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Abstract

Some properties of k-quasi-M -hyponormal are established in this paper. The ascent and an extension of the
well-known Fuglede Putnam's Theorem for such operators as well as other related results are also presented,
which complete some results given in [7, 12].
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1. Introduction

Let H be an in�nite dimensional complex separable Hilbert space, and let B(H) be the Banach algebra
of all bounded linear operators on H. Denote by N(T ) and R(T ) respectively, for the null space and the
range of an operator T in B(H). Operators T, S ∈ B(H) are said to be intertwined by an operator X ∈ B(H)
if TX = XS. The familiar Fuglede-Putnam's Theorem asserts that if X ∈ B(H) intertwines two normal
operators T, S ∈ B(H), then X intertwines their adjoints T ∗ and S∗ too. Several extensions of this result for
other classes of non normal operators have been studied by other authors, see [3],[5],[8] and [9]. An operator
T ∈ B(H) is said to be dominant if R(T − λ) ⊂ R(T − λ)∗ for all λ ∈ C, [10], M -hyponormal if there exists
M > 0 such that M(T − λ)∗(T − λ) ≥ (T − λ)(T − λ)∗ for all λ ∈ C, [2]. A 1-hyponormal operator is
hyponormal. The operator T ∈ B(H) is said to be k-quasi-M -hyponormal for a positive integer k, if there
exists M > 0 such that

T ∗k(M(T − λ)∗(T − λ))T k ≥ T ∗k(T − λ)(T − λ)∗T k
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for all λ ∈ C, [7, 12, 13].
This de�nition is equivalent to ∥∥∥√M(T − λ)T kx

∥∥∥ ≥ ∥∥∥(T − λ)∗T kx
∥∥∥

for all x ∈ H. If k = 1, T is said to be quasi-M -hyponormal. Clearly,

M -hyponormal ⊂ quasi-M -hyponormal ⊂ k-quasi-M -hyponormal

Example 1.1. [13] The matrix A =

(
0 1
0 0

)
on C2 is a 2-quasi-M -hyponormal but not M -hyponormal.

Properties of this class of operators have been presented in [7, 12]. In this paper, we add some complement
results. We give the ascent of T − λ where T is an element of such class for every complex scalar λ. We
present an extension of the well-known Fuglede-Putnam's Theorem for k-quasi-M -hyponormal operators.
The SVEP, Bishop's and Dunford's properties are also established.

2. Main Results

Theorem 2.1. Let T ∈ B(H) be a k-quasi-M -hyponormal operator. If T has dense range, then T is M -
hyponormal.

Proof. Let x ∈ H. Since R(T ) = H, there exists a sequence (xn)n inH such that x = lim
n→∞

Txn. By continuity

of T, we get
lim
n→∞

T kxn = lim
n→∞

T k−1Txn = T k−1x

Since T is k-quasi-M -hyponormal,∥∥∥√M(T − λ)T kxn

∥∥∥ ≥ ∥∥∥(T − λ)∗T kxn

∥∥∥
for all λ ∈ C. Thus,

∥∥∥√M(T − λ)T k−1x
∥∥∥ =

∥∥∥√M lim
n→∞

(T − λ)T kxn

∥∥∥
= lim

n→∞

∥∥∥√M(T − λ)T kxn

∥∥∥
≥ lim

n→∞

∥∥∥(T − λ)∗T kxn

∥∥∥
=

∥∥∥ lim
n→∞

(T − λ)∗T kxn

∥∥∥
=

∥∥∥(T − λ)∗T k−1x
∥∥∥

Hence, T is (k − 1)-quasi-M -hyponormal. Since T has dense range, T is (k − 2)-quasi-M -hyponormal. By
iteration, T is M -hyponormal.

Corollary 2.1. Let T be a nonzero k-quasi-M -hyponormal operator, but not an M -hyponormal. Then T
admits at least, a non trivial closed invariant subspace.

Proof. Suppose that T has no non trivial closed invariant subspace. Since T 6= 0, N(T ) 6= H and R(T ) 6= {0}
are closed invariant subspaces for T. Thus, necessarily, N(T ) = {0} and R(T ) = H. By Theorem 2.1, T is
M -hyponormal operator, which contradicts the hypothesis.
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De�nition 2.1. [1] For T ∈ B(H), the smallest integer m such that N(Tm) = N(Tm+1) is said to be the
ascent (length of the null chain) of T, and is denoted by α(T ). If such integer does not exist, we shall write
α(T ) =∞.

Example 2.1. Since an M -hyponormal operator is dominant, and according to [9, Lemma 2.1], α(T ) = 1
for an M -hyponormal operator T ∈ B(H).

De�nition 2.2. [1] The smallest integer m such that R(Tm) = R(Tm+1) is said to be the descent (length of
the range chain) of T, and is denoted by δ(T ). If no such integer exists, we set δ(T ) =∞.

According to [1], α(T ) = δ(T ) whenever α(T ) and δ(T ) are both �nite.

In [13], F. Zuo and H. Zuo showed that k-quasi-M -hyponormal operators have �nite ascent. Now, we
give the value of this ascent for all complex scalar λ.

Theorem 2.2. Let T be a k-quasi-M -hyponormal operator. Then :

(1) N(T k) = N(T k+1)

(2) N((T − λ)2) = N(T − λ), for all λ ∈ C, λ 6= 0.

