequence is defined as

$$
\begin{equation*}
J_{n}(s, t)=s J_{n-1}(s, t)+2 t J_{n-2}(s, t) \tag{2}
\end{equation*}
$$

with initial conditions $J_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $J_{1}=\left(\begin{array}{cc}s & 2 \\ t & 0\end{array}\right)$ and (s, t)-Jacobsthal Lucas matrix sequence is defined as

$$
\begin{equation*}
C_{n}(s, t)=s C_{n-1}(s, t)+2 t C_{n-2}(s, t) \tag{3}
\end{equation*}
$$

with initial conditions $C_{0}=\left(\begin{array}{cc}s & 4 \\ 2 t & -s\end{array}\right)$ and $C_{1}=\left(\begin{array}{cc}s^{2}+4 t & 2 s \\ s t & 4 t\end{array}\right)$. Some important properties for $(s, t)-$ Jacobsthal and (s, t)-Jacobsthal Lucas matrix sequences are given as in [9]
a) $J_{n}=\left(\begin{array}{cc}j_{n+1}(s, t) & 2 j_{n}(s, t) \\ t j_{n}(s, t) & 2 t j_{n-1}(s, t)\end{array}\right)$
b) $\quad C_{n}=\left(\begin{array}{cc}c_{n+1}(s, t) & 2 c_{n}(s, t) \\ t c_{n}(s, t) & 2 t c_{n-1}(s, t)\end{array}\right)$
c) $J_{m+n}=J_{m} J_{n}$
d) $J_{n}=J_{1}{ }^{n}$
e) $C_{n+1}=C_{1} J_{n}$

2. The $n^{\text {th }}$ Power of Generalized (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas Matrix Sequences and Some Combinatorial Properties

In [1], Williams gave a well-known formula for any integer $n \geq 1$, if $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then

$$
A^{n}= \begin{cases}\frac{r_{1}{ }^{n}-r_{2}^{n}}{r_{1}-r_{2}} A-\frac{r_{1}^{n-1}-r_{2}^{n-1}}{r_{1}-r_{2}} I_{2}, & r_{1} \neq r_{2} \tag{4}\\ n r^{n-1} A-(n-1) \operatorname{det}(A) r^{n-2} I_{2}, & r_{1}=r_{2}\end{cases}
$$

where r_{1}, r_{2} being the roots of the associated characteristic equation $r^{2}-(a+d) r+\operatorname{det}(A)=0$ of the matrix A and I_{2} is the identity matrix 2×2.

Corollary 1. For any integer $n \geq 1$, the $n^{\text {th }}$ power of $J_{1}(s, t)$ and $C_{1}(s, t)$ are

$$
J_{1}^{n}(s, t)=\frac{r_{1}^{n}-r_{2}^{n}}{r_{1}-r_{2}}\left(\begin{array}{cc}
s & 2 \tag{5}\\
t & 0
\end{array}\right)-\frac{r_{1}^{n-1}-r_{2}^{n-1}}{r_{1}-r_{2}} I_{2}
$$

where $r_{1}=\frac{s+\sqrt{s^{2}+8 t}}{2}$ and $r_{2}=\frac{s-\sqrt{s^{2}+8 t}}{2}$

$$
C_{1}^{n}(s, t)=\frac{s_{1}^{n}-s_{2}^{n}}{s_{1}-s_{2}}\left(\begin{array}{cc}
s^{2}+4 t & 2 s \tag{6}\\
s t & 4 t
\end{array}\right)-\frac{s_{1}^{n-1}-s_{2}^{n-1}}{s_{1}-s_{2}} I_{2}
$$

where $s_{1}=\frac{s^{2}+8 t+s \sqrt{s^{2}+8 t}}{2}$ and $s_{2}=\frac{s^{2}+8 t-s \sqrt{s^{2}+8 t}}{2}$.
If we choose $s=t=1$ in (5) and (6), we get the $n^{\text {th }}$ power of classic Jacobsthal and Jacobsthal Lucas matrix sequences:

$$
\left(\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right)^{n}=\frac{2^{n}-(-1)^{n}}{3}\left(\begin{array}{cc}
1 & 2 \\
1 & 0
\end{array}\right)-\frac{2^{n-1}-(-1)^{n-1}}{3} I_{2}
$$

and

$$
\left(\begin{array}{ll}
5 & 2 \\
1 & 4
\end{array}\right)^{n}=\frac{2^{n}-(-1)^{n}}{3}\left(\begin{array}{ll}
5 & 2 \\
1 & 4
\end{array}\right)-\frac{2^{n-1}-(-1)^{n-1}}{3} I_{2}
$$

