GEOMETRY OF SEMI-INVARIANT COISOTROPIC SUBMANIFOLDS IN GOLDEN SEMI-RIEMANNIAN MANIFOLDS

NERGiZ (ÖNEN) POYRAZ AND BURÇİN DOĞAN

Abstract

In this paper, we study semi-invariant coisotropic submanifolds of a golden semi-Riemannian manifold. We give some necessary and sufficient conditions on integrability of distributions on semi-invariant coisotropic submanifolds of a golden semi-Riemannian manifold. We obtain some geometric results for such submanifolds. Moreover, we give an example.

1. Introduction

The theory of degenerate submanifolds of semi-Riemannian manifolds is one of significant issues of differential geometry. Lightlike submanifolds of semi-Riemannian manifolds were presented by Duggal-Bejancu in [6] and Kupeli in [17]. Şahin and Güneş studied integrability of distributions of CR lightlike submanifolds in [21]. Bahadır and Kılıç introduced lightlike submanifolds of a semi-Riemannian product manifold with quarter symmetric non-metric connection in [4]. The lightlike submanifolds have been studied by many authors in various spaces for example $[1,2,3,7,8,9,16]$.

As a generalization of almost complex and almost contact structures Yano introduced the notion of an f-structure which is a (1,1)-tensor field of constant rank on \tilde{M} and satisfies the equality $f^{3}+f=0$ [23]. In its turn, it has been generalized by Goldberg and Yano in [13], who defined a polynomial structure of degree d which is a $(1,1)$-tensor field f of constant rank on M and satisfies the equation $Q(f)=f_{d}+a_{d} f_{d-1}+\ldots+a_{2} f+a_{1} I=0$, where $a_{1}, a_{2}, \ldots, a_{d}$ are real numbers and I is the identity tensor of type $(1,1)$. As particular cases of polynomial structures Hretcanu and Crasmareanu defined the Golden structure. Being inspired by the Golden proportion the notion of Golden Riemannian manifold \tilde{M} was defined in [5, 14] by a tensor field on \tilde{M} satisfying $\tilde{P}^{2}-\tilde{P}-I=0$. They studied properties of Golden Riemannian manifolds. Moreover, they studied invariant submanifolds of a Riemannian manifold endowed with a golden structure in [14] and they showed

[^0]that a Golden structure induced on every invariant submanifold a Golden structure, too, in [15]. The integrability of golden structures was investigated in [12]. In [18], Özkan studied the complete and horizontal lifts of the golden structure in the tangent bundle. Golden maps between golden Riemannian manifolds were presented by Şahin and Akyol in [22]. Totally umbilical semi-invariant submanifolds of golden Riemannian manifolds were studied in [11] by Erdoğan and Yıldırım. Poyraz and Yaşar introduced lightlike hypersurfaces and lightlike submanifolds of a golden semi-Riemannian manifold in [19] and [20], respectively. Erdoğan worked transversal lightlike submanifolds of metallic semi-Riemannian manifolds in [10].

In this paper, we study semi-invariant coisotropic submanifolds of a golden semiRiemannian manifold. We give some necessary and sufficient conditions on integrability of distributions on semi-invariant coisotropic submanifolds of a golden semi-Riemannian manifold. We obtain some geometric results for such submanifolds. Moreover, we give an example.

2. Preliminaries

Let \tilde{M} be a differentiable manifold. If a tensor field \tilde{P} of type $(1,1)$ satisfies the following equation, then \tilde{P} is called a golden structure on \tilde{M}

$$
\begin{equation*}
\tilde{P}^{2}=\tilde{P}+I \tag{2.1}
\end{equation*}
$$

A golden semi-Riemannian structure on \tilde{M} is a pair (\tilde{g}, \tilde{P}) with

$$
\begin{equation*}
\tilde{g}(\tilde{P} X, Y)=\tilde{g}(X, \tilde{P} Y) \tag{2.2}
\end{equation*}
$$

Then $(\tilde{M}, \tilde{g}, \tilde{P})$ is called a golden semi-Riemannian manifold [18].
Let $(\tilde{M}, \tilde{g}, \tilde{P})$ be a golden semi-Riemannian manifold, then equation (2.2) is equivalent with

$$
\begin{equation*}
\tilde{g}(\tilde{P} X, \tilde{P} Y)=\tilde{g}(\tilde{P} X, Y)+\tilde{g}(X, Y) \tag{2.3}
\end{equation*}
$$

for any $X, Y \in \Gamma(T \tilde{M})$.
Let (\tilde{M}, \tilde{g}) be a real $(m+n)$-dimensional semi-Riemannian manifold with index q, such that $m, n \geq 1,1 \leq q \leq m+n+1$ and (M, g) be an m-dimensional submanifold of \tilde{M}, where g is the induced metric of \tilde{g} on M. If \tilde{g} is degenerate on the tangent bundle $T M$ of M then M is named a lightlike submanifold of \tilde{M}. For a degenerate metric g on M

$$
\begin{equation*}
T M^{\perp}=\cup\left\{u \in T_{x} \tilde{M}: \tilde{g}(u, v)=0, \forall v \in T_{x} M, x \in M\right\} \tag{2.4}
\end{equation*}
$$

is a degenerate n-dimensional subspace of $T_{x} \tilde{M}$. Thus, both $T_{x} M$ and $T_{x} M^{\perp}$ are degenerate orthonormal distributions. Then, there exists a subspace $\operatorname{Rad}\left(T_{x} M\right)=$ $T_{x} M \cap T_{x} M^{\perp}$ which is known as radical (null) space. If the mapping $\operatorname{Rad}(T M): x \in$ $M \longrightarrow \operatorname{Rad}\left(T_{x} M\right)$, defines a smooth distribution, named radical distribution, on M of rank $r>0$ then the submanifold M of \tilde{M} is named an r-lightlike submanifold.

