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Abstract

In this paper, we introduce a new subclass of analytic and bi-univalent functions by using generalized Salagean q-differential operator in
open unit disc E = {z : z ∈ C and |z|< 1}. By using Faber polynomial expansions and q−analysis to find a general coefficient bounds |an|,
for n≥ 3, of class of bi-subordinate functions, also find initial coefficients bounds. We also highlight some known consequences of our main
results.
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1. Introduction

Let A be the class of functions f of the form

f (z) = z+
∞

∑
n=2

anzn, (1.1)

which are analytic in the open unit disc E = {z : z ∈ C and |z|< 1} and normalized under the conditions

f (0) = 0,

f ′(0) = 1.

Further, by S we shall denote the class of all functions in A which are univalent in E.
Let f ∈ A given by (1.1) and g ∈ A given by

g(z) = z+
∞

∑
n=2

bnzn (z ∈ E),

we define the convolution product (or Hadamard) of f and g as

( f ∗g)(z) = z+
∞

∑
n=2

bnanzn (z ∈ E). (1.2)

With a view to recalling the principle of subordination between analytic functions, let the functions f and g be analytic in E. Given functions
f ,g ∈ A, f is subordinate to g if there exists a Schwarz function u ∈ Λ, where

Λ = {u : u(0) = 0, |u(z)|= |u1z+ ...+unzn + ...|< 1, z ∈ E} ,

Email addresses: syalcin@uludag.edu.tr (Sibel Yalçın), shahidmath761@gmail.com (Shahid Khan), saqib math@yahoo.com (Saqib Hussain)



26 Konuralp Journal of Mathematics

such that

f (z) = g(u(z)) (z ∈ E) .

We denote this subordination by

f ≺ g or f (z)≺ g(z) (z ∈ E) .

In particular, if the function g is univalent in E, the above subordination is equivalent to

f (0) = g(0), f (E)⊂ g(E).

For the Schwarz function u(z), |un| ≤ 1, n ∈ N, see [15].

The Koebe-one quarter theorem [15] shows that the image of E under every univalent function f ∈ A contains a disc {w : |w| < 1
4}

of radius 1
4 . Every univalent function f has an inverse f−1 defined on some disc containing the disc {w : |w|< 1

4} and satisfying:

f−1( f (z)) = z (z ∈ E),

and

f ( f−1(w)) = w
(
|w|< r0( f ), r0( f )≥ 1

4

)
,

where

g(w) = f−1(w) = w−a2w2 +(2a2
2−a3)w3− (5a3

2−5a2a3 +a4)w4 + . . . . (1.3)

A function f ∈ Σ is said to be bi-univalent on E if both f and g = f−1 are univalent on E.
Lewin [29] studied the class of bi-univalent functions, obtained the bound |a2| ≤ 1.51. Netanyahu [31] showed that Max |a2|= 4

3 . Brannan
and Clunie [12] conjectured that |a2| ≤

√
2. Ali et al. [7], Altınkaya and Yalçın [8, 9, 10], Frasin and Aouf [17], Hamidi and Jahangiri

[20, 22, 27, 28], Srivastava et al. [35, 36] and Bulut [13] investigate the coefficients bounds for the subclasses of bi-univalent functions.
The theory of q−analysis in the recent past has been applied in many areas of mathematics and physics, for example, in the areas of ordinary
fractional calculus, optimal control problems, q−difference and q−integral equations and in q−transform analysis. The q−theory has wide
applications in special functions and quantum physics which makes the study interesting and pertinent in this field. Note that the q−difference
operator plays an important role in the theory of hypergeometric series and quantum theory, number theory, statistical mechanics, etc. At the
beginning of the last century studies on q−difference equations appeared in intensive works especially by Jackson [25], Carmichael [14],
Mason [30], Adams [1] and Trjitzinsky [37]. Research work in connection with function theory and q−theory together was first introduced
by Ismail et al. [24]. Till now only non-significant interest in this area was shown although it deserves more attention.
For any non-negative integer n, the q-integer number n denoted by [n]q, is define as:

[n]q =
1−qn

1−q
, [0]q = 0.

For non-negative integer n the q-number shift factorial is defined by

[n]q! = [1]q[2]q[3]q . . . [n]q,
(
[0]q! = 1

)
.

