Faber Polynomial Coefficients Estimates of Bi-univalent Functions Associated with Generalized Salagean q-Differential Operator

Sibel Yalçın ${ }^{1 *}$, Shahid Khan ${ }^{2}$ and Saqib Hussain ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Science, Bursa Uludag University, Bursa, Turkey
${ }^{2}$ Department of Mathematics, Riphah International University, Islamabad, Pakistan
${ }^{3}$ Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan
*Corresponding author E-mail: syalcin@uludag.edu.tr

Abstract

In this paper, we introduce a new subclass of analytic and bi-univalent functions by using generalized Salagean q-differential operator in open unit disc $E=\{z: z \in \mathbb{C}$ and $|z|<1\}$. By using Faber polynomial expansions and q-analysis to find a general coefficient bounds $\left|a_{n}\right|$, for $n \geq 3$, of class of bi-subordinate functions, also find initial coefficients bounds. We also highlight some known consequences of our main results.

Keywords: Bi-univalent function; Faber polynomial expansions; Generalized Salagean q-differential operator.
2010 Mathematics Subject Classification: 30C45; 30C50.

1. Introduction

Let A be the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $E=\{z: z \in \mathbb{C}$ and $|z|<1\}$ and normalized under the conditions

$$
\begin{aligned}
& f(0)=0 \\
& f^{\prime}(0)=1
\end{aligned}
$$

Further, by S we shall denote the class of all functions in A which are univalent in E.
Let $f \in A$ given by (1.1) and $g \in A$ given by

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \quad(z \in E)
$$

we define the convolution product (or Hadamard) of f and g as

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} b_{n} a_{n} z^{n} \quad(z \in E) \tag{1.2}
\end{equation*}
$$

With a view to recalling the principle of subordination between analytic functions, let the functions f and g be analytic in E. Given functions $f, g \in A, f$ is subordinate to g if there exists a Schwarz function $u \in \Lambda$, where

$$
\Lambda=\left\{u: u(0)=0,|u(z)|=\left|u_{1} z+\ldots+u_{n} z^{n}+\ldots\right|<1, z \in E\right\}
$$

such that

$$
f(z)=g(u(z)) \quad(z \in E) .
$$

We denote this subordination by

$$
f \prec g \text { or } f(z) \prec g(z) \quad(z \in E) .
$$

In particular, if the function g is univalent in E, the above subordination is equivalent to

$$
f(0)=g(0), \quad f(E) \subset g(E) .
$$

For the Schwarz function $u(z),\left|u_{n}\right| \leq 1, n \in \mathbb{N}$, see [15].
The Koebe-one quarter theorem [15] shows that the image of E under every univalent function $f \in A$ contains a disc $\left\{w:|w|<\frac{1}{4}\right\}$ of radius $\frac{1}{4}$. Every univalent function f has an inverse f^{-1} defined on some disc containing the disc $\left\{w:|w|<\frac{1}{4}\right\}$ and satisfying:

$$
f^{-1}(f(z))=z \quad(z \in E),
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \tag{1.3}
\end{equation*}
$$

A function $f \in \Sigma$ is said to be bi-univalent on E if both f and $g=f^{-1}$ are univalent on E.
Lewin [29] studied the class of bi-univalent functions, obtained the bound $\left|a_{2}\right| \leq 1.51$. Netanyahu [31] showed that Max $\left|a_{2}\right|=\frac{4}{3}$. Brannan and Clunie [12] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. Ali et al. [7], Altınkaya and Yalçın [8, 9, 10], Frasin and Aouf [17], Hamidi and Jahangiri [20, 22, 27, 28], Srivastava et al. [35,36] and Bulut [13] investigate the coefficients bounds for the subclasses of bi-univalent functions.
The theory of q-analysis in the recent past has been applied in many areas of mathematics and physics, for example, in the areas of ordinary fractional calculus, optimal control problems, q-difference and q-integral equations and in q-transform analysis. The q-theory has wide applications in special functions and quantum physics which makes the study interesting and pertinent in this field. Note that the q-difference operator plays an important role in the theory of hypergeometric series and quantum theory, number theory, statistical mechanics, etc. At the beginning of the last century studies on q-difference equations appeared in intensive works especially by Jackson [25], Carmichael [14], Mason [30], Adams [1] and Trjitzinsky [37]. Research work in connection with function theory and q-theory together was first introduced by Ismail et al. [24]. Till now only non-significant interest in this area was shown although it deserves more attention.
For any non-negative integer n, the q-integer number n denoted by $[n]_{q}$, is define as:

$$
[n]_{q}=\frac{1-q^{n}}{1-q}, \quad[0]_{q}=0
$$

For non-negative integer n the q-number shift factorial is defined by

$$
[n]_{q}!=[1]_{q}[2]_{q}[3]_{q} \ldots[n]_{q}, \quad\left([0]_{q}!=1\right) .
$$

We note that when $q \rightarrow 1^{-},[n]_{q}$! reduces to classical definition of factorial. In general, for a non-integer number $t,[t]_{q}$ is defined by $[t]_{q}=\frac{1-q^{t}}{1-q},[0]_{q}=0$. Throughout in this paper, we will assume q to be a fixed number between 0 and 1 .
The q-difference operator related to the q-calculus was introduced by Andrews et al. (see in [2] CH 10).
Definition 1.1. [2] For $f \in A$, the q-derivative operator or q-difference operator is defined as:

$$
D_{q} f(z)=\frac{f(q z)-f(z)}{z(q-1)} \quad(z \in E) .
$$

It can easily verify that.

$$
D_{q} f(z) \rightarrow f^{\prime}(z) \quad \text { as } q \rightarrow 1^{-} .
$$

Definition 1.2. [18] For $f \in A$, let the Salagean q-differential operator be defined by

$$
\begin{aligned}
S_{q}^{0}(f(z))= & f(z), \\
S_{q}^{1}(f(z))= & z D_{q} f(z), \\
S_{q}^{2}(f(z))= & S_{q}^{1}\left(S_{q}^{1} f(z)\right)=z D_{q}\left(z D_{q} f(z)\right), \\
& \vdots \\
S_{q}^{p}(f(z))= & z D_{q}\left(S_{q}^{p-1}(f(z)) .\right.
\end{aligned}
$$

A simple calculation implies

$$
S_{q}^{p}(f(z))=f(z) * G_{q, p}(z) \quad\left(z \in E, p \in \mathbb{N} \cup\{0\}=\mathbb{N}_{0}\right)
$$

where

$$
\begin{aligned}
G_{q, p}(z) & =z+\sum_{n=2}^{\infty}[n]_{q}^{p} z^{n} \\
S_{q}^{p}(f(z)) & =z+\sum_{n=2}^{\infty}[n]_{q}^{p} a_{n} z^{n}
\end{aligned}
$$

The symbol "*" stands for Hadamard product (or convolution).
In this article we define Generalized Salagean q-differential operator by using the same technique of [18].
Definition 1.3. For $f \in A$, let the Generalized Salagean q-differential operator be defined as:

$$
\begin{aligned}
D_{q, \alpha}^{0}(f(z))= & f(z) \\
D_{q, \alpha}^{1}(f(z))= & (1-\alpha) f(z)+\alpha z D_{q} f(z), \alpha \geq 0 \\
& \vdots \\
D_{q, \alpha}^{p}(f(z))= & D_{q, \alpha}\left(D_{q, \alpha}^{p-1} f(z)\right)
\end{aligned}
$$

A simple calculation implies

$$
\begin{equation*}
D_{q, \alpha}^{p}(f(z))=f(z) * G_{q, \alpha}^{p}(z), \quad\left(z \in E, p \in \mathbb{N}_{0}\right) \tag{1.4}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{q, \alpha}^{p}(z)=z+\sum_{n=2}^{\infty}\left(1+\alpha\left([n]_{q}-1\right)\right)^{p} z^{n} \tag{1.5}
\end{equation*}
$$

Making the use of (1.4), (1.5) the power series of $D_{q, \alpha}^{p}(f(z))$ for $f(z)$ of the form (1.1) is given by

$$
\begin{equation*}
D_{q, \alpha}^{p}(f(z))=z+\sum_{n=2}^{\infty}\left(1+\alpha\left([n]_{q}-1\right)\right)^{p} a_{n} z^{n} \tag{1.6}
\end{equation*}
$$

Note that
(i) For $\alpha=1$, we get Salagean q-differential operator introduced by Govindaraj and Sivasubramanian in [18].
(ii) For $q \rightarrow 1^{-}, \alpha=1$, we get Salagean differential operator introduced by Salagean in [32].

