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Abstract
In this paper, we study the geometry of rectifying curves in the 3-dimensional hyperbolic
space H3(−r). Further we obtain the distance function in terms of arc length when the
rectifying curve lying in the upper half plane. Then we find the distance function and
also give the general equations of the curvature and torsion of rectifying general helices in
H3(−r).
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1. Introduction
In [4], B.Y. Chen gave the idea that the ratio of torsion and curvature of a regular

curve is a linear function of arc length s, i.e., (τ/κ)(s) = c1s + c2 for some constants c1
and c2. If c1 = 0, we obtain generalized helices; otherwise, we obtain rectifying curves.
A space curve whose position vector always lies in its rectifying plane is called rectifying
curve. So, a curve γ is said to be rectifying curve if there exist a point r in R3 such
that γ(s) − r = C1B(s) + C2T (s), where C1, C2 are some function of arc length s. Now
the Frenet frame: T = γ

′
, N,B = T × N of a unit speed curve γ in R3 satisfies the

Serret-Frenet equations:  T
′

N
′

B
′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

  T
N
B

 ,

where the function κ(s) > 0 and τ(s) are called the curvature and the torsion of the curve
and the above matrix is skew-symmetric. Therefore at each point of the curve we always get
three planes namely: {T,N}-osculating plane, {N,B}-normal plane, {B,T}-rectifying plane
and the equations of the corresponding planes are (R−r).B = 0, (R−r).T = 0, (R−r).N =
0, where R- position vector of any point on the respective plane, r-position vector of a
specified point of the given curve. To know more about the characterization of rectifying
curve we refer the reader to see [1, 2, 6]. In [7], P. Lucas and J.A.O. Yagues, studied
rectifying curves in the three-dimensional hyperbolic space, and obtain some results of
characterization and classification for such kind of curves.
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In [5], S. Izumiya and N. Takeuchi introduced the notion of slant helix, if the principle
normal lines of γ makes a constant angle with a fixed direction, also they found a necessary
and sufficient condition for a curve γ with κ(s) > 0 to be a slant helix is that function
σ = κ2

(κ2+τ2)3/2 ( τ
κ)′ be constant. Further in [8], P. Lucas and J.A.O Yagues studied slant

helices in the three dimensional sphere. Also in [3], M. Barros gave the definition of Lancret
curve (general helix), the principle normal lines are perpendicular to a fixed direction.
Thus a general helix is the special case of a slant helix. It is clear that if σ ≡ 0 then γ is
a general helix. Also M. Barros gave a theorem that, a curve γ in H3 is a slant helix if
and only if either γ is a curve in some unit hyperbolic plane H2 ⊂ H3 with τ ≡ 0 or γ is
a helix in H3.

Thus motivated sufficiently we study general helices in the 3-dimensional hyperbolic
space H3(−r) and obtain several results corresponding to the rectifying general helix and
characterization of rectifying curve in H3(−r). Our work is organized as follows: using
the Gauss formula and the definition of rectifying curve in H3(−r), we find expressions
of T 0′

γ , N0′

γ , B0′

γ , T 0′

ϕs .T
0′

γ , N
0′

ϕs .N
0′

γ , B
0′

ϕs .B
0′

γ etc. Here we take dot product
because it gives the geometrical interpretation of curve. Further we obtain the distance
function in H3(−r) in terms of λ and µ, which satisfy some differential equation. We also
find distance function in terms of arc length when the rectifying curve lying in the upper
half plane. Next we find some characterizations of rectifying curve in H3(−r). Finally we
give the general equations of the curvature and torsion of a rectifying general helix.