We note that when q→ 1−, [n]q! reduces to classical definition of factorial. In general, for a non-integer number t, [t]q is defined by
[t]q =

1−qt

1−q , [0]q = 0. Throughout in this paper, we will assume q to be a fixed number between 0 and 1.
The q-difference operator related to the q-calculus was introduced by Andrews et al. (see in [2] CH 10).

Definition 1.1. [2] For f ∈ A, the q-derivative operator or q-difference operator is defined as:

Dq f (z) =
f (qz)− f (z)

z(q−1)
(z ∈ E).

It can easily verify that.

Dq f (z)→ f
′
(z) as q→ 1−.

Definition 1.2. [18] For f ∈ A, let the Salagean q-differential operator be defined by

S0
q( f (z)) = f (z),

S1
q( f (z)) = zDq f (z),

S2
q( f (z)) = S1

q

(
S1

q f (z)
)
= zDq(zDq f (z)),

...

Sp
q ( f (z)) = zDq(Sp−1

q ( f (z)).
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A simple calculation implies

Sp
q ( f (z)) = f (z)∗Gq,p(z) (z ∈ E, p ∈ N∪{0}= N0) ,

where

Gq,p(z) = z+
∞

∑
n=2

[n]pq zn,

Sp
q ( f (z)) = z+

∞

∑
n=2

[n]pq anzn.

The symbol ”∗” stands for Hadamard product (or convolution).
In this article we define Generalized Salagean q-differential operator by using the same technique of [18].

Definition 1.3. For f ∈ A, let the Generalized Salagean q-differential operator be defined as:

D0
q,α ( f (z)) = f (z),

D1
q,α ( f (z)) = (1−α) f (z)+αzDq f (z), α ≥ 0,

...

Dp
q,α ( f (z)) = Dq,α

(
Dp−1

q,α f (z)
)
.

A simple calculation implies

Dp
q,α ( f (z)) = f (z)∗Gp

q,α (z), (z ∈ E, p ∈ N0) , (1.4)

where

Gp
q,α (z) = z+

∞

∑
n=2

(
1+α([n]q−1)

)p
zn. (1.5)

Making the use of (1.4), (1.5) the power series of Dp
q,α ( f (z)) for f (z) of the form (1.1) is given by

Dp
q,α ( f (z)) = z+

∞

∑
n=2

(
1+α([n]q−1)

)p
anzn. (1.6)

Note that
(i) For α = 1, we get Salagean q-differential operator introduced by Govindaraj and Sivasubramanian in [18].
(ii) For q→ 1−, α = 1, we get Salagean differential operator introduced by Salagean in [32].
The Faber polynomials introduced by Faber [16] play an important role in various areas of mathematical sciences, especially in geometric
function theory see also [19, 33, 34]. Not much is known about the bounds on general coefficients |an| , for n≥ 4 of bi-univalent functions as
Ali et al. [7] also declared the bounds for the n− th (n≥ 4) coefficients of bi-univalent functions an open problem. In the literature only
a few work determining the general coefficient |an| , for n ≥ 4 for the analytic bi-univalent function given by (1.1). For more study see
[3, 4, 21, 23, 26, 38].
Motivated by the works of Altınkaya and Yalçın [11], we define new subclass of bi-univalent functions with the theory of q-calculus. we
determine estimates for the general coefficient bounds |an| for n = 3, by using Faber polynomial expansions.

Definition 1.4. A function f ∈ Σ is said to be in the class

BΣ(q, p,λ ,α,A,B)

(−1≤ B < A≤ 1, q ∈ (0,1), p ∈ N0, λ ≥ 0, α ≥ 0; z,w ∈ E) ,

if the following subordinations are satisfied:

(1−λ )Dp
q,α f (z)+λDp+1

q,α f (z)
z

≺ 1+Az
1+Bz

(1−λ )Dp
q,α g(w)+λDp+1

q,α g(w)
w

≺ 1+Aw
1+Bw

where the function g is given by (1.3).