The Faber polynomials introduced by Faber [16] play an important role in various areas of mathematical sciences, especially in geometric function theory see also $[19,33,34]$. Not much is known about the bounds on general coefficients $\left|a_{n}\right|$, for $n \geq 4$ of bi-univalent functions as Ali et al. [7] also declared the bounds for the $n-t h(n \geq 4)$ coefficients of bi-univalent functions an open problem. In the literature only a few work determining the general coefficient $\left|a_{n}\right|$, for $n \geq 4$ for the analytic bi-univalent function given by (1.1). For more study see [3, 4, 21, 23, 26, 38].
Motivated by the works of Altınkaya and Yalçın [11], we define new subclass of bi-univalent functions with the theory of q-calculus. we determine estimates for the general coefficient bounds $\left|a_{n}\right|$ for $n \geqq 3$, by using Faber polynomial expansions.

Definition 1.4. A function $f \in \Sigma$ is said to be in the class

$$
\begin{gathered}
B_{\Sigma}(q, p, \lambda, \alpha, A, B) \\
\left(-1 \leq B<A \leq 1, q \in(0,1), p \in \mathbb{N}_{0}, \lambda \geq 0, \alpha \geq 0 ; z, w \in E\right)
\end{gathered}
$$

if the following subordinations are satisfied:

$$
\begin{aligned}
\frac{(1-\lambda) D_{q, \alpha}^{p} f(z)+\lambda D_{q, \alpha}^{p+1} f(z)}{z} & \prec \frac{1+A z}{1+B z} \\
\frac{(1-\lambda) D_{q, \alpha}^{p} g(w)+\lambda D_{q, \alpha}^{p+1} g(w)}{w} & \prec \frac{1+A w}{1+B w}
\end{aligned}
$$

where the function g is given by (1.3).

Special case

i) For $q \rightarrow 1^{-}, \alpha=1, A=1$ and $B=-1$, then the class $B_{\Sigma}(q, p, \lambda, \alpha, A, B)$ reduce into the class $B_{\Sigma}(p, \lambda, \varphi)$ introduced by Altınkaya and Yalçın [11].
ii) For $q \rightarrow 1^{-}, \alpha=1, p=0, A=1$ and $B=-1$, then the class $B_{\Sigma}(q, p, \lambda, \alpha, A, B)$ reduce into the class $B_{\Sigma}(\varphi, \lambda)$ introduced by Frasin and Aouf [17].

2. Main Results

By using the Faber polynomial expansion of functions f of the form (1.1), the coefficients of its inverse map $g=f^{-1}$ are given by,

$$
g(w)=f^{-1}(w)=w+\sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}\left(a_{2}, a_{3}, \ldots\right) w^{n},
$$

where

$$
\begin{aligned}
K_{n-1}^{-n}= & \frac{(-n)!}{(-2 n+1)!(n-5)!} a_{2}^{n-1}+\frac{(-n)!}{[2(-n+1)]!(n-3)!} a_{2}^{n-3} a_{3} \\
& +\frac{(-n)!}{(-2 n+3)!(n-4)!} a_{2}^{n-4} a_{4} \\
& +\frac{(-n)!}{[2(-n+2)]!(n-5)!} a_{2}^{n-5}\left[a_{5}+(-n+2) a_{3}^{2}\right] \\
& +\frac{(-n)!}{(-2 n+5)!(n-6)!} a_{2}^{n-6}\left[a_{6}+(-2 n+5) a_{3} a_{4}\right] \\
& +\sum_{j \geq 7} a_{2}^{n-j} V_{j},
\end{aligned}
$$