2. Preliminaries
Let H3(p,−r) = {x = (x1, x2, x3, x4) ∈ R4

1| < x − p, x − p >= −r2, x1 > 0} ⊂ R4
1

be the hyperbolic space with centered at p ∈ R4
1 and radius r > 0, where R4

1 is the four
dimensional Lorentzian manifold with flat metric g = −dx2

1 + dx2
2 + dx2

3 + dx2
4. Also we

denote H3(0,−r) ≡ H3(−r) = {x ∈ R4
1| − x2

1 + x2
2 + x2

3 + x2
4 = −r2, x1 > 0} ⊂ R4

1 and
H3(0,−1) ≡ H3.

We know that if ∇̄ and ∇◦ denote the Levi-Civita connections on H3(−r) and R4
1

respectively then they are related by the Gauss formula, ∇◦
XY = ∇̄XY + 1

r2 < X,Y > ϕ,

where ϕ : H3(−r) → R4
1 denotes the position vector and X, Y are vector fields tangent to

H3(−r). Let us consider a unit speed curve γ : I ⊂ R → H3(−r) and assume that γ is not a
geodesic curve then we always get ∇◦

Tγ
Tγ = κγNγ + 1

r2γ,∇◦
Tγ
Nγ = −κγTγ +τγBγ ,∇◦

Tγ
Bγ =

−τγNγ , where two functions κγ > 0 and τγ are curvature and torsion of the curve γ. It
is also well-known that the principle normal geodesic in H3(−r) starting at γ(s) of the
curve γ can be defined as the geodesic curve parameterized by ϕs(t) = expγ(s)(tNγ(s)) =
cosh( t

r )γ(s) + r sinh( t
r )Nγ(s), t ∈ R.

In [7], authors gave two equivalent definitions of rectifying curve in the three dimensional
hyperbolic space.

Definition 2.1. A unit speed curve γ = γ(s)(s ∈ I) in H3(−r), with κγ > 0, is said
to be rectifying curve if there exists a point p ∈ H3(−r) such that p is not belongs to
Im(γ) ≡ γ(I) and the geodesics connecting p with γ(s) are orthogonal to the principle
normal geodesics at γ(s), for all s.

Definition 2.2. The geodesics connecting p with γ(s) are tangent to the rectifying plane
of γ i.e., the planes generated by {Tγ(s), Bγ(s)}.

Also in [7], two characterization theorems for rectifying curves are given.

Theorem 2.3. Let γ = γ(s)(s ∈ I) be a unit speed curve in H3(−r). Then, γ is a
rectifying curve if and only if the ratio of torsion and curvature of the curve is given by
τγ

κγ
(s) = c1 sinh( s+s0

r )+c2 cosh( s+s0
r ), for some constants c1, c2 and s0, with 1−c1

2 +c2
2 <

0.
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Theorem 2.4. Let p ∈ H3(−r) and consider a unit speed curve V (t) in S2(1) ⊂ TpH
3(−r).

Then, for any nonzero function ρ(t), the curvature κγ and the speed v of the curve
γ(t) = expp(ρ(t)V (t)), and the geodesic curvature κV of V satisfy the inequality κ2

V ≤
v4κ2

γ

r2 sinh2(ρ/r)
, with the equality sign holding identically if and only if γ is a rectifying

curve.

3. Main results
Theorem 3.1. Let γ : I ⊂ R → H3(−r) be a unit speed rectifying curve in H3(−r). If
{Tγ , Nγ , Bγ} is the Frenet frame along γ and ∇̄ and ∇◦ denote the Levi-Civita connections
on H3(−r) and R4

1 respectively then by using the Gauss formula the Frenet equations of γ
can be written as follows:

T ◦′
γ = κγNγ + 1/r2γ,N◦′

γ = −κγTγ + κγψBγ , B
◦′

γ = −κγψNγ ,

where κγ , τγ denote the curvature and torsion of γ, which satisfy any of the following
conditions:

(1) T ◦′
ϕs .T

◦′
γ = 1

r2 (κϕsNϕs .γ̄ + κγ̄ϕs.Nγ̄ + 1
r2ϕs.γ̄),

N◦′
ϕs .N

◦′
γ = λ1τϕsτγ ,

B◦′
ϕs .B

◦′
γ = 0.