Proof. The proof is obtained by using the eigenvalues of $J_{1}(s, t)$ and $C_{1}(s, t)$ and (2), (3), (4).
Corollary 2. For any integer $n \geq 1$, the determinants of $J_{1}{ }^{n}(s, t)$ and $C_{1}{ }^{n}(s, t)$ are

$$
\operatorname{det}\left(J_{1}^{n}(s, t)\right)=(-2 t)^{n} \text { and } \operatorname{det}\left(C_{1}^{n}(s, t)\right)=(2 t)^{n}\left(s^{2}+8 t\right)^{n}
$$

Proof. By using the property of the determinant of a matrix is the product of eigenvalues of this matrix, we get the determinant of $J_{1}(s, t)$ and $C_{1}(s, t)$ is $-2 t$ and $(2 t)\left(s^{2}+8 t\right)$, respectively. The determinant of the $n^{\text {th }}$ power of a matrix is the $n^{\text {th }}$ power of the product of the eigenvalues. So, the results are easily seen.

If we choose $s=t=1$, we get classic Jacobsthal and Jacobsthal Lucas matrix sequences, and the determinant of them are obtained as

$$
\operatorname{det}\left(J_{1}{ }^{n}\right)=(-2)^{n}, \operatorname{det}\left(C_{1}{ }^{n}\right)=(18)^{n}
$$

Laughlin, in [2,3] gave if A is a 2×2 matrix as $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then the nth power of A is given by

$$
A^{n}=\left(\begin{array}{cc}
x_{n}-d x_{n-1} & b x_{n-1} \tag{7}\\
c x_{n-1} & x_{n}-a x_{n-1}
\end{array}\right)
$$

where $x_{n}=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-i}{i} T^{n-2 i}(-D)^{i}, T$ is the trace of A, and D is the determinant of A.
Corollary 3. The $n^{\text {th }}$ power of $J_{1}(s, t)$ and $C_{1}(s, t)$ are

$$
J_{1}{ }^{n}(s, t)=\left(\begin{array}{cc}
x_{n} & 2 x_{n-1} \tag{8}\\
t x_{n-1} & x_{n}-s x_{n-1}
\end{array}\right)
$$

where $x_{n}=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-i}{i} s^{n-2 i}(2 t)^{i}$, and

$$
C_{1}^{n}(s, t)=\left(\begin{array}{cc}
y_{n}-4 t y_{n-1} & 2 s y_{n-1} \tag{9}\\
\text { st } y_{n-1} & y_{n}-\left(s^{2}+4 t\right) y_{n-1}
\end{array}\right)
$$

such that $y_{n}=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-i}{i}\left(s^{2}+4 t\right)^{n-i}(2 t)^{i}$.
If we choose $s=t=1$ in (8) and (9), we get the $n^{\text {th }}$ power of classic Jacobsthal and Jacobsthal Lucas matrix sequences,

$$
\left(\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right)^{n}=\left(\begin{array}{cc}
x_{n} & 2 x_{n-1} \\
x_{n-1} & x_{n}-x_{n-1}
\end{array}\right)
$$

where $x_{n}=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-i}{i}(2)^{i}$ and

$$
\left(\begin{array}{ll}
5 & 2 \\
1 & 4
\end{array}\right)^{n}=\left(\begin{array}{cc}
y_{n}-4 y_{n-1} & 2 y_{n-1} \\
y_{n-1} & y_{n}-5 y_{n-1}
\end{array}\right)
$$