Or equivalent, α(T ) = k and α(T − λ) = 1,

Proof. (1). It is enough to show that N(T )k+1 ⊂ N(T )k since clearly N((T )k) ⊂ N(T )k+1. Let x be in
N(T k+1). Then T k+1x = 0. Since T is k-quasi-M -hyponormal, there exists M > 0 such that

0 =
∥∥∥√MT k+1x

∥∥∥ ≥ ∥∥∥T ∗T kx
∥∥∥

So, x ∈ N(T ∗T k). Thus, for all z ∈ H 〈
T ∗T kx, z

〉
= 0

i.e., 〈
T kx, Tz

〉
= 0

for all z ∈ H. Therefore, T kx ∈ R (T )⊥ . Since R
(
T k
)
⊂ R (T ) ,

T kx ∈ R
(
T k
)⊥
∩R

(
T k
)
= {0}

and so x ∈ N(T k).

(2). Let x ∈ N((T − λ)2). Since N(T − λ) ⊆ N(T − λ)∗ by [13, Lemma 2.2], N(T − λ) reduces (T − λ).
Hence, according to the decomposition

H = (N(T − λ))⊥ ⊕N(T − λ)

we can write x = x1 + x2, where x1 ∈ (N(T − λ))⊥ and x2 ∈ (N(T − λ)) . It follows that

(T − λ)2x = 0 = (T − λ)2x1 = (T − λ)((T − λ)x1)

Thus, (T−λ)x1 ∈ N(T−λ) and (T−λ)x1 ∈ (N(T − λ))⊥. Therefore, (T−λ)x1 = 0, and then x1 ∈ N(T−λ).
So x1 = 0. Finally, x = x2 ∈ N(T − λ).
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De�nition 2.3. [1] For an operator T ∈ B(H) and x ∈ H, the local resolvent set of T at x denoted by
ρT (x), is de�ned to consist of complex elements z0 such that there exists an analytic function f(z) de�ned in
a neighborhood of z0, with values in H, for which (T − z)f(z) = x. The set σT (x) = C \ ρT (x) is called the
local spectrum of T at x.

De�nition 2.4. [1] For every subset F of C, we de�ne the local spectral subspace of T by HT (F ) =
{x ∈ H : σT (x) ⊂ F}.

De�nition 2.5. [1] An operator T ∈ B(H) is said to have Dunford's property (C) if HT (F ) is closed for
each closed subset F of C.

De�nition 2.6. [1] An operator T ∈ B(H) is said to be polaroid, if every isolated point of the spectrum σ(T )
of T is a pole of the resolvent of T , or equivalent, if λ ∈ isoσ(T ), then α(T − λ) and δ(T − λ) are �nite.

De�nition 2.7. [1] T ∈ B(H) is said to have Bishop's property (β) if for each open subset U ⊂ C and every
sequence of analytic functions fn : U → H for which (T − λ)fn(λ)→ 0 as n→∞ locally uniformly on each
compact subset of U , fn(λ)→ 0 as n→∞ again locally uniformly on U .

De�nition 2.8. [1] An operator T in B(H) is said to have the single valued extension property , brie�y
SVEP at a complex number α, if for each open neighborhood V of α, the operator (T − λ) is one-to-one for
all λ ∈ V.

If furthermore, T has SVEP at every α ∈ C, then T is said to have SVEP.

According to [1],

Bishop's property (β) ⇒ Dunford's property (C)⇒ SVEP (1)

F. Zuo and S. Mecheri in [12] proved that k-quasi-M -hyponormal operators have Bishop's property (β).
Using this result, we present in the sequel, an extension of the Fuglede-Putnam's Theorem for such type of
operators. We've then

Proposition 2.1. The Fuglede-Putnam's Theorem holds for k-quasi-M -hyponormal operators T and S∗ in
B(H).

Proof. Operators T and S∗ are reduced by their eigenspaces according to [13, Theorem 5], polaroid and
having Bishop's property by [12]. Thus, our result holds by [6, Theorem 2.4].

Lemma 2.1. [11] Let T in B(H) and S in B(K). Then, the following assertions are equivalent :

(1) The pair (T, S) satis�es the Fuglede-Putnam's Theorem.

(2) If TX = XS for some X in B(K,H), then R(X) reduces T , (N(X))⊥ reduces S, and the restrictions

T
∣∣∣R(X) , S

∣∣(N(X))⊥ are unitarily equivalent normal operators.

Corollary 2.2. Let T ∈ B(H) be a pure k -quasi-M -hyponormal operator, and let S∗ ∈ B(H) be k-quasi-
M -hyponormal. Then, equation TX = XS implies X = 0.
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Proof. Equations TX = XS and T ∗X = XS∗ hold by the previous Proposition. Hence, restrictions

T
∣∣∣R(X) , S

∣∣(N(X))⊥ are unitarily equivalent normal operators by Lemma 2.1. Since T is pure, X = 0

necessarily.

De�nition 2.9. An operator T ∈ B(H) is said to be bounded below if there exists c > 0 such that ‖x‖ ≤
c ‖Tx‖ for all x ∈ H.

Note that such operator is one-to-one. We've then

Proposition 2.2. Let T ∈ B(H) be a k-quasi-M -hyponormal operator, and let S ∈ B(H) be such that the
pair (T, S) satis�es the Fuglede-Putnam's Theorem. If X ∈ B(H) intertwines T and S, then :

(i) If X is one-to-one, then S has SVEP.

(ii) If X is an isometry, then S has Dunford's property (C).

(iii) If X is bounded below, then S has Bishop's property (β).

Proof. Since T has Bishop's property (β) by [7], T has SVEP and Dunford's property (C) by (1). Thus,
assertions (ii), (i) and (iii) hold by [4, Theorem 2.8].
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