Let $S(T M)$ be a screen distribution which is a semi-Riemannian complementary distribution of $\operatorname{Rad}(T M)$ in $T M$. This means that

$$
\begin{equation*}
T M=S(T M) \perp \operatorname{Rad}(T M) \tag{2.5}
\end{equation*}
$$

and $S\left(T M^{\perp}\right)$ is a complementary vector subbundle to $\operatorname{Rad}(T M)$ in $T M^{\perp}$. Let $\operatorname{tr}(T M)$ and $\operatorname{ltr}(T M)$ be complementary (but not orthogonal) vector bundles to
$T M$ in $T \tilde{M}_{\left.\right|_{M}}$ and $\operatorname{Rad}(T M)$ in $S\left(T M^{\perp}\right)^{\perp}$, respectively. Thus we have

$$
\begin{equation*}
\operatorname{tr}(T M)=\operatorname{ltr}(T M) \perp S\left(T M^{\perp}\right) \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\left.T \tilde{M}\right|_{M}=T M \oplus \operatorname{tr}(T M)=\{\operatorname{Rad}(T M) \oplus l \operatorname{tr}(T M)\} \perp S(T M) \perp S\left(T M^{\perp}\right) \tag{2.7}
\end{equation*}
$$

Theorem 2.1. Let $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ be an r-lightlike submanifold of a semi-Riemannian manifold (\tilde{M}, \tilde{g}). Suppose U is a coordinate neighbourhood of M and $\left\{\xi_{i}\right\}, i \in\{1, . ., r\}$ is a basis of $\Gamma(\operatorname{Rad}(T M))_{\left.\right|_{U}}$. Then, there exist a complementary vector subbundle ltr $(T M)$ of $\operatorname{Rad}(T M)$ in $S\left(T M^{\perp}\right)^{\perp}$ and a basis $\left\{N_{i}\right\}$, $i \in\{1, . ., r\}$ of $\Gamma(l \operatorname{ltr}(T M))_{\left.\right|_{U}}$ such that

$$
\begin{equation*}
\tilde{g}\left(N_{i}, \xi_{j}\right)=\delta_{i j}, \quad \tilde{g}\left(N_{i}, N_{j}\right)=0 \tag{2.8}
\end{equation*}
$$

for any $i, j \in\{1, . ., r\}$.
We say that a submanifold $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ of \tilde{M} is
Case 1: r-lightlike if $r<\min \{m, n\}$,
Case 2: Coisotropic if $r=n<m, S\left(T M^{\perp}\right)=\{0\}$,
Case 3: Isotropic if $r=m<n, S(T M)=\{0\}$,
Case 4: Totally lightlike if $r=m=n, S(T M)=\{0\}=S\left(T M^{\perp}\right)$.
Let $\tilde{\nabla}$ be the Levi-Civita connection on \tilde{M}. Then, according to the decomposition (2.7), the Gauss and Weingarten formulas are given by

$$
\begin{align*}
\tilde{\nabla}_{X} Y & =\nabla_{X} Y+h(X, Y) \tag{2.9}\\
\tilde{\nabla}_{X} V & =-A_{V} X+\nabla_{X}^{t} V \tag{2.10}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$ and $V \in \Gamma(\operatorname{tr}(T M))$, where $\left\{\nabla_{X} Y, A_{V} X\right\}$ and $\left\{h(X, Y), \nabla_{X}^{t} V\right\}$ belong to $\Gamma(T M)$ and $\Gamma(\operatorname{tr}(T M))$, respectively. ∇ and ∇^{t} are linear connections on M and on the vector bundle $\operatorname{tr}(T M)$, respectively. Using the projectoins $L: \operatorname{tr}(T M) \rightarrow l \operatorname{tr}(T M)$ and $S: \operatorname{tr}(T M) \rightarrow S\left(T M^{\perp}\right)$, we have

$$
\begin{align*}
\tilde{\nabla}_{X} Y & =\nabla_{X} Y+h^{l}(X, Y)+h^{s}(X, Y), \tag{2.11}\\
\tilde{\nabla}_{X} N & =-A_{N} X+\nabla_{X}^{l} N+D^{s}(X, N), \tag{2.12}\\
\tilde{\nabla}_{X} W & =-A_{W} X+\nabla_{X}^{s} W+D^{l}(X, W) \tag{2.13}
\end{align*}
$$

for any $X, Y \in \Gamma(T M), N \in \Gamma(l \operatorname{tr}(T M))$ and $W \in \Gamma\left(S\left(T M^{\perp}\right)\right)$, where $h^{l}(X, Y)=$ $\operatorname{Lh}(X, Y), h^{s}(X, Y)=\operatorname{Sh}(X, Y), \nabla_{X}^{l} N, D^{l}(X, W) \in \Gamma(l \operatorname{tr}(T M)), \nabla_{X}^{s} W, D^{s}(X, N) \in$ $\Gamma\left(S\left(T M^{\perp}\right)\right)$ and $\nabla_{X} Y, A_{N} X, A_{W} X \in \Gamma(T M)$. Then, using (2.11)-(2.13) and $\tilde{\nabla}$ metric connection, we derive

$$
\begin{align*}
g\left(h^{s}(X, Y), W\right)+g\left(Y, D^{l}(X, W)\right) & =g\left(A_{W} X, Y\right) \tag{2.14}\\
g\left(D^{s}(X, N), W\right) & =g\left(A_{W} X, N\right) \tag{2.15}
\end{align*}
$$

Let J be a projection of $T M$ on $S(T M)$. From (2.5) we have

$$
\begin{align*}
\nabla_{X} J Y & =\nabla_{X}^{*} J Y+h^{*}(X, J Y) \tag{2.16}\\
\nabla_{X} \xi & =-A_{\xi}^{*} X+\nabla_{X}^{* t} \xi \tag{2.17}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$ and $\xi \in \Gamma(\operatorname{Rad}(T M))$, where $\left\{\nabla_{X}^{*} J Y, A_{\xi}^{*} X\right\}$ and $\left.\left\{h^{*}(X, J Y), \nabla_{X}^{* t}\right\}\right\}$ belong to $\Gamma(S(T M))$ and $\Gamma(\operatorname{Rad}(T M))$, respectively.