such that $\left.y_{n}=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \begin{array}{c}n-i \\ i\end{array}\right) \mathrm{g}^{n-i} 2^{i}$.
$P_{\text {roof. }}$ The proof is obtained by (2), (3), and (7).
Corollary 4. The $n^{\text {th }}$ element of (s, t)-Jacobsthal Lucas matrix sequence is given as

$$
C_{n}(s, t)=C_{1}(s, t) J_{n-1}(s, t)=\left(\begin{array}{cc}
\left(s^{2}+4 t\right) x_{n-1}+2 s t x_{n-2} & 2\left(s x_{n-1}+4 t x_{n-2}\right) \\
t\left(s x_{n-1}+4 t x_{n-2}\right) & 2 t\left(x_{n-1}-s x_{n-2}\right)
\end{array}\right)
$$

or

$$
C_{n}(s, t)=s J_{n}(s, t)+4 t J_{n-1}(s, t)=\left(\begin{array}{cc}
s x_{n}+4 t x_{n-1} & 2\left(s x_{n-1}+4 t x_{n-2}\right) \\
t\left(s x_{n-1}+4 t x_{n-2}\right) & x_{n}-s x_{n-1}+4 t\left(x_{n-1}-s x_{n-2}\right)
\end{array}\right)
$$

where $x_{n}=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-i}{i} s^{n-2 i}(2 t)^{i}$, for any integer $n \geq 1$.
Proof. By (d, e), (2-3), (7), the proofs are easily obtained.
Theorem 5. For any integer $n \geq 1$, the following property is satisfied,

$$
\begin{equation*}
\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-i}{i} \frac{n-i}{i} s^{n-2 i}(2 t)^{i}=\frac{1}{2^{n-1}} \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 i} s^{n-2 i}\left(s^{2}+8 t\right)^{i} \tag{10}
\end{equation*}
$$

Proof. The eigenvalues of $J_{1}(s, t)$ are $r_{1}=\frac{s+\sqrt{s^{2}+8 t}}{2}$ and $r_{2}=\frac{s-\sqrt{s^{2}+8 t}}{2}$. The eigenvalues of $J_{1}{ }^{n}(s, t)$ are $r_{1}{ }^{n}$ and $r_{2}{ }^{n}$. By using (8), it is obtained that $J_{1}^{n}(s, t)=\left(\begin{array}{cc}x_{n} & 2 x_{n-1} \\ t x_{n-1} & x_{n}-s x_{n-1}\end{array}\right)$. The trace of $J_{1}^{n}(s, t)$ is $\operatorname{tr}\left(J_{1}{ }^{n}(s, t)\right)=2 x_{n}$ - $s x_{n-1}$. Because the sum of the eigenvalues is equal to the trace of the matrix, $r_{1}{ }^{n}+r_{2}{ }^{n}=$ $2 x_{n}-s x_{n-1}$

$$
\begin{aligned}
2 x_{n}-s x_{n-1} & =2 \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-i}{i} T^{n-2 i}(-D)^{i}-s \sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1-i}{i} T^{n-1-2 i}(-D)^{i} \\
& =\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-i}{i} s^{n-2 i}(2 t)^{i}\left(\frac{i}{n-i}\right)
\end{aligned}
$$

By binomial expansion

$$
\begin{aligned}
r_{1}^{n}+r_{2}^{n} & =\left(\frac{s+\sqrt{s^{2}+8 t}}{2}\right)^{n}+\left(\frac{s-\sqrt{s^{2}+8 t}}{2}\right)^{n} \\
& =\frac{1}{2^{n-1}} \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 i} s^{n-2 i}\left(s^{2}+8 t\right)^{i}
\end{aligned}
$$

The equality of the results completes the proof.