(2) T ◦′
ϕs .T

◦′
γ = λ4κϕsκγ̄ + 1

r2 (λ4κϕs γ̄+ϕsκγ̄).Nγ̄ + 1
r4ϕs.γ̄, N

◦′
ϕs .N

◦′
γ = −λ2τϕsκγ −

λ3κϕsτγ , B
◦′

ϕs .B
◦′

γ = −λ4τϕsτγ .

(3) T ◦′
ϕs .T

◦′
γ̄ = 1

r2 (κϕsNϕs .γ̄ + κγ̄ϕs.Nγ̄ + 1
r2ϕs.γ̄), N◦′

ϕs .N
◦′

γ̄ = −d1τϕsκγ̄ ,

B◦′
ϕs(t).B

◦′
γ̄ = 0.

(4) T ◦′
ϕs .T

◦′
γ̄ = 1

r2 (κϕsNϕs .γ̄ + κγ̄ϕs.Nγ̄ + 1
r2ϕs.γ̄), N◦′

ϕs .N
◦′

γ̄ = −d2κϕsτγ̄ ,

B◦′
ϕs(t).B

◦′
γ̄ = 0,

where λ1, λ2, λ3, λ4, d1, d2 ∈ R.

Proof. Let γ : I ⊂ R → H3(−r) be a unit speed rectifying curve in H3(−r). If
{Tγ , Nγ , Bγ} be the Frenet frame along γ and ∇̄ and ∇◦ denote the Levi-Civita con-
nections on H3(−r) and R4

1 respectively then the Frenet equations of γ are
∇̄TγTγ = κγNγ , ∇̄TγNγ = −κγTγ + τγBγ , ∇̄TγBγ = −τγNγ , (3.1)

where functions κγ > 0 and τγ are curvature and torsion of the curve γ. After using the
Gauss formula in (3.1), we get

∇◦
Tγ
Tγ = κγNγ + 1

r2γ,∇
◦
Tγ
Nγ = −κγTγ + τγBγ ,∇◦

Tγ
Bγ = −τγNγ . (3.2)

Then from ([7], Theorem 3.), using the relation of τγ and κγ for rectifying curve we obtain,

∇◦
TγTγ = κγNγ + 1

r2γ,∇
◦

TγNγ = −κγTγ + κγψBγ ,∇◦
TγBγ = −κγψNγ , (3.3)

where ψ(s) = c1f(s) + c2g(s). Now, we write the equation (3.3) in the following notation

T ◦′
γ = κγNγ + 1

r2γ,N
◦′

γ = −κγTγ + κγψBγ , B
◦′

γ = −κγψNγ . (3.4)

Now, using Definition 2.1, let ϕs(t) be geodesics connecting p with γ(s) are orthogonal to
the principle normal geodesics γ̄ at γ(s), for all s. Then we get,

T ◦′
ϕs(t) = κϕs(t)Nϕs(t) + 1

r2ϕs(t),

N◦′
ϕs(t) = −κϕs(t)Tϕs(t) + τϕs(t)Bϕs(t),

B◦′
ϕs(t) = −τϕs(t)Nϕs(t),

(3.5)
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and

T ◦′
γ̄ = κγ̄Nγ̄ + 1

r2 γ̄,

N◦′
γ̄ = −κγ̄Tγ̄ + τγ̄Bγ̄ ,

B◦′
γ̄ = −τγ̄Nγ̄ .

(3.6)

Now for the case of rectifying curve, ϕs(t) and γ̄(s) are orthogonal at γ(s) for all s i.e.,
Tϕs(t).Tγ̄ = 0 and we get two cases corresponding to the Frenet frame of the curves ϕs and γ̄.

Case 1.