By using above equations, we obtain

$$
\begin{align*}
\tilde{g}\left(h^{l}(X, J Y), \xi\right) & =g\left(A_{\xi}^{*} X, J Y\right) \tag{2.18}\\
\tilde{g}\left(h^{*}(X, J Y), N\right) & =g\left(A_{N} X, J Y\right) \tag{2.19}\\
\tilde{g}\left(h^{l}(X, \xi), \xi\right) & =0, \quad A_{\xi}^{*} \xi=0 \tag{2.20}
\end{align*}
$$

Generally, the induced connection ∇ on M is not metric connection. Since $\tilde{\nabla}$ is a metric connection, from (2.11) we derive

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=\tilde{g}\left(h^{l}(X, Y), Z\right)+\tilde{g}\left(h^{l}(X, Z), Y\right) \tag{2.21}
\end{equation*}
$$

However, it is important to note that ∇^{*} is a metric connection on $S(T M)$.

3. Semi-Invariant Coisotropic Submanifolds of Semi-Riemannian Golden Manifolds

Let $\left(M, g, S(T M), S\left(T M^{\perp}\right)\right)$ be a lightlike submanifold of a golden semi-Riemannian manifold $(\tilde{M}, \tilde{g}, \tilde{P})$. Then, for any $X \in \Gamma(T M)$, we have

$$
\begin{equation*}
\tilde{P} X=P X+w X \tag{3.1}
\end{equation*}
$$

where $P X$ and $w X$ are the tangential and transversal components of $\tilde{P} X$, respectively. Similarly, for any $V \in \Gamma(\operatorname{tr}(T M))$, we have

$$
\begin{equation*}
\tilde{P} V=B V+C V \tag{3.2}
\end{equation*}
$$

where $B V$ and $C V$ are the tangential and transversal components of $\tilde{P} X$, respectively.

Definition 3.1. Let $(M, g, S(T M))$ be a lightlike submanifold of golden semiRiemannian manifold $(\tilde{M}, \tilde{g}, \tilde{P})$. If $\tilde{P}(\operatorname{Rad}(T M)) \subset S(T M), \tilde{P}(\operatorname{ltr}(T M)) \subset S(T M)$ and $\tilde{P}\left(S\left(T M^{\perp}\right)\right) \subset S(T M)$ then we call that M is a semi-invariant lightlike submanifold.

If we set $D_{1}=\tilde{P}(\operatorname{Rad}(T M)), D_{2}=\tilde{P}(\operatorname{ltr}(T M))$ and $D_{3}=\tilde{P}\left(S\left(T M^{\perp}\right)\right)$ then we have

$$
\begin{equation*}
S(T M)=D_{0} \perp\left\{D_{1} \oplus D_{2}\right\} \perp D_{3} . \tag{3.3}
\end{equation*}
$$

Thus we derive

$$
\begin{align*}
T M & =D_{0} \perp\left\{D_{1} \oplus D_{2}\right\} \perp D_{3} \perp \operatorname{Rad}(T M) \tag{3.4}\\
T \tilde{M} & =D_{0} \perp\left\{D_{1} \oplus D_{2}\right\} \perp D_{3} \perp S\left(T M^{\perp}\right) \perp\{\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)\}
\end{align*}
$$

According to this definition we can write

$$
\begin{equation*}
D=D_{0} \perp D_{1} \perp \operatorname{Rad}(T M) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
D^{\perp}=D_{2} \perp D_{3} \tag{3.7}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
T M=D \oplus D^{\perp} \tag{3.8}
\end{equation*}
$$

If M is a semi-invariant coisotropic submanifold, we know that $S\left(T M^{\perp}\right)=\{0\}$. Then we have

$$
\begin{align*}
S(T M) & =\left\{D_{1} \oplus D_{2}\right\} \perp D_{0} \tag{3.9}\\
T M & =\left\{D_{1} \oplus D_{2}\right\} \perp D_{0} \perp \operatorname{Rad}(T M) \tag{3.10}\\
T \tilde{M} & =\left\{D_{1} \oplus D_{2}\right\} \perp D_{0} \perp\{\operatorname{Rad}(T M) \oplus \operatorname{ltr}(T M)\} \tag{3.11}\\
T M & =D \oplus D_{2} \tag{3.12}
\end{align*}
$$

Proposition 3.2. The distribution D_{0} are D are invariant distributions with respect to \tilde{P}.

Example 3.3. Let $\left(\tilde{M}=\mathbb{R}_{2}^{5}, \tilde{g}\right)$ be a 5 -dimensional semi-Euclidean space with signature $(+,+,-,-,+)$ and $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ be the standard coordinate system of \mathbb{R}_{2}^{5}. If we define a mapping \tilde{P} by $\tilde{P}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\left(\phi x_{1}, \phi x_{2}, \phi x_{3},(1-\right.$ $\left.\phi) x_{4},(1-\phi) x_{5}\right)$ then $\tilde{P}^{2}=\tilde{P}+I$ and \tilde{P} is a golden structure on \mathbb{R}_{2}^{5}. Let M be a submanifold of \tilde{M} given by

$$
\begin{aligned}
x_{1} & =u_{1}+\phi u_{2}-\frac{\phi}{2(2+\phi)} u_{3}+\sqrt{2} \arctan u_{4}, x_{2}=u_{1}+\phi u_{2}+\frac{\phi}{2(2+\phi)} u_{3} \\
x_{3} & =\sqrt{2} u_{1}+\sqrt{2} \phi u_{2}-\frac{\sqrt{2} \phi}{2(2+\phi)} u_{3}+\arctan u_{4}, x_{4}=\phi u_{1}-u_{2}+\frac{1}{2(2+\phi)} u_{3}, \\
x_{5} & =\phi u_{1}-u_{2}-\frac{1}{2(2+\phi)} u_{3}
\end{aligned}
$$