If we choose $s=t=1$ in (10), we get the same result for classic Jacobsthal and Jacobsthal Lucas matrix sequences as

$$
\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-i}{i} \frac{n}{n-i} 2^{i}=\frac{1}{2^{n-1}} \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 i} 9^{i}
$$

By the Binet formula of (s, t)-Jacobsthal Lucas sequence, the following is obtained,

$$
c_{n}(s, t)=\frac{1}{2^{n-1}} \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n}{2 i} s^{n-2 i}\left(s^{2}+8 t\right)^{i}
$$

and

$$
c_{n}(s, t)=\frac{1}{2^{n-1}} \sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-i}{i} \frac{n}{n-i} s^{n-2 i}(2 t)^{i}
$$

Corollary 6. The $n^{\text {th }}$ element of Jacobsthal matrix sequence is also demonstrated by using the elements of (s, t)-Jacobsthal sequences,

$$
\begin{equation*}
J_{n}(s, t)=j_{n}(s, t) J_{1}-j_{n-1}(s, t) I_{2} \tag{11}
\end{equation*}
$$

Proof. By (a, d) and Binet formulas, we get

$$
\begin{aligned}
J_{n}(s, t) & =\left(\begin{array}{cc}
j_{n-1}(\mathrm{~s}, \mathrm{t}) & 2 j_{n}(\mathrm{~s}, \mathrm{t}) \\
t j_{n}(\mathrm{~s}, \mathrm{t}) & 2 t j_{n-1}(\mathrm{~s}, \mathrm{t})
\end{array}\right)=J_{1}^{n}(\mathrm{~s}, \mathrm{t}) \\
& =\frac{r_{1}^{n}-r_{2}^{n}}{r_{1}-r_{2}} J_{1}(\mathrm{~s}, \mathrm{t})-\frac{r_{1}^{n-1}-r_{2}^{n-1}}{r_{1}-r_{2}} I_{2} \\
& =j_{n}(\mathrm{~s}, \mathrm{t}) J_{1}(\mathrm{~s}, \mathrm{t})-j_{n-1}(\mathrm{~s}, \mathrm{t}) I_{2}
\end{aligned}
$$

If we choose $s=t=1$ in (11), we get the same result for classic Jacobsthal and Jacobsthal Lucas matrix sequences as

$$
J_{n}=j_{n-1}\left(\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right)-j_{n-1} I_{2}
$$

By binomial expansion, the following is derived,

$$
\frac{r_{1}^{n}-r_{2}^{n}}{r_{1}-r_{2}}=\frac{1}{\sqrt{s^{2}+8 t}}\left[\left(\frac{s+\sqrt{s^{2}+8 t}}{2}\right)^{n}-\left(\frac{s-\sqrt{s^{2}+8 t}}{2}\right)^{n}\right]=\frac{1}{2^{n-1}} \sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2 i+1} s^{n-2 i-1}\left(s^{2}+8 t\right)^{i}
$$

and

$$
\begin{aligned}
J_{n}(s, t) & =\frac{r_{1}^{n}-r_{2}^{n}}{r_{1}-r_{2}} J_{1}(s, t)-\frac{r_{1}{ }^{n-1}-r_{2}^{n-1}}{r_{1}-r_{2}} I_{2} \\
& =\frac{1}{2^{n-1}} \sum_{i=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n}{2 i+1} s^{n-1-2 i}\left(s^{2}+8 t\right)^{i} J_{1}(s, t) \\
& -\frac{1}{2^{n-2}} \sum_{i=0}^{\left\lfloor\frac{n-2}{2}\right\rfloor}\binom{n-1}{2 i+1} s^{n-2-2 i}\left(s^{2}+8 t\right)^{i} I_{2}
\end{aligned}
$$

Lemma 7. In [2], for all $g \in \mathbb{R}$ or \mathbb{Z}, for any integer $n \geq 1$, if

$$
\begin{equation*}
A=\frac{1}{g^{2}+T g+D}(A+g I)(g A+D I) \tag{12}
\end{equation*}
$$

then

$$
\begin{equation*}
A^{n}=\left(\frac{g D}{g^{2}+T g+D}\right)^{n} \sum_{r=0}^{2 n} \sum_{i=0}^{r}\binom{n}{i}\binom{n}{r-i}\left(\frac{D}{g^{2}}\right)^{i}\left(\frac{g}{D}\right)^{r} A^{r} \tag{13}
\end{equation*}
$$