Special case
i) For q→ 1−, α = 1,A = 1 and B =−1, then the class BΣ(q, p,λ ,α,A,B) reduce into the class BΣ(p,λ ,ϕ) introduced by Altınkaya and
Yalçın [11].
ii) For q→ 1−, α = 1, p = 0, A = 1 and B =−1, then the class BΣ(q, p,λ ,α,A,B) reduce into the class BΣ(ϕ,λ ) introduced by Frasin and
Aouf [17].
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2. Main Results

By using the Faber polynomial expansion of functions f of the form (1.1), the coefficients of its inverse map g = f−1 are given by,

g(w) = f−1(w) = w+
∞

∑
n=2

1
n

K−n
n−1(a2,a3, ...)wn,

where

K−n
n−1 =

(−n)!
(−2n+1)!(n−5)!

an−1
2 +

(−n)!
[2(−n+1)]!(n−3)!

an−3
2 a3

+
(−n)!

(−2n+3)!(n−4)!
an−4

2 a4

+
(−n)!

[2(−n+2)]!(n−5)!
an−5

2

[
a5 +(−n+2)a2

3

]
+

(−n)!
(−2n+5)!(n−6)!

an−6
2 [a6 +(−2n+5)a3a4]

+ ∑
j≥7

an− j
2 V j,

and g = f−1 given by (1.3), V j with 7≤ j ≤ n is a homogeneous polynomial in the variables |a2| , |a3| , ..... |an| [5]. In particular, the first
three terms of K−n

n−1 are

1
2

K−2
1 = −a2,

1
3

K−3
2 = 2a2

2−a3,

1
4

K−4
3 = −(5a3

2−5a2a3 +a4).

In general, for any p ∈ N and n≥ 2, an expansion of K p
n−1 [4] is,

K p
n−1 = pan +

p(p−1)
2

E2
n−1 +

p!
(p−3)!3!

E3
n−1 + ...+

p!
(p−n+1)!(n−1)!

En−1
n−1 ,

where E p
n−1 = E p

n−1(a2,a3....) [6] given by

Em
n−1(a2, ...,an) =

∞

∑
n=2

m!(a2)
µ1 ...(an)

µn−1

µ1!...µn−1!
, f or m≤ n.

While a1 = 1, and the sum is taken over all nonnegative integer µ1, ...,µn satisfying:

µ1 +µ2 + ...+µn = m,

and

µ1 +2µ2 + ...+(n−1)µn−1 = n−1.

Evidently, En−1
n−1 (a2, ...,an) = an−1

2 , [3], or equivalently,

Em
n (a1,a2, ...,an) =

∞

∑
n=1

m!(a1)
µ1 ...(an)

µn

µ1!...µn!
, for m≤ n,

again a1 = 1, and the taking the sum over all nonnegative integer µ1, ...,µn satisfying:

µ1 +µ2 + ...+µn = m,

µ1 +2µ2 + ...+nµn = n.

It is clear that En
n (a1, ...,an) = En

1 the first and last polynomials are En
n = an

1, and E1
n = an.

Theorem 2.1. For λ ≥ 0, α ≥ 0, q ∈ (0,1), −1≤ B < A≤ 1, and p ∈ N0, let f ∈ BΣ(q, p,λ ,α,A,B). If am = 0; 2≤ m≤ n−1, then

|an| ≤
A−B(

1+α([n]q−1)
)p{

1+αλ

(
[n]q−1

)} ; n≥ 4.
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Proof. Let f be given by (1.1), we have

(1−λ )Dp
q,α f (z)+λDp+1

q,α f (z)
z

= 1+
∞

∑
n=2

(
1+α([n]q−1)

)p{
1+αλ

(
[n]q−1

)}
anzn−1, (2.1)

and for its inverse map g = f−1, we have

(1−λ )Dp
q,α g(w)+λDp+1

q,α g(w)
w

= 1+
∞

∑
n=2


(

1+α([n]q−1)
)p{

1+αλ

(
[n]q−1

)}
× 1

[n]q
K−n

n−1(a2,a3....,an)wn−1


= 1+

∞

∑
n=2

(
1+α([n]q−1)

)p{
1+αλ

(
[n]q−1

)}
bnwn−1, (2.2)

where bn =
1
[n]q

K−n
n−1(a2,a3....,an).