where $u_{i}, 1 \leq i \leq 4$, are real parameters. Thus $T M=\operatorname{span}\left\{U_{1}, U_{2}, U_{3}, U_{4}\right\}$ where

$$
\begin{aligned}
U_{1} & =\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}+\sqrt{2} \frac{\partial}{\partial x_{3}}+\phi \frac{\partial}{\partial x_{4}}+\phi \frac{\partial}{\partial x_{5}} \\
U_{2} & =\phi \frac{\partial}{\partial x_{1}}+\phi \frac{\partial}{\partial x_{2}}+\sqrt{2} \phi \frac{\partial}{\partial x_{3}}-\frac{\partial}{\partial x_{4}}-\frac{\partial}{\partial x_{5}} \\
U_{3} & =\frac{1}{2(2+\phi)}\left(-\phi \frac{\partial}{\partial x_{1}}+\phi \frac{\partial}{\partial x_{2}}-\sqrt{2} \phi \frac{\partial}{\partial x_{3}}+\frac{\partial}{\partial x_{4}}-\frac{\partial}{\partial x_{5}}\right) \\
U_{4} & =\frac{\sqrt{2}}{1+u_{4}^{2}} \frac{\partial}{\partial x_{1}}+\frac{1}{1+u_{4}^{2}} \frac{\partial}{\partial x_{3}}
\end{aligned}
$$

It is easy to check that M is a 1 -lightlike submanifold and U_{1} is a degenerate vector. Then we have $\operatorname{Rad}(T M)=\operatorname{span}\left\{U_{1}\right\}$ and $S(T M)=\operatorname{span}\left\{U_{2}, U_{3}, U_{4}\right\}$. By direct calculations we get

$$
l \operatorname{tr}(T M)=\operatorname{span}\left\{N=-\frac{1}{2(2+\phi)}\left(\frac{\partial}{\partial x_{1}}-\frac{\partial}{\partial x_{2}}+\sqrt{2} \frac{\partial}{\partial x_{3}}+\phi \frac{\partial}{\partial x_{4}}-\phi \frac{\partial}{\partial x_{5}}\right)\right\}
$$

Furthermore, we can write $D_{0}=\operatorname{span}\left\{U_{4}\right\}, D_{1}=\operatorname{span}\left\{U_{2}\right\}, D_{2}=\operatorname{span}\left\{U_{3}\right\}$. Thus M is a semi-invariant coisotropic submanifold of \tilde{M}.

Theorem 3.4. Let $(M, g, S(T M))$ be a semi-invariant coisotropic submanifold of a golden semi-Riemannian manifold $(\tilde{M}, \tilde{g}, \tilde{P})$. Then the distribution D is integrable iff

$$
\begin{equation*}
h^{l}(\tilde{P} X, \tilde{P} Y)=h^{l}(\tilde{P} X, Y)+h^{l}(X, Y) \tag{3.13}
\end{equation*}
$$

for any $X, Y \in \Gamma(D)$.

Proof. For any $X, Y \in \Gamma(D), \xi \in \Gamma(\operatorname{Rad}(T M))$ and $N \in \Gamma(\operatorname{ltr}(T M))$ the distribution D is integrable iff

$$
g([X, Y], \tilde{P} \xi)=0
$$

Then, from (2.2), (2.3) and (2.11) we obtain

$$
\begin{equation*}
g([\tilde{P} X, Y], \tilde{P} \xi)=\tilde{g}\left(h^{l}(\tilde{P} X, \tilde{P} Y)-h^{l}(\tilde{P} X, Y)-h^{l}(X, Y), \xi\right) \tag{3.14}
\end{equation*}
$$

which completes the proof.

Theorem 3.5. Let $(M, g, S(T M))$ be a semi-invariant coisotropic submanifold of a golden semi-Riemannian manifold $(\tilde{M}, \tilde{g}, \tilde{P})$. Then $\operatorname{Rad}(T M)$ is integrable iff
(i) $g\left(h^{*}\left(\xi, \tilde{P} \xi^{\prime}\right), N\right)=g\left(h^{*}\left(\xi^{\prime}, \tilde{P} \xi\right), N\right)$,
(ii) $\tilde{g}\left(h^{l}\left(\xi, \tilde{P} \xi^{\prime}\right), \xi_{1}\right)=\tilde{g}\left(h^{l}\left(\xi^{\prime}, \tilde{P} \xi\right), \xi_{1}\right)$,
(iii) $g\left(A_{\xi}^{*} \xi^{\prime}, X\right)=g\left(A_{\xi^{\prime}}^{*} \xi, X\right)$
for any $X \in \Gamma\left(D_{0}\right), \xi, \xi^{\prime}, \xi_{1} \in \Gamma(\operatorname{Rad}(T M)), N \in \Gamma(l t r(T M))$.
Proof. $\operatorname{Rad}(T M)$ is integrable iff

$$
g\left(\left[\xi, \xi^{\prime}\right], \tilde{P} N\right)=g\left(\left[\xi, \xi^{\prime}\right], \tilde{P} \xi_{1}\right)=g\left(\left[\xi, \xi^{\prime}\right], X\right)=0
$$

for any $X \in \Gamma\left(D_{0}\right), \xi, \xi^{\prime}, \xi_{1} \in \Gamma(\operatorname{Rad}(T M)), N \in \Gamma(l t r(T M))$. Then, from (2.2), (2.11), (2.16) and (2.17) we obtain