Corollary 8. For all $g \in \mathbb{R}$ or \mathbb{Z}, for any integer $n \geq 1$,

$$
J_{1}{ }^{n}(s, t)=\left(\frac{-2 t g}{g^{2}+s g-2 t}\right)^{n} \sum_{r=0}^{2 n} \sum_{i=0}^{r}\binom{n}{i}\binom{n}{r-i}\left(\frac{(-2 t)^{i-r}}{g^{2 i-r}}\right) J_{1}^{r}(s, t)
$$

and

$$
C_{1}^{n}(s, t)=\left(\frac{2 t\left(s^{2}+8 t\right) g}{g^{2}+\left(s^{2}+8 t\right) g+2 t\left(s^{2}+8 t\right)}\right)^{n} \sum_{r=0}^{2 n} \sum_{i=0}^{r}\binom{n}{i}\binom{n}{r-i}\left(\frac{\left(2 t\left(s^{2}+8 t\right)\right)^{i-r}}{g^{2 i-r}}\right) C_{1}^{r}(s, t)
$$

Example 9. If $s=t=1$, we get classic the Jacobsthal and Jacobsthal Lucas matrix sequences. For $n=4$, the following is obtained,

$$
J_{1}{ }^{4}=\left(\begin{array}{cc}
J_{5} & 2 J_{4} \\
J_{4} & 2 J_{3}
\end{array}\right)=\left(\frac{-2 t g}{g^{2}+g-2}\right)^{4} \sum_{r=0}^{s} \sum_{i=0}^{r}\binom{4}{i}\binom{4}{r-i}(-2)^{i-r} g^{r-2 i}\left(\begin{array}{cc}
1 & 2 \\
1 & 0
\end{array}\right)
$$

and

$$
C_{1}^{4}=\left(\begin{array}{cc}
c_{5} & 2 c_{4} \\
c_{4} & 2 c_{3}
\end{array}\right)=\left(\frac{18 g}{g^{2}+9 g+18}\right)^{4} \sum_{r=0}^{2 n} \sum_{i=0}^{r}\binom{n}{i}\binom{n}{r-i}\left(\frac{18^{i-r}}{g^{r-2 i}}\right)\left(\begin{array}{cc}
5 & 2 \\
1 & 4
\end{array}\right)^{r}
$$

Theorem 10. For any integer $n \geq 1$,

$$
\begin{equation*}
j_{n k}(\mathrm{~s}, \mathrm{t})=j_{n}(\mathrm{~s}, \mathrm{t}) \sum_{i=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor}\binom{k-1-i}{i}{c_{n}}^{k-1-2 i}(\mathrm{~s}, \mathrm{t})(2 t)^{i n} \tag{14}
\end{equation*}
$$

Proof. By using the property $j_{n+1}(s, t)+2 t j_{n-1}(s, t)=c_{n}(s, t)$ and the Binet formula of (s, t)-Jacobsthal sequence, the following is obtained,

$$
\begin{aligned}
\left(J_{1}{ }^{n}\right)^{k}=J_{1}{ }^{n^{k}}=J_{n k} & =\left(\begin{array}{cc}
j_{n k+1}(s, t) & 2 j_{n k}(s, t) \\
t j_{n k}(s, t) & 2 t j_{n k-1}(s, t)
\end{array}\right) \\
\left(J_{1}{ }^{n}\right)^{k}=\left(J_{n}\right)^{k} & =\left(\begin{array}{cc}
j_{n+1}(s, t) & 2 j_{n}(s, t) \\
t j_{n}(s, t) & 2 t j_{n-1}(s, t)
\end{array}\right)^{k} \\
& =\left(\begin{array}{cc}
x_{k}-2 t j_{n-1}(s, t) x_{k-1} & 2 j_{n}(s, t) x_{k-1} \\
t j_{n k}(s, t) x_{k-1} & x_{k}-j_{n+1}(s, t) x_{k-1}
\end{array}\right)
\end{aligned}
$$

where

$$
x_{k}=2 \sum_{i=0}^{\left\lfloor\frac{k}{2}\right\rfloor}\binom{k-i}{i} T^{k-2 i}(-D)^{i}
$$

$$
\begin{aligned}
& =2 \sum_{i=0}^{\left\lfloor\frac{k}{2}\right\rfloor}\binom{k-i}{i}\left[\begin{array}{c}
\left(j_{n+1}(s, t)+2 t j_{n-1}(s, t)\right)^{k-2 i} \\
\left(2 t\left(j_{n+1}(s, t) j_{n-1}(s, t)-j_{n}{ }^{2}(s, t)\right)^{i}\right.
\end{array}\right] \\
& =2 \sum_{i=0}^{\left\lfloor\frac{k}{2}\right\rfloor}\binom{k-i}{i}\left(c_{n}(s, t)\right)^{k-2 i}(-2 t)^{i n}
\end{aligned}
$$

By the equality of the matrices, the proof is completed.