and $g=f^{-1}$ given by (1.3), V_{j} with $7 \leq j \leq n$ is a homogeneous polynomial in the variables $\left|a_{2}\right|,\left|a_{3}\right|, \ldots \ldots .\left|a_{n}\right|$ [5]. In particular, the first three terms of K_{n-1}^{-n} are

$$
\begin{aligned}
& \frac{1}{2} K_{1}^{-2}=-a_{2} \\
& \frac{1}{3} K_{2}^{-3}=2 a_{2}^{2}-a_{3} \\
& \frac{1}{4} K_{3}^{-4}=-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right)
\end{aligned}
$$

In general, for any $p \in \mathbb{N}$ and $n \geq 2$, an expansion of K_{n-1}^{p} [4] is,

$$
K_{n-1}^{p}=p a_{n}+\frac{p(p-1)}{2} E_{n-1}^{2}+\frac{p!}{(p-3)!3!} E_{n-1}^{3}+\ldots+\frac{p!}{(p-n+1)!(n-1)!} E_{n-1}^{n-1},
$$

where $E_{n-1}^{p}=E_{n-1}^{p}\left(a_{2}, a_{3} \ldots.\right)$ [6] given by

$$
E_{n-1}^{m}\left(a_{2}, \ldots, a_{n}\right)=\sum_{n=2}^{\infty} \frac{m!\left(a_{2}\right)^{\mu_{1}} \ldots\left(a_{n}\right)^{\mu_{n-1}}}{\mu_{1}!\ldots \mu_{n-1}!}, \text { for } m \leq n .
$$

While $a_{1}=1$, and the sum is taken over all nonnegative integer μ_{1}, \ldots, μ_{n} satisfying:

$$
\mu_{1}+\mu_{2}+\ldots+\mu_{n}=m,
$$

and

$$
\mu_{1}+2 \mu_{2}+\ldots+(n-1) \mu_{n-1}=n-1 .
$$

Evidently, $E_{n-1}^{n-1}\left(a_{2}, \ldots, a_{n}\right)=a_{2}^{n-1}$, [3], or equivalently,

$$
E_{n}^{m}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{n=1}^{\infty} \frac{m!\left(a_{1}\right)^{\mu_{1}} \ldots\left(a_{n}\right)^{\mu_{n}}}{\mu_{1}!\ldots \mu_{n}!}, \quad \text { for } m \leq n
$$

again $a_{1}=1$, and the taking the sum over all nonnegative integer μ_{1}, \ldots, μ_{n} satisfying:

$$
\begin{aligned}
\mu_{1}+\mu_{2}+\ldots+\mu_{n} & =m, \\
\mu_{1}+2 \mu_{2}+\ldots+n \mu_{n} & =n .
\end{aligned}
$$

It is clear that $E_{n}^{n}\left(a_{1}, \ldots, a_{n}\right)=E_{1}^{n}$ the first and last polynomials are $E_{n}^{n}=a_{1}^{n}$, and $E_{n}^{1}=a_{n}$.

Theorem 2.1. For $\lambda \geq 0, \alpha \geq 0, q \in(0,1),-1 \leq B<A \leq 1$, and $p \in \mathbb{N}_{0}$, let $f \in B_{\Sigma}(q, p, \lambda, \alpha, A, B)$. If $a_{m}=0 ; 2 \leq m \leq n-1$, then

$$
\left|a_{n}\right| \leq \frac{A-B}{\left(1+\alpha\left([n]_{q}-1\right)\right)^{p}\left\{1+\alpha \lambda\left([n]_{q}-1\right)\right\}} ; \quad n \geq 4 .
$$