Since, both functions f and its inverse map g = f−1 are in BΣ(q, p,λ ,α,A,B), by the definition of subordination, for z,w ∈ E there exist two
Schwarz functions

ψ(z) =
∞

∑
n=1

cnzn

and

Φ(w) =
∞

∑
n=1

dnwn,

such that

(1−λ )Dp
q,α f (z)+λDp+1

q,α f (z)
z

=
1+A(ψ(z))
1+B(ψ(z))

, (2.3)

and

(1−λ )Dp
q,α g(w)+λDp+1

q,α g(w)
w

=
1+A(Φ(w))
1+B(Φ(w))

, (2.4)

where

1+A(ψ(z))
1+B(ψ(z))

= 1−
∞

∑
n=1

(A−B)K−1
n (c1,c2, ...,cn,B)zn, (2.5)

and

1+A(Φ(w))
1+B(Φ(w))

= 1−
∞

∑
n=1

(A−B)K−1
n (d1,d2, ...,dn,B)wn. (2.6)

In general [3, 4] for any p ∈ N and n≥ 2, an expansion of K p
n (k1,k2,...,kn,B),

K p
n (k1,k2,...,kn,B) =

p!
(p−n)!n!

kn
1Bn−1 +

p!
(p−n+1)!(n−2)!

kn−2
1 k2Bn−2

+
p!

(p−n+2)!(n−3)!
× kn−3

1 k3Bn−3

+
p!

(p−n+3)!(n−4)!
kn−4

1

[
k4Bn−4 +

p−n+3
2

k2
3B
]

+
p!

(p−n+4)!(n−5)!
kn−5

1

[
k5Bn−5 +(p−n+4)k3k4B

]
+ ∑

j≥6
kn−1

1 X j,

where X j is a homogeneous polynomial of degree j in the variables k1,k2,...,kn.
Comparing the corresponding coefficients of (2.3) and (2.5) yields(

1+α([n]q−1)
)p
{1+αλ (n−1)}an =−(A−B)K−1

n−1(c1,c2, ...,cn−1,B) (2.7)

and similarly, from (2.4) and (2.6) yields(
1+α([n]q−1)

)p
{1+αλ (n−1)}bn =−(A−B)K−1

n−1(d1,d2, ...,dn−1,B). (2.8)
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Note that for am = 0; 2≤ m≤ n−1 we have bn =−an, and so(
1+α([n]q−1)

)p
{1+αλ (n−1)}an = −(A−B)cn−1, (2.9)

(
1+α([n]q−1)

)p
{1+αλ (n−1)}an = (A−B)dn−1. (2.10)

Now taking the absolute values of equation (2.9) and (2.10) and using the fact that |cn−1| ≤ 1 and |dn−1| ≤ 1, we obtain

|an| =
|−(A−B)cn−1|

|(1+α([n]q−1))
p{1+αλ([n]q−1)}| =

|(A−B)dn−1|
|(1+α([n]q−1))

p{1+αλ([n]q−1)}|

≤ A−B
(1+α([n]q−1))

p{1+αλ([n]q−1)} .

For q→ 1−, α = 1, A = 1 and B =−1, in Theorem 2.1, we have the following Corollary.

Corollary 2.2. [11] For λ ≥ 0 and p ∈ N0, let f ∈ BΣ(p,λ ,ϕ). If am = 0; 2≤ m≤ n−1, then

|an| ≤
2

np {1+λ (n−1)}
; n≥ 4.

Theorem 2.3. Let f ∈ BΣ(q, p,λ ,α,A,B), q ∈ (0,1), −1≤ B < A≤ 1, λ ≥ 0, and α ≥ 0. Then

|a2| ≤min
{

A−B
(1+αq)p(1+αλq) ,

√
(A−B){1+|B|}

(1+α(q+q2))p(1+αλ (q+q2))

}
,

|a3| ≤min
{

(A−B)2

(1+αq)2p(1+αλq)2 +
A−B

(1+α(q+q2))p(1+αλ (q+q2))
,

(A−B){2+ |B|}(
1+α((q+q2)

)p
(1+αλ (q+q2))

}
,

∣∣a3−a2
2
∣∣≤ A−B

2
(
1+α(q+q2)

)p
(1+αλ (q+q2)

.