Theorem 11.

$$
\begin{equation*}
j_{n k+r}(s, t)=\sum_{i=0}^{\left\lfloor\frac{k}{2}\right\rfloor}\binom{k-i}{i}\left(c_{n}(s, t)\right)^{k-2 i}(-2 t)^{i n}\left[j_{r}(s, t)+\frac{k-2 i}{k-i} \frac{(-2 t)^{r} j_{n-1}(s, t)}{c_{n}(s, t)}\right] \tag{15}
\end{equation*}
$$

Proof. By using (a), (10) and [9], we get

$$
J_{1}^{n}(s, t)=\left(\begin{array}{cc}
j_{n+1}(s, t) & 2 j_{n}(s, t) \\
t j_{n}(s, t) & 2 t j_{n-1}(s, t)
\end{array}\right)
$$

Then,

$$
J_{1}{ }^{n^{k+r}}(s, t)=\left(\begin{array}{cc}
j_{n k+r+1}(s, t) & 2 j_{n k+r}(s, t) \\
t j_{n k+r}(s, t) & 2 t j_{n k+r-1}(s, t)
\end{array}\right)
$$

and

$$
\begin{aligned}
J_{1}{ }^{{ }^{k+r}}(s, t) & =\left(\begin{array}{cc}
j_{n+1}(s, t) & 2 j_{n}(s, t) \\
t j_{n}(s, t) & 2 t j_{n-1}(s, t)
\end{array}\right)^{k}\left(\begin{array}{ccc}
j_{r+1}(s, t) & 2 j_{r}(s, t) \\
t j_{r}(s, t) & 2 t j_{r-1}(s, t)
\end{array}\right) \\
& =\left(\begin{array}{ccc}
x_{k}-2 t j_{n-1}(s, t) x_{k-1} & 2 j_{n}(s, t) x_{k-1} \\
t j_{n}(s, t) x_{k-1} & x_{k}-j_{n+1}(s, t) x_{k-1}
\end{array}\right)\left(\begin{array}{cc}
j_{r+1}(s, t) & 2 j_{r}(s, t) \\
t j_{r}(s, t) & 2 t j_{r-1}(s, t)
\end{array}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
x_{k} & =\sum_{i=0}^{\left\lfloor\left.\frac{k}{2} \right\rvert\,\right.}\binom{k-i}{i} T^{k-2 i}(-D)^{i} \\
& =2 \sum_{i=0}^{\left|\frac{k}{2}\right|}\binom{k-i}{i}\left(c_{n}(s, t)\right)^{k-2 i}(-2 t)^{i n}
\end{aligned}
$$

By the equality of the matrices,

$$
\begin{aligned}
j_{n k+r}(s, t) & =\left(x_{k}-2 t j_{n-1}(s, t) x_{k-1}\right) j_{r}(s, t)+2 t j_{n}(s, t) x_{k-1} j_{r-1}(s, t) \\
& =j_{r}(s, t) x_{k}-2 t\left(j_{n-1}(s, t) j_{r}(s, t)-j_{n}(s, t) j_{r-1}(s, t)\right) x_{k-1} \\
& =j_{r}(s, t) x_{k}-(-2 t)^{r} j_{n-r-1}(s, t) x_{k-1} \\
& =j_{r}(s, t) \sum_{i=0}^{\left\lfloor\frac{k}{2}\right\rfloor}\binom{k-i}{i}\left(c_{n}(s, t)\right)^{k-2 i}(-1)^{i n-i}(2 t)^{i n} \\
& +(-2 t)^{r} j_{n-r-1}(s, t) \sum_{i=0}^{\left\lfloor\frac{k-1}{2}\right\rfloor}\binom{k-1-i}{i}\left(c_{n}(s, t)\right)^{k-1-2 i}(-1)^{i n-i}(2 t)^{i n}
\end{aligned}
$$