Proof. Let f be given by (1.1), we have

$$
\begin{equation*}
\frac{(1-\lambda) D_{q, \alpha}^{p} f(z)+\lambda D_{q, \alpha}^{p+1} f(z)}{z}=1+\sum_{n=2}^{\infty}\left(1+\alpha\left([n]_{q}-1\right)\right)^{p}\left\{1+\alpha \lambda\left([n]_{q}-1\right)\right\} a_{n} z^{n-1} \tag{2.1}
\end{equation*}
$$

and for its inverse map $g=f^{-1}$, we have

$$
\begin{align*}
\frac{(1-\lambda) D_{q, \alpha}^{p} g(w)+\lambda D_{q, \alpha}^{p+1} g(w)}{w} & =1+\sum_{n=2}^{\infty}\left\{\begin{array}{c}
\left(1+\alpha\left([n]_{q}-1\right)\right)^{p}\left\{1+\alpha \lambda\left([n]_{q}-1\right)\right\} \\
\times \frac{1}{[n]_{q}} K_{n-1}^{-n}\left(a_{2}, a_{3} \ldots, a_{n}\right) w^{n-1}
\end{array}\right\} \\
& =1+\sum_{n=2}^{\infty}\left(1+\alpha\left([n]_{q}-1\right)\right)^{p}\left\{1+\alpha \lambda\left([n]_{q}-1\right)\right\} b_{n} w^{n-1} \tag{2.2}
\end{align*}
$$

where $b_{n}=\frac{1}{[n]_{q}} K_{n-1}^{-n}\left(a_{2}, a_{3} \ldots, a_{n}\right)$.
Since, both functions f and its inverse map $g=f^{-1}$ are in $B_{\Sigma}(q, p, \lambda, \alpha, A, B)$, by the definition of subordination, for $z, w \in E$ there exist two Schwarz functions

$$
\psi(z)=\sum_{n=1}^{\infty} c_{n} z^{n}
$$

and

$$
\Phi(w)=\sum_{n=1}^{\infty} d_{n} w^{n}
$$

such that

$$
\begin{equation*}
\frac{(1-\lambda) D_{q, \alpha}^{p} f(z)+\lambda D_{q, \alpha}^{p+1} f(z)}{z}=\frac{1+A(\psi(z))}{1+B(\psi(z))} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(1-\lambda) D_{q, \alpha}^{p} g(w)+\lambda D_{q, \alpha}^{p+1} g(w)}{w}=\frac{1+A(\Phi(w))}{1+B(\Phi(w))} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1+A(\psi(z))}{1+B(\psi(z))}=1-\sum_{n=1}^{\infty}(A-B) K_{n}^{-1}\left(c_{1}, c_{2}, \ldots, c_{n}, B\right) z^{n} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1+A(\Phi(w))}{1+B(\Phi(w))}=1-\sum_{n=1}^{\infty}(A-B) K_{n}^{-1}\left(d_{1}, d_{2}, \ldots, d_{n}, B\right) w^{n} \tag{2.6}
\end{equation*}
$$

In general [3, 4] for any $p \in \mathbb{N}$ and $n \geq 2$, an expansion of $K_{n}^{p}\left(k_{1}, k_{2}, \ldots, k_{n}, B\right)$,

$$
\begin{aligned}
K_{n}^{p}\left(k_{1}, k_{2}, \ldots, k_{n}, B\right)= & \frac{p!}{(p-n)!n!} k_{1}^{n} B^{n-1}+\frac{p!}{(p-n+1)!(n-2)!} k_{1}^{n-2} k_{2} B^{n-2} \\
& +\frac{p!}{(p-n+2)!(n-3)!} \times k_{1}^{n-3} k_{3} B^{n-3} \\
& +\frac{p!}{(p-n+3)!(n-4)!} k_{1}^{n-4}\left[k_{4} B^{n-4}+\frac{p-n+3}{2} k_{3}^{2} B\right] \\
& +\frac{p!}{(p-n+4)!(n-5)!} k_{1}^{n-5}\left[k_{5} B^{n-5}+(p-n+4) k_{3} k_{4} B\right] \\
& +\sum_{j \geq 6} k_{1}^{n-1} X_{j}
\end{aligned}
$$

where X_{j} is a homogeneous polynomial of degree j in the variables $k_{1}, k_{2}, \ldots, k_{n}$.
Comparing the corresponding coefficients of (2.3) and (2.5) yields