$$
\begin{align*}
g\left(\left[\xi, \xi^{\prime}\right], \tilde{P} N\right) & =\tilde{g}\left(\tilde{\nabla}_{\xi} \xi^{\prime}-\tilde{\nabla}_{\xi^{\prime}} \xi, \tilde{P} N\right)=\tilde{g}\left(\tilde{\nabla}_{\xi} \tilde{P} \xi^{\prime}-\tilde{\nabla}_{\xi^{\prime}} \tilde{P} \xi, N\right) \\
& =\tilde{g}\left(h^{*}\left(\xi, \tilde{P} \xi^{\prime}\right)-h^{*}\left(\xi^{\prime}, \tilde{P} \xi\right), N\right) \tag{3.15}\\
g\left(\left[\xi, \xi^{\prime}\right], \tilde{P} \xi_{1}\right) & =\tilde{g}\left(\tilde{\nabla}_{\xi} \xi^{\prime}-\tilde{\nabla}_{\xi^{\prime}} \xi, \tilde{P} \xi_{1}\right)=g\left(\tilde{\nabla}_{\xi} \tilde{P} \xi^{\prime}-\tilde{\nabla}_{\xi^{\prime}} \tilde{P} \xi, \xi_{1}\right) \\
& =\tilde{g}\left(h^{l}\left(\xi, \tilde{P} \xi^{\prime}\right)-h^{l}\left(\xi^{\prime}, \tilde{P} \xi\right), \xi_{1}\right) \tag{3.16}\\
g\left(\left[\xi, \xi^{\prime}\right], X\right) & =\tilde{g}\left(\tilde{\nabla}_{\xi} \xi^{\prime}-\tilde{\nabla}_{\xi^{\prime}} \xi, X\right)=g\left(A_{\xi}^{*} \xi^{\prime}-A_{\xi^{\prime}}^{*} \xi, X\right)=0 \tag{3.17}
\end{align*}
$$

This completes the proof.

Theorem 3.6. Let $(M, g, S(T M))$ be a semi-invariant coisotropic submanifold of a golden semi-Riemannian manifold $(\tilde{M}, \tilde{g}, \tilde{P})$. Then, $\tilde{P} \operatorname{Rad}(T M)$ is integrable iff
(i) $\tilde{g}\left(h^{l}\left(\tilde{P} \xi_{1}, \xi_{2}\right), \xi\right)=\tilde{g}\left(h^{l}\left(\tilde{P} \xi_{2}, \xi_{1}\right), \xi\right)$,
(ii) $g\left(A_{N} \tilde{P} \xi_{1}, \tilde{P} \xi_{2}\right)=g\left(A_{N} \tilde{P} \xi_{2}, \tilde{P} \xi_{1}\right)$,
(iii) $g\left(A_{\xi_{1}}^{*} \tilde{P} \xi_{2}, \tilde{P} X\right)=g\left(A_{\xi_{2}}^{*} \tilde{P} \xi_{1}, \tilde{P} X\right)$
for any $X \in \Gamma\left(D_{0}\right), \xi_{1}, \xi_{2}, \xi \in \Gamma(\operatorname{Rad}(T M)), N \in \Gamma(l \operatorname{tr}(T M))$.
Proof. $\tilde{P} \operatorname{Rad}(T M)$ is integrable iff

$$
g\left(\left[\tilde{P} \xi_{1}, \tilde{P} \xi_{2}\right], \tilde{P} \xi\right)=\tilde{g}\left(\left[\tilde{P} \xi_{1}, \tilde{P} \xi_{2}\right], N\right)=g\left(\left[\tilde{P} \xi_{1}, \tilde{P} \xi_{2}\right], X\right)=0
$$

for any $X \in \Gamma\left(D_{0}\right), \xi_{1}, \xi_{2}, \xi \in \Gamma(\operatorname{Rad}(T M)), N \in \Gamma(l \operatorname{tr}(T M))$. Since $\tilde{\nabla}$ is a metric connection, from (2.2), (2.3), (2.11), (2.12) and (2.17) we get

$$
\begin{align*}
g\left(\left[\tilde{P} \xi_{1}, \tilde{P} \xi_{2}\right], \tilde{P} \xi\right)= & \tilde{g}\left(\tilde{\nabla}_{\tilde{P} \xi_{1}} \tilde{P} \xi_{2}-\tilde{\nabla}_{\tilde{P} \xi_{2}} \tilde{P} \xi_{1}, \tilde{P} \xi\right) \\
= & \tilde{g}\left(\tilde{\nabla}_{\tilde{P} \xi_{1}} \tilde{P} \xi_{2}, \tilde{P} \xi\right)-\tilde{g}\left(\tilde{\nabla}_{\tilde{P} \xi_{2}} \tilde{P} \xi_{1}, \tilde{P} \xi\right) \\
= & \tilde{g}\left(\tilde{\nabla}_{\tilde{P} \xi_{1}} \tilde{P} \xi_{2}, \xi\right)+\tilde{g}\left(\tilde{\nabla}_{\tilde{P} \xi_{1}} \xi_{2}, \xi\right) \tag{3.18}\\
& -\tilde{g}\left(\tilde{\nabla}_{\tilde{P} \xi_{2}} \tilde{P} \xi_{1}, \xi\right)-\tilde{g}\left(\tilde{\nabla}_{\tilde{P} \xi_{2}} \xi_{1}, \xi\right) \\
= & \tilde{g}\left(h^{l}\left(\tilde{P} \xi_{1}, \tilde{P} \xi_{2}\right), \xi\right)+\tilde{g}\left(h^{l}\left(\tilde{P} \xi_{1}, \xi_{2}\right), \xi\right) \\
& -\tilde{g}\left(h^{l}\left(\tilde{P} \xi_{2}, \tilde{P} \xi_{1}\right), \xi\right)-\tilde{g}\left(h^{l}\left(\tilde{P} \xi_{2}, \xi_{1}\right), \xi\right) \\
= & \tilde{g}\left(h^{l}\left(\tilde{P} \xi_{1}, \xi_{2}\right), \xi\right)-\tilde{g}\left(h^{l}\left(\tilde{P} \xi_{2}, \xi_{1}\right), \xi\right), \\
\tilde{g}\left(\left[\tilde{P} \xi_{1}, \tilde{P} \xi_{2}\right], N\right)= & \tilde{g}\left(\tilde{\nabla}_{\tilde{P} \xi_{1}} \tilde{P} \xi_{2}-\tilde{\nabla}_{\tilde{P} \xi_{2}} \tilde{P} \xi_{1}, N\right) \\
= & \tilde{g}\left(\tilde{\nabla}_{\tilde{P} \xi_{1}} \tilde{P} \xi_{2}, N\right)-\tilde{g}\left(\tilde{\nabla}_{\tilde{\tilde{P}} \xi_{2}} \tilde{\xi_{1}}, N\right) \\
= & -\tilde{g}\left(\tilde{P} \xi_{2}, \tilde{\nabla}_{\tilde{P} \xi_{1}} N\right)+\tilde{g}\left(\tilde{P} \xi_{1}, \tilde{\nabla}_{\tilde{P} \xi_{2}} N\right) \tag{3.19}\\
= & g\left(A_{N} \tilde{P} \xi_{1}, \tilde{P} \xi_{2}\right)-g\left(A_{N} \tilde{P} \xi_{2}, \tilde{P} \xi_{1}\right), \\
\tilde{g}\left(\left[\tilde{P} \xi_{1}, \tilde{\left.P \xi_{2}\right]}\right], X\right)= & \tilde{g}\left(\tilde{\nabla}_{\tilde{P} \xi_{1}} \tilde{P} \xi_{2}-\tilde{\nabla}_{\tilde{P} \xi_{2}} \tilde{P} \xi_{1}, X\right) \\
= & \tilde{g}\left(\tilde{\nabla}_{\tilde{P} \xi_{1}} \xi_{2}, \tilde{P} X\right)-\tilde{g}\left(\tilde{\nabla}_{\tilde{P} \xi_{2}} \xi_{1}, \tilde{P} X\right) \\
= & g\left(A_{\tilde{1}_{1}}^{*} \tilde{P} \xi_{2}, \tilde{P} X\right)-g\left(A_{\xi_{2}}^{*} \tilde{P} \xi_{1}, \tilde{P} X\right) . \tag{3.20}
\end{align*}
$$