Proof. Replacing n by 2 and 3 in (2.7) and (2.8), respectively, we find that

(1+αq)p (1+αλq)a2 = −(A−B)c1, (2.11)(
1+α(q+q2)

)p
(1+αλ (q+q2))a3 = (A−B)c2 +B(B−A)c2

1, (2.12)

(1+αq)p (1+αλq)a2 = (A−B)d1, (2.13)(
1+α(q+q2)

)p
(1+αλ (q+q2)(2a2

2−a3) = (A−B)d2 +B(B−A)d2
1 . (2.14)

From (2.11) and (2.13) we obtain

|a2| =
|−(A−B)c1|

(1+αq)p (1+αλq)
=

|(A−B)d1|
(1+αq)p (1+αλq)

≤ A−B
(1+αq)p (1+αλq)

. (2.15)

Adding (2.12) and (2.14) implies

2
(

1+α(q+q2)
)p

(1+αλ (q+q2))a2
2 = (A−B)(c2 +d2)+B(B−A)(c2

1 +d2
1),

or equivalently,

|a2| ≤
√

(A−B){1+ |B|}(
1+α(q+q2)

)p
(1+αλ (q+q2))

. (2.16)

Now from (2.12), one can easily see that

|a3|=
∣∣(A−B)c2 +B(B−A)c2

1
∣∣(

1+α(q+q2)
)p

(1+αλ (q+q2))
≤ (A−B){1+ |B|}(

1+α(q+q2)
)p

(1+αλ (q+q2))
.

Next in order to find the bound on the coefficient |a3| ,we subtract (2.14) from (2.12) we thus obtain

2
(

1+α(q+q2)
)p

(1+αλ (q+q2))(a3−a2
2) = (A−B)(c2−d2)+B(B−A)(c2

1−d2
1) (2.17)
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Using the fact that c2
1 = d2

1 and taking the absolute values of both sides of the equation (2.17), we obtain the desired inequality

|a3| = |a2|2 +
|(A−B)(c2−d2)|

2
(
1+α(q+q2)

)p
(1+αλ ((q+q2))

≤ |a2|2 +
A−B(

1+α(q+q2)
)p

(1+αλ ((q+q2))
. (2.18)

Substituting the value of a2
2 from (2.15) into (2.18), we obtain

|a3| ≤
(A−B)2

(1+αq)2p (1+αλq)2
+

A−B(
1+α(q+q2)

)p
(1+αλ ((q+q2))

. (2.19)

Additionaly, substituting the value of a2
2 from (2.16) into (2.18), we obtain

|a3| ≤
(A−B){2+ |B|}(

1+α(q+q2)
)p

(1+αλ ((q+q2))
. (2.20)

Solving the equation (2.17) for a3−a2
2, we get the desired inequality as

∣∣∣a3−a2
2

∣∣∣ =

∣∣∣∣∣ (A−B)(c2−d2)+B(B−A)(c2
1−d2

1)

2
(
1+α(q+q2)

)p
(1+αλ ((q+q2))

∣∣∣∣∣
≤ A−B

2
(
1+α(q+q2)

)p
(1+αλ ((q+q2))

. (2.21)

For q→ 1−,α = 1, A = 1 and B =−1 in Theorem 2.3 and from equation (2.14), we have the following Corollary.

Corollary 2.4. [11] Let f ∈ BΣ(p,λ ,ϕ), −1≤ B < A≤ 1, λ ≥ 0. Then

|a2| ≤min
{

1
2p−1(1+λ )

,

√
4

3p (1+2λ )

}
=

1
2p−1 (1+λ )

|a3| ≤min

{
1

22p−2 (1+λ )2 +
2

3p (1+2λ )
,

2
3p−1 (1+2λ )

}

=
1

22p−2 (1+λ )2 +
2

3p (1+2λ )
,

∣∣a3−2a2
2
∣∣≤ 4

3p (1+2λ )
,

∣∣a3−a2
2
∣∣≤ 2

3p (1+2λ )
.

Remark 2.5. (i) For q→ 1−, p = 0, A = 1, α = 1 and B =−1 in Theorem 2.3 we obtain the bounds on |a2| and |a3| are improvement of
the estimates given in Frasin and Aouf [17].
(ii) For q→ 1−, p = 0, λ = 1, α = 1, A = 1 and B = −1 in Theorem 2.3 we obtain the bounds on |a2| and |a3| are improvement of the
estimates given in Srivastava et al.[35].
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