$$
\begin{equation*}
\left(1+\alpha\left([n]_{q}-1\right)\right)^{p}\{1+\alpha \lambda(n-1)\} a_{n}=-(A-B) K_{n-1}^{-1}\left(c_{1}, c_{2}, \ldots, c_{n-1}, B\right) \tag{2.7}
\end{equation*}
$$

and similarly, from (2.4) and (2.6) yields

$$
\begin{equation*}
\left(1+\alpha\left([n]_{q}-1\right)\right)^{p}\{1+\alpha \lambda(n-1)\} b_{n}=-(A-B) K_{n-1}^{-1}\left(d_{1}, d_{2}, \ldots, d_{n-1}, B\right) \tag{2.8}
\end{equation*}
$$

Note that for $a_{m}=0 ; 2 \leq m \leq n-1$ we have $b_{n}=-a_{n}$, and so

$$
\begin{align*}
& \left(1+\alpha\left([n]_{q}-1\right)\right)^{p}\{1+\alpha \lambda(n-1)\} a_{n}=-(A-B) c_{n-1} \tag{2.9}\\
& \left(1+\alpha\left([n]_{q}-1\right)\right)^{p}\{1+\alpha \lambda(n-1)\} a_{n}=(A-B) d_{n-1} \tag{2.10}
\end{align*}
$$

Now taking the absolute values of equation (2.9) and (2.10) and using the fact that $\left|c_{n-1}\right| \leq 1$ and $\left|d_{n-1}\right| \leq 1$, we obtain

$$
\begin{aligned}
\left|a_{n}\right| & =\frac{\left|-(A-B) c_{n-1}\right|}{\left|\left(1+\alpha\left([n]_{q}-1\right)\right)^{p}\left\{1+\alpha \lambda\left([n]_{q}-1\right)\right\}\right|}=\frac{\left|(A-B) d_{n-1}\right|}{\left|\left(1+\alpha\left([n]_{q}-1\right)\right)^{p}\left\{1+\alpha \lambda\left([n]_{q}-1\right)\right\}\right|} \\
& \leq \frac{A-B}{\left(1+\alpha\left([n]_{q}-1\right)\right)^{p}\left\{1+\alpha \lambda\left([n]_{q}-1\right)\right\}} .
\end{aligned}
$$

For $q \rightarrow 1^{-}, \alpha=1, A=1$ and $B=-1$, in Theorem 2.1, we have the following Corollary.
Corollary 2.2. [11] For $\lambda \geq 0$ and $p \in \mathbb{N}_{0}$, let $f \in B_{\Sigma}(p, \lambda, \varphi)$. If $a_{m}=0 ; 2 \leq m \leq n-1$, then

$$
\left|a_{n}\right| \leq \frac{2}{n^{p}\{1+\lambda(n-1)\}} ; \quad n \geq 4
$$

Theorem 2.3. Let $f \in B_{\Sigma}(q, p, \lambda, \alpha, A, B), q \in(0,1),-1 \leq B<A \leq 1, \lambda \geq 0$, and $\alpha \geq 0$. Then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \min \left\{\frac{A-B}{(1+\alpha q)^{p}(1+\alpha \lambda q)}, \sqrt{\frac{(A-B)\{1+|B|\}}{\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(q+q^{2}\right)\right)}}\right\} \\
& \left|a_{3}\right| \leq \min \left\{\frac{(A-B)^{2}}{(1+\alpha q)^{2 p}(1+\alpha \lambda q)^{2}}+\frac{A-B}{\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(q+q^{2}\right)\right)}\right. \\
& \left.\frac{(A-B)\{2+|B|\}}{\left(1+\alpha\left(\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(q+q^{2}\right)\right)\right.}\right\} \\
& \left|a_{3}-a_{2}^{2}\right| \leq \frac{A-B}{2\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(q+q^{2}\right)\right.}
\end{aligned}
$$