�

�

�
,

s
B Bφ γ �

�

�

������������������������������������������������������������

,
s

N Tφ γ �

,
s

T Nφ γ ����������������������������������������������������������������������������������������������������������������������������������������������

Condition (i) 
�

�

�

����������

���������������������������
,

s
B Tφ γ �

�

���������������������������������������������������������������
,

s
N Nφ γ �

�

,
s

T Bφ γ �

Condition (ii) 
�����������������������������������������������������������������������������������������������������������������������������

Then using Condition (i) in the equations (3.5) and (3.6), we get

T ◦′
ϕs .T

◦′
γ̄ = 1

r2 (κϕsNϕs .γ̄ + κγ̄ϕs.Nγ̄ + 1
r2ϕs.γ̄),

N◦′
ϕs .N

◦′
γ̄ = λ1τϕsτγ̄Bγ̄ .Bγ̄ = λ1τϕsτγ̄ , B

◦′
ϕs(t).B

◦′
γ̄ = 0,

where Bϕs = λ1Bγ̄ . By using Condition (ii) in the equations (3.5) and (3.6), we obtain

T ◦′
ϕs .T

◦′
γ̄ = κϕsκγ̄Nϕs .Nγ̄ + 1

r2 (κϕsNϕs .γ̄ + κγ̄ϕs.Nγ̄ + 1
r2ϕs.γ̄)

= λ4κϕsκγ̄ + 1
r2 (λ4κϕs γ̄ + κγ̄ϕs).Nγ̄ + 1

r4ϕs.γ̄,

N◦′
ϕs .N

◦′
γ̄ = −λ2τϕsκγ̄Tγ̄ .Tγ̄ − λ3κϕsτγ̄Bγ̄ .Bγ̄ = −λ2τϕsκγ̄ − λ3κϕsτγ̄ ,

B◦′
ϕs .B

◦′
γ̄ = λ4τϕsτγ̄ ,

where Bϕs = λ2Tγ̄ , Tϕs = λ3Bγ̄ and Nϕs = λ4Nγ̄ . Now we know that Tγ can be written
as Tγ = c1Tγ̄ + c2Nγ̄ + c3Bγ̄ , and Tγ = c

′
1Tϕs + c

′
2Nϕs + c

′
3Bϕs . Also we know that

Tγ .Tγ = 1, therefore after using Condition (ii), we get

c1c
′
3Tγ̄ .Bϕs + c2c

′
2Nγ̄ .Nϕs + c3c

′
1Bγ̄ .Tϕs = 1,

⇒ c1c
′
3λ2 + c2c

′
2λ4 + c3c

′
1λ3 = 1.

⇒ c1c
′
3λ2 + c3c

′
1λ3 = 1 − c2c

′
2d3,

where we consider λ4 = d3 ∈ R. Thus we get

cλ2 + dλ3 = n, (3.7)
where c = c1c

′
3, d = c3c

′
1, n = 1 − c2c

′
2d3.
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On the other hand we can write Nγ̄ = b1Tϕs + b2Nϕs + b3Bϕs and Nϕs = b
′
1Tγ̄ + b

′
2Nγ̄ +

b
′
3Bγ̄ . Now, taking the dot product of Nγ̄ and Nϕs , and then using Condition (ii), we get
b3b

′
1λ2 + b1b

′
3λ3 = (1 − b2b

′
2)d3 = m, which implies

aλ2 + bλ3 = m, (3.8)
where a = b3b

′
1, b = b1b

′
3, m = (1 − b2b

′
2)d3 and c1, c2, c3, c

′
1, c

′
2, c

′
3, b1, b2, b3, b

′
1, b

′
2, b

′
3,

a, b, c, d,m, n, λ1, λ2, λ3, λ4 ∈ R.
On solving the equations (3.7) and (3.8), we get λ2 = dm−bn

ad−cb , λ3 = cm−an
cb−ad . Similarly,

using Condition (i), λ1 can also be calculated.

Case 2.

 

 

 
,

s

B T !  

 

 

                                                            

,
s

N B !  