Thus the proof is completed.
Theorem 3.7. Let $(M, g, S(T M))$ be a semi-invariant coisotropic submanifold of a golden semi-Riemannian manifold $(\tilde{M}, \tilde{g}, \tilde{P})$. Then, each leaf of radical distribution is totally geodesic iff
(i) $A_{\xi_{2}}^{*} \xi_{1} \in \Gamma\left(D_{1}\right)$,
(ii) $g\left(h^{*}\left(\xi_{1}, \tilde{P} \xi_{2}\right), N\right)=0$,
for any $\xi, \xi_{1}, \xi_{2} \in \Gamma(\operatorname{Rad}(T M)), N \in \Gamma(l \operatorname{tr}(T M))$.
Proof. Radical distribution is totally geodesic iff

$$
g\left(\nabla_{\xi_{1}} \xi_{2}, \tilde{P} \xi\right)=g\left(\nabla_{\xi_{1}} \xi_{2}, X\right)=g\left(\nabla_{\xi_{1}} \xi_{2}, \tilde{P} N\right)=0
$$

for any $X \in \Gamma\left(D_{0}\right), \xi, \xi_{1}, \xi_{2} \in \Gamma(\operatorname{Rad}(T M)), N \in \Gamma(l \operatorname{tr}(T M))$. Using (2.2), (2.11), (2.16) and (2.17), we have

$$
\begin{gather*}
g\left(\nabla_{\xi_{1}} \xi_{2}, \tilde{P} \xi\right)=-g\left(A_{\xi_{2}}^{*} \xi_{1}, \tilde{P} \xi\right) \tag{3.21}\\
g\left(\nabla_{\xi_{1}} \xi_{2}, X\right)=-g\left(A_{\xi_{2}}^{*} \xi_{1}, X\right) \tag{3.22}\\
g\left(\nabla_{\xi_{1}} \xi_{2}, \tilde{P} N\right)=g\left(h^{*}\left(\xi_{1}, \tilde{P} \xi_{2}\right), N\right) \tag{3.23}
\end{gather*}
$$

From (3.21)-(3.23) the proof is completed.
Definition 3.8. A semi-invariant submanifold M of a golden semi-Riemannian manifold ($\tilde{M}, \tilde{g}, \tilde{P}$) is said to be D-totally geodesic (resp. D_{2}-totally geodesic) if its the second fundamental form h satisfies $h(X, Y)=0$ (resp. $h(Z, W)=0$), for any $X, Y \in \Gamma(D),\left(Z, W \in \Gamma\left(D_{2}\right)\right)$.

Theorem 3.9. Let $(M, g, S(T M))$ be a semi-invariant coisotropic submanifold of a golden semi-Riemannian manifold $(\tilde{M}, \tilde{g}, \tilde{P})$. Then M is D-totally geodesic submanifold iff for any $X \in \Gamma(D), \xi \in \Gamma(\operatorname{Rad}(T M)), A_{\xi}^{*} X$ has no component in $\Gamma\left(D_{0} \perp D_{2}\right)$.
Proof. Since $\tilde{\nabla}$ is a metric connection, from (2.9) and (2.17) we obtain

$$
\begin{equation*}
\tilde{g}(h(X, \tilde{P} Y), \xi)=\tilde{g}\left(\tilde{\nabla}_{X} \tilde{P} Y, \xi\right)=-\tilde{g}\left(\tilde{\nabla}_{X} \xi, \tilde{P} Y\right)=\tilde{g}\left(A_{\xi}^{*} X, \tilde{P} Y\right) \tag{3.24}
\end{equation*}
$$

for any $X, Y \in \Gamma(D), \xi \in \Gamma(\operatorname{Rad}(T M))$. Thus using (3.24) we derive $h(X, \tilde{P} Y)=0$ iff $A_{\xi}^{*} X$ has no component in $\Gamma\left(D_{0} \perp D_{2}\right)$.