Proof. Replacing n by 2 and 3 in (2.7) and (2.8), respectively, we find that

$$
\begin{align*}
(1+\alpha q)^{p}(1+\alpha \lambda q) a_{2} & =-(A-B) c_{1} \tag{2.11}\\
\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(q+q^{2}\right)\right) a_{3} & =(A-B) c_{2}+B(B-A) c_{1}^{2} \tag{2.12}\\
(1+\alpha q)^{p}(1+\alpha \lambda q) a_{2} & =(A-B) d_{1} \tag{2.13}\\
\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(q+q^{2}\right)\left(2 a_{2}^{2}-a_{3}\right)\right. & =(A-B) d_{2}+B(B-A) d_{1}^{2} . \tag{2.14}
\end{align*}
$$

From (2.11) and (2.13) we obtain

$$
\begin{align*}
\left|a_{2}\right| & =\frac{\left|-(A-B) c_{1}\right|}{(1+\alpha q)^{p}(1+\alpha \lambda q)}=\frac{\left|(A-B) d_{1}\right|}{(1+\alpha q)^{p}(1+\alpha \lambda q)} \\
& \leq \frac{A-B}{(1+\alpha q)^{p}(1+\alpha \lambda q)} \tag{2.15}
\end{align*}
$$

Adding (2.12) and (2.14) implies

$$
2\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(q+q^{2}\right)\right) a_{2}^{2}=(A-B)\left(c_{2}+d_{2}\right)+B(B-A)\left(c_{1}^{2}+d_{1}^{2}\right)
$$

or equivalently,

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{(A-B)\{1+|B|\}}{\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(q+q^{2}\right)\right)}} \tag{2.16}
\end{equation*}
$$

Now from (2.12), one can easily see that

$$
\left|a_{3}\right|=\frac{\left|(A-B) c_{2}+B(B-A) c_{1}^{2}\right|}{\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(q+q^{2}\right)\right)} \leq \frac{(A-B)\{1+|B|\}}{\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(q+q^{2}\right)\right)}
$$

Next in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (2.14) from (2.12) we thus obtain

$$
\begin{equation*}
2\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(q+q^{2}\right)\right)\left(a_{3}-a_{2}^{2}\right)=(A-B)\left(c_{2}-d_{2}\right)+B(B-A)\left(c_{1}^{2}-d_{1}^{2}\right) \tag{2.17}
\end{equation*}
$$

Using the fact that $c_{1}^{2}=d_{1}^{2}$ and taking the absolute values of both sides of the equation (2.17), we obtain the desired inequality

$$
\begin{align*}
\left|a_{3}\right| & =\left|a_{2}\right|^{2}+\frac{\left|(A-B)\left(c_{2}-d_{2}\right)\right|}{2\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(\left(q+q^{2}\right)\right)\right.} \\
& \leq\left|a_{2}\right|^{2}+\frac{A-B}{\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(\left(q+q^{2}\right)\right)\right.} \tag{2.18}
\end{align*}
$$

Substituting the value of a_{2}^{2} from (2.15) into (2.18), we obtain

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{(A-B)^{2}}{(1+\alpha q)^{2 p}(1+\alpha \lambda q)^{2}}+\frac{A-B}{\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(\left(q+q^{2}\right)\right)\right.} \tag{2.19}
\end{equation*}
$$

Additionaly, substituting the value of a_{2}^{2} from (2.16) into (2.18), we obtain

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{(A-B)\{2+|B|\}}{\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(\left(q+q^{2}\right)\right)\right.} \tag{2.20}
\end{equation*}
$$

Solving the equation (2.17) for $a_{3}-a_{2}^{2}$, we get the desired inequality as

$$
\begin{align*}
\left|a_{3}-a_{2}^{2}\right| & =\left|\frac{(A-B)\left(c_{2}-d_{2}\right)+B(B-A)\left(c_{1}^{2}-d_{1}^{2}\right)}{2\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(\left(q+q^{2}\right)\right)\right.}\right| \\
& \leq \frac{A-B}{2\left(1+\alpha\left(q+q^{2}\right)\right)^{p}\left(1+\alpha \lambda\left(\left(q+q^{2}\right)\right)\right.} \tag{2.21}
\end{align*}
$$