$$
=\sum_{i=0}^{\left\lfloor\frac{k}{2}\right\rfloor}\binom{k-i}{i}\left[\begin{array}{c}
\left(c_{n}(s, t)\right)^{k-2 i} \\
{\left[j_{r}(s, t)+\frac{k-2 i}{k-i}(2 t)^{i n}\right.} \\
j^{i n}(-2 t)^{r} j_{n-r-1}(s, t) \\
c_{n}(s, t)
\end{array}\right]
$$

If we choose $s=t=1$ in (15), we get the property of the classic Jacobsthal sequences,

$$
j_{n k+r}=\sum_{i=0}^{\left\lfloor\frac{k}{2}\right\rfloor}\binom{k-i}{i}\left(c_{n}\right)^{k-2 i}(2)^{i n}(-1)^{i n-i}\left[j_{r}+\frac{k-2 i}{k-i} \frac{(-2)^{r} j_{n-r-1}}{c_{n}}\right]
$$

3. Conclusion

The paper aims to find the nth power of 2×2 special matrices whose entries are the elements of (s, t) Jacobsthal and (s, t)-Jacobsthal Lucas number sequences. From the results, some properties of the (s, t) Jacobsthal and (s, t)-Jacobsthal Lucas sequences are established. We develop new methods for finding the nth element of (s, t)-Jacobsthal sequences.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] K. S. Williams, The $n^{\text {th }}$ Power of a 2×2 Matrix, Mathematics Magazine 65(5) (1992) 336-336.
[2] J. Mc Laughlin, Combinatorial Identities Deriving from the $n^{\text {th }}$ Power of a 2×2 Matrix, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004) 1-15.
[3] J. Mc Laughlin, B. Sury, Powers of Matrix and Combinatorial Identities, Integers: Electronic Journal of Combinatorial Number Theory 5 (2005) 1-9.
[4] H. Belbachir, Linear Recurrent Sequences and Powers of a Square Matrix, Integers: Electronic Journal of Combinatorial Number Theory 6 (2006) 1-17.
[5] G. E. Bergum, V. E. Hoggatt Jr., Sums and products for recurring sequences, The Fibonacci Quarterly, 13(2) (1975) 115-120.
[6] Z. Akyüz, S. Halıcı, On Some Combinatorial Identities Involving the Terms of Generalized Fibonacci and Lucas Sequences, Hacettepe Journal of Mathematics and Statistics 42(4) (2013) 431-435.
[7] Z. Akyüz, S. Halıc1, Some Identities Deriving from the $n^{\text {th }}$ Power of a Special Matrix. Advances in Difference Equations 1 (2012) 1-6.
[8] S. Uygun, The (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas Sequences, Applied Mathematical Sciences 70(9) (2015) 3467-3476.
[9] K. Uslu, S. Uygun, The (s, t)-Jacobsthal and (s, t)-Jacobsthal-Lucas Matrix Sequences, ARS Combinatoria 108 (2013) 13-22.
[10] S. Uygun, Some Sum Formulas of (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas Matrix Sequences, Applied Mathematics 7 (2016) 61-69.
[11] S. Halic1, M. Uysal, A Study on Some identities involving (s_{k}, t)-Jacobsthal Numbers, Notes on Number Theory and Discrete Mathematics 26(4) (2020) 4 74-79. DOI: 10.7546/nntdm.2020.26.4.74-79
[12] A. A. Wani, P. Catarino, S. Halic1, On a Study of (s, t)-generalized Pell Sequence and Its Matrix Sequence, Journal of Mathematics 51(9) (2019) 17-32.
[13] A. F. Horadam, Jacobsthal Representation Numbers, The Fibonacci Quarterly 34(1) (1996) 40-54.

[^0]: ${ }^{1}$ suygun@gantep.edu.tr (Corresponding Author)
 ${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Turkey