Theorem 3.10. Let $(M, g, S(T M))$ be a semi-invariant coisotropic submanifold of a golden semi-Riemannian manifold $(\tilde{M}, \tilde{g}, \tilde{P})$. Then M is D_{2}-totally geodesic submanifold iff $A_{\xi}^{*} Y$ has no component in $\Gamma\left(D_{1}\right)$, for any $Y \in \Gamma\left(D_{2}\right), \xi \in$ $\Gamma(\operatorname{Rad}(T M))$.

Proof. Since $\tilde{\nabla}$ is a metric connection, from (2.9) and (2.17) we derive

$$
\begin{equation*}
\tilde{g}(h(Y, Z), \xi)=\tilde{g}\left(\tilde{\nabla}_{Y} Z, \xi\right)=-\tilde{g}\left(\tilde{\nabla}_{Y} \xi, Z\right)=\tilde{g}\left(A_{\xi}^{*} Y, Z\right) \tag{3.25}
\end{equation*}
$$

for any $Y, Z \in \Gamma\left(D_{2}\right), \xi \in \Gamma(\operatorname{Rad}(T M)$). Thus from the equations (3.25) we conclude $h(Y, Z)=0$ iff $A_{\xi}^{*} Y$ has no component in $\Gamma\left(D_{1}\right)$.

Definition 3.11. Let M be a proper semi-invariant r-lightlike submanifold of a golden semi-Riemannian manifold $\tilde{M} . M$ is said to be mixed-geodesic submanifold if the second fundamental form of M satisfies $h(X, Y)=0$ for any $X \in \Gamma(D)$ and $Y \in \Gamma\left(D_{2}\right)$.

Theorem 3.12. Let $(M, g, S(T M))$ be a semi-invariant coisotropic submanifold of a golden semi-Riemannian manifold $(\tilde{M}, \tilde{g}, \tilde{P})$. Then the following statements are equivalent:
i) M is mixed geodesic,
ii) $A_{V} X$ has no component in D_{2},
iii) $A_{\xi}^{*} X$ has no component in D_{1},
iv) $\nabla_{Y}^{*} \tilde{P} \xi \in \Gamma\left(D_{1}\right)$
for any $X \in \Gamma(D), Y \in \Gamma\left(D_{2}\right), \xi \in \Gamma(\operatorname{Rad}(T M)), V \in \Gamma(\operatorname{tr}(T M))$.
Proof. M is mixed geodesic iff

$$
g(h(X, Y), \xi)=0
$$

for any $X \in \Gamma(D), Y \in \Gamma\left(D_{2}\right), \xi \in \Gamma(\operatorname{Rad}(T M))$. Choosing $Y \in \Gamma\left(D_{2}\right)$, there is a vector field $V \in \Gamma(\operatorname{tr}(T M))$ such that $Y=\tilde{P} V$. Using (2.2), (2.9) and (2.10) we have

$$
\begin{align*}
\tilde{g}(h(X, Y), \xi) & =\tilde{g}\left(\tilde{\nabla}_{X} Y, \xi\right)=\tilde{g}\left(\tilde{\nabla}_{X} \tilde{P} V, \xi\right) \\
& =\tilde{g}\left(\tilde{\nabla}_{X} V, \tilde{P} \xi\right)=-g\left(A_{V} X, \tilde{P} \xi\right) \tag{3.26}
\end{align*}
$$

Thus we derive $(i) \Longleftrightarrow(i i)$. Since $\tilde{\nabla}$ is a metric connection, from (2.9) and (2.17) we get

$$
\begin{equation*}
\tilde{g}(h(X, Y), \xi)=g\left(Y, A_{\xi}^{*} X\right) \tag{3.27}
\end{equation*}
$$

Hence we obtain $(i) \Longleftrightarrow(i i i)$. Using (2.2) and (2.9) and the fact that $\tilde{\nabla}$ is a metric connection, we derive

$$
\begin{align*}
\tilde{g}(h(\tilde{P} X, Y), \xi) & =\tilde{g}(h(Y, \tilde{P} X), \xi)=\tilde{g}\left(\tilde{\nabla}_{Y} \tilde{P} X, \xi\right)=-\tilde{g}\left(\tilde{P} X, \tilde{\nabla}_{Y} \xi\right) \\
& =-\tilde{g}\left(X, \tilde{\nabla}_{Y} \tilde{P} \xi\right)=-g\left(X, \nabla_{Y}^{*} \tilde{P} \xi\right) \tag{3.28}
\end{align*}
$$

Thus we derive $(i) \Longleftrightarrow(i v)$.
Theorem 3.13. Let $(M, g, S(T M)$) be a semi-invariant coisotropic submanifold of a golden semi-Riemannian manifold $(\tilde{M}, \tilde{g}, \tilde{P})$. Then, the distribution D_{2} is parallel on M iff $A_{V} X \in \Gamma\left(D_{2}\right)$ for any $X \in \Gamma\left(D_{2}\right), V \in \Gamma(\operatorname{tr}(T M))$.
Proof. For any $X, Y \in \Gamma\left(D_{2}\right), N \in \Gamma(l \operatorname{tr}(T M)), Z \in \Gamma\left(D_{0}\right)$, The distribution D_{2} is parallel on M iff

$$
\tilde{g}\left(\nabla_{X} Y, N\right)=g\left(\nabla_{X} Y, \tilde{P} N\right)=g\left(\nabla_{X} Y, Z\right)=0
$$