For $q \rightarrow 1^{-}, \alpha=1, A=1$ and $B=-1$ in Theorem 2.3 and from equation (2.14), we have the following Corollary.
Corollary 2.4. [11] Let $f \in B_{\Sigma}(p, \lambda, \varphi),-1 \leq B<A \leq 1, \lambda \geq 0$. Then

$$
\begin{aligned}
& \left|a_{2}\right| \leq \min \left\{\frac{1}{2^{p-1}(1+\lambda)}, \sqrt{\frac{4}{3^{p}(1+2 \lambda)}}\right\}=\frac{1}{2^{p-1}(1+\lambda)} \\
& \left|a_{3}\right| \leq \min \left\{\frac{1}{2^{2 p-2}(1+\lambda)^{2}}+\frac{2}{3^{p}(1+2 \lambda)}, \frac{2}{3^{p-1}(1+2 \lambda)}\right\} \\
& \quad=\frac{1}{2^{2 p-2}(1+\lambda)^{2}}+\frac{2}{3^{p}(1+2 \lambda)} \\
& \left|a_{3}-2 a_{2}^{2}\right| \leq \frac{4}{3^{p}(1+2 \lambda)} \\
& \left|a_{3}-a_{2}^{2}\right| \leq \frac{2}{3^{p}(1+2 \lambda)}
\end{aligned}
$$

[14] R. D. Carmichael, The general theory of linear q-difference equations, Amer. J. Math., 34 (1912), 147-168.
[15] P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer, New York, 1983.
[16] G. Faber, Uber polynomische Entwickelungen, Math. Ann., 57 (3) (1903), 389-408.
[17] B. A. Frasin, M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24 (9) (2011), 1569-1573.
[18] M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving q - calculus, Analysis Math., 43 (3) (2017), 475-487.
[19] H. Grunsky, Koffizientenbedingungen fur schlict abbildende meromorphe funktionen, Math. Zeit., 45 (1939), 29-61.
[20] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris Ser. I, 352 (1) (2014), 17-20.
[21] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Acad. Sci. Paris Ser. I, 354 (2016), 365-370.
[22] S. G. Hamidi, J.M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc., 41 (5) (2015), 1103-1119.
[23] S. Hussain, S. Khan, M. A. Zaighum, Maslina Darus, and Zahid Shareef, Coefficients Bounds for Certain Subclass of Biunivalent Functions Associated with Ruscheweyh q-Differential Operator, Journal of Complex Analysis, (2017), 2826514, 9 pp.
[24] M. E. H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14 (1990), 77-84.
[25] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (15) (1910), 193-203.
[26] J. M. Jahangiri, On the coefficients of powers of a class of Bazilevic functions, Indian J. Pure Appl. Math., 17 (9) (1986), 1140-1144.
[27] J. M. Jahangiri, S.G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci. (2013), 190560, 4 pp.
[28] J. M. Jahangiri, S.G. Hamidi, S. Abd Halim, Coefficients of bi-univalent functions with positive real part derivatives, Bull. Malays. Math. Soc., (2) 3 (2014), 633-640.

29] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63-68.
[30] T. E. Mason, On properties of the solution of linear q-difference equations with entire function coefficients, Amer. J. Math., 37 (1915), 439-444.
[31] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Archive for Rational Mechanics and Analysis, 32 (1969), 100-112.
[32] G. S. Salagean, Subclasses of univalent functions, in: Complex Analysis, fifth Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), Lecture Notes in Mathematics, 1013, Springer (Berlin, 1983), 362-372.
[33] M. Schiffer, A method of variation within the family of simple functions, Proc. London Math. Soc., 44 (1938), 432-449
[34] A. C. Schaeffer, D. C. Spencer, The coefficients of schlict functions, Duke Math. J., 10 (1943), 611-635
[35] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (10) (2010), 1188-1192.
[36] H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (8) (2015), $1839-1845$.
[37] W. J. Trjitzinsky, Analytic theory of linear q-difference equations, Acta Math., 61 (1933), 1-38.
[38] P. G. Todorov, On the Faber polynomials of the univalent functions of class, J. Math. Anal. Appl., 162 (1) (1991), 268-276.