,
s

T N !                                                                                                                                               

Condition (i)
 

 

          

                           
,

s

B N !  

 

                                                               
,

s

N T !  

 

,
s

T B !  

Condition (ii)
                                                                                                                             

Then using Condition (i) in the equations (3.5) and (3.6), we get

T ◦′
ϕs .T

◦′
γ̄ = 1

r2 (κϕsNϕs .γ̄ + κγ̄ϕs.Nγ̄ + 1
r2ϕs.γ̄),

N◦′
ϕs .N

◦′
γ̄ = −τϕsκγ̄Tγ̄ .Bϕs = −d1τϕsκγ̄ , B

◦′
ϕs(t).B

◦′
γ̄ = 0,

where Bϕs = d1Tγ̄ . By using Condition (ii) in the equations (3.5) and (3.6), we get

T ◦′
ϕs .T

◦′
γ̄ = 1

r2 (κϕsNϕs .γ̄ + κγ̄ϕs.Nγ̄ + 1
r2ϕs.γ̄),

N◦′
ϕs .N

◦′
γ̄ = −κϕsτγ̄Tϕs .Bγ̄ = −d2κϕsτγ̄ , B

◦′
ϕs(t).B

◦′
γ̄ = 0,

where Tϕs = d2Bγ̄ . Then from above procedure we can find the values of d1, d2 ∈ R. Thus,
we obtain the required results. �
Theorem 3.2. Let γ = γ(s) be a unit speed rectifying curve in H3(−r). Then the distance
function ρ = ∥γ∥ satisfies ρ2 = −λ2 +µ2, where λ and µ satisfy the equation (1−λ

′)aTγ̄ −
(b− bλ

′ + µ
′)Bγ + λγ

r2 = λT ◦′

γ + µB◦′

γ and a, b ∈ R.

Proof. Let γ = γ(s) be a unit speed rectifying curve in H3(−r). Then position vector γ
of a curve satisfies the equation

γ(s) = λ(s)Tγ(s) + µ(s)Bγ(s), (3.9)
where λ(s) and µ(s) are differential functions. Now, differentiating the equation (3.9) with
respect to s and using Frenet equations, we get Tγ(s) = λ

′(s)Tγ(s) + λ(s)(T ◦′

γ − 1
r2γ) +

µ
′(s)Bγ(s) + µB◦′

γ , which implies

(1 − λ
′)Tγ − µ

′
Bγ − λT ◦′

γ − µB◦′

γ + λγ

r2 = 0. (3.10)
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Then using Definition 2.1 of rectifying curve in H3(−r), Tγ can be written in the form,
Tγ = aTγ̄ − bBγ , where γ̄ is the geodesics connecting p with γ(s) are tangent to the
rectifying plane of γ i.e., the planes generated by {Tγ(s), Bγ(s)}. Therefore the equation
(3.10) can be rewritten as

(1 − λ
′)aTγ̄ − (b− bλ

′ + µ
′)Bγ + λγ

r2 = λT ◦′

γ + µB◦′

γ . (3.11)

Also from the equation (3.9), it is clear that the distance function ρ2 = ∥γ∥2 = |g(γ, γ)| =
−λ2 + µ2, where λ and µ satisfy the equation (3.11). Thus the proof is completed. �
Theorem 3.3. Let γ = γ(s) be a unit speed rectifying curve in H3(−r), lies in the upper
half plane U2. Then the distance function ρ = ∥γ∥ satisfies ρ2 = |as2 + bs + c| or ρ2 =
1 + f2(s), where f(s) = c1 sinh( s+s0

r ) + c2 cosh( s+s0
r ) and a, b, c ∈ R.