Choosing $Y \in \Gamma\left(D_{2}\right)$, there is a vector field $V \in \Gamma(\operatorname{tr}(T M))$ such that $Y=\tilde{P} V$ and from (2.2), (2.3), (2.9) and (2.10) we have

$$
\begin{align*}
\tilde{g}\left(\nabla_{X} Y, N\right) & =\tilde{g}\left(\tilde{\nabla}_{X} \tilde{P} V, N\right)=\tilde{g}\left(\tilde{\nabla}_{X} V, \tilde{P} N\right)=-g\left(A_{V} X, \tilde{P} N\right) \tag{3.29}\\
g\left(\nabla_{X} Y, \tilde{P} N\right) & =\tilde{g}\left(\tilde{\nabla}_{X} \tilde{P} V, \tilde{P} N\right)=\tilde{g}\left(\tilde{\nabla}_{X} V, \tilde{P} N\right)+\tilde{g}\left(\tilde{\nabla}_{X} V, N\right) \\
& =-g\left(A_{V} X, \tilde{P} N\right)-g\left(A_{V} X, N\right) \tag{3.30}\\
g\left(\nabla_{X} Y, Z\right) & =\tilde{g}\left(\tilde{\nabla}_{X} \tilde{P} V, Z\right)=\tilde{g}\left(\tilde{\nabla}_{X} V, \tilde{P} Z\right)=-g\left(A_{V} X, \tilde{P} Z\right) \tag{3.31}
\end{align*}
$$

From (3.29) $A_{V} X$ has no component D_{1}, for any $X \in \Gamma\left(D_{2}\right)$. Thus (3.30) and (3.31) $A_{V} X$ has no component $\operatorname{Rad}(T M)$ and D_{0}, which completes the proof.

References

[1] Acet, B. E., Perktaş, S. Y. and Kılıç, E., Lightlike Submanifolds of a Para-Sasakian Manifold, Gen. Math. Notes, Vol. 22, No. 2, (2014), pp. 22-45.
[2] Atçeken, M. and Kılıç, E., Semi-Invariant Lightlike Submanifolds of a Semi-Riemannian Product Manifold, Kodai Math. J. Vol. 30, No. 3, (2007), pp. 361-378.
[3] Bahadır, O. and Kılıç, E., Lightlike Submanifolds of Indefinite Kaehler Manifolds with Quarter Symmetric Non-Metric Connection, Mathematical Sciences And Applications E-Notes, Volume 2, No. 2, (2014), pp. 89-104.
[4] Bahadır, O. and Kılıç, E., Lightlike Submanifolds of a Semi-Riemannian Product Manifold with Quarter Symmetric Non-Metric Connection, International Electronic Journal of Geometry, 9 (1) (2016), 9-22.
[5] Crasmareanu, M. and Hretcanu, C. E., Golden Differential Geometry, Chaos, Solitons and Fractals, 38 (2008), 1229-1238.
[6] Duggal, K. L. and Bejancu, A., Lightlike Submanifold of Semi-Riemannian Manifolds and Applications, Kluwer Academic Pub., The Netherlands, 1996.
[7] Duggal, K. L. and Şahin, B., Screen Cauchy Riemann lightlike submanifolds. Acta Math. Hungar. 106 (1-2) (2005), 137-165.
[8] Duggal, K. L. and Şahin, B., Generalized Cauchy Riemann lightlike submanifolds, Acta Math. Hungar., 112 (1-2) (2006), 113-136.
[9] Duggal, K. L. and Şahin, B., Differential Geometry of Lightlike Submanifolds, Birkhäuser Verlag AG., 2010.
[10] Erdoğan, F. E., Transversal Lightlike Submanifolds of Metallic Semi-Riemannian Manifolds, Turkish Journal of Mathematics, 42 (2018), 3133-3148.
[11] Erdoğan, F. E., Yıldırım, C., On a Study of the Totally Umbilical Semi-Invariant Submanifolds of Golden Riemannian Manifolds, Journal of Polytechnic, 21 (4) (2018), 967-970.
[12] Gezer, A., Cengiz, N., Salimov, A., On integrability of Golden Riemannian structures, Turk J. Math., 37 (2013), 693-703.
[13] Goldberg S.I., Yano K., Polynomial structures on manifolds, Kodai Math. Sem. Rep., 22 (1970), 199-218.
[14] Hretcanu, C. E., Crasmareanu, M., On some invariant submanifolds in Riemannian manifold with Golden Structure, An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 53 (2007), suppl. 1, 199-211.
[15] Hretcanu, C. E., Crasmareanu, M., Applications of the golden ratio on Riemannian manifolds, Turk. J. Math., 33 (2009), 179-191.
[16] Kılıç, E. and Şahin, B., Radical Anti-Invariant Lightlike Submanifolds of a Semi-Riemannian Product Manifold, Turkish J. Math., 32 (2008), 429-449.
[17] Kupeli, D. N., Singular Semi-Riemannian Geometry, Kluwer Academic Publishers, Dordrecht, 1996.
[18] Özkan, M., Prolongations of golden structures to tangent bundles, Diff. Geom. Dyn. Syst., 16 (2014), 227-238.
[19] (Önen) Poyraz N. and Yaşar E., Lightlike Hypersurfaces of A Golden Semi-Riemannian Manifold, Mediterr. J. Math., (2017), 14:204.
[20] (Önen) Poyraz N. and Yaşar E., Lightlike Submanifolds of Golden Semi-Riemannian Manifolds, Journal of Geom. and Physics, DOI. 10.1016/j.geomphys.2019.03.008.
[21] Şahin B., Güneş R., Integrability of Distributions in CR Lightlike Submanifolds, Tamkang Journal of Mathematics, 33 (2002), 209-221.
[22] Şahin, B., Akyol, M. A., Golden maps between Golden Riemannian manifolds andconstancy of certain maps, Math. Commun., 19 (2014), 333-342.
[23] Yano, K., On a structure defined by a tensor field f of type (1,1) satisfying $f^{3}+f=0$, Tensor, N.S., 14 (1963), 99-109.

Çukurova University, Department of Mathematics, 01330, Adana, Turkey
Email address: nonen@cu.edu.tr
Mersin University, Department of Mathematics, 33343, Mersin, Turkey
Email address: bdogan@mersin.edu.tr

[^0]: Date: July, 2019.
 2000 Mathematics Subject Classification. 53C15; 53C25; 53C40; 53C50.
 Key words and phrases. Golden semi-Riemannian manifolds, Golden structure, Lightlike submanifolds, Semi-invariant lightlike submanifolds.