Proof. Let γ = γ(s) be a unit speed rectifying curve in H3(−r). Now, we know that
γ(s) = λ(s)Tγ(s) + µ(s)Bγ(s), (3.12)

where λ(s) and µ(s) are differentiable functions.
Now we know that Tγ(s) and Bγ(s) are generating a plane, let it be a subset of upper

half plane. Therefore γ(s) = (λ(s), µ(s)) be a curve in U2. Then after differentiating the
equation (3.12) and using Frenet formulas for γ, we obtain (1 − λ

′)Tγ + (µτγ − λκγ)Nγ −
µ

′(s)Bγ = 0, which implies

λ
′ = 1, µ′ = 0, µτγ − λκγ = 0. (3.13)

Therefore λ(s) = s + d1, µ(s) = d2, µ(s)τγ(s) = λ(s)κγ(s). Thus the distance function
ρ2 = |g(γ, γ)| = |λ2+µ2

µ2 | = | (s+d1)2+d2
2

d2
2

| = |as2 + bs + c|, where a = 1
d2

2
, b = 2d1

d2
2
, c =

d2
1+d2

2
d2

2
, d1, d2 ∈ R. Also from the equation (3.13), we get λ(s)

µ(s) = τγ

κγ
. Now we know that

τγ

κγ
= c1 sinh( s+s0

r ) + c2 cosh( s+s0
r ) = f(s), from [7]. Hence λ

µ = f . Therefore the distance
function, ρ2 = |g(γ, γ)| = |λ2+µ2

µ2 | = |1 + f2|. Thus, ρ2 = 1 + f2(s). This proves the
theorem. �
Note. Now, we know that γ(s) = λ(s)Tγ(s) + µ(s)Bγ(s), where λ(s) and µ(s) are differ-
ential functions.

(i) Therefore, g(γ, Tγ) = λ(s) = s+ d1. This is the tangential component of γ(s).
(ii) The normal component of γ(s) = µ(s)Bγ(s). Therefore, ∥γN ∥ = d2 ̸= 0 i.e.,the

normal component component of γ(s) has a constant length.
(iii) The binormal component of γ(s), g(γ(s), Bγ(s)) = µ(s) = d2, is constant.

Theorem 3.4. Let ψ(t) be a unit speed curve in R4
1 and γ be a rectifying curve in H3(−r)

with upper half plane as rectifying plane then it has up to a parametrization given by
γ(t) = ψ(t)ϕ(t), or γ(t) = ψ(t)h(t).

Proof. Now from Theorem 3.3, we know that ρ2 = as2 + bs + c or ρ2 = 1 + f2(s). Let
ρ2 = | (s+d1)2+d2

2
d2

2
|, we apply a translation to s, such that ρ2 = as2 + 1. Now we define

a curve ψ(t) in R4
1 by ψ(s) = γ(s)

ρ(s) , ⇒ γ(s) = ψ(s)
√
as2 + 1. Then differentiating with

respect to s, we get
Tγ(s) = ψ(s) as√

as2 + 1
+ ψ

′(s)
√
as2 + 1. (3.14)

Since, g(ψ,ψ) = 1, it follows that g(ψ,ψ′) = 0. Therefore from the equation (3.14), we
obtain 1 = g(Tγ , Tγ) = g(ψ′

, ψ
′)(as2 + 1) + a2s2

as2+1 , which implies

g(ψ′
, ψ

′) = as2(1 − a) + 1
(as2 + 1)2 . (3.15)
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Thus, ∥ψ′(s)∥ =
√

as2(1−a)+1
as2+1 . Let t =

∫ s
0 ∥ψ′(u)∥du =

∫ s
0

√
as2(1−a)+1

as2+1 du = φ(s). There-
fore t = φ(s) or s = φ−1(t). Put this into γ(s) = ψ(s)

√
as2 + 1, we get γ(t) =

ψ(t)η(φ−1(t)) = ψ(t)ϕ(t), where η(s) =
√
as2 + 1, ϕ = η ◦ φ−1. Hence γ(t) = ψ(t)ϕ(t).

Similarly if we take ρ2 = 1+f2(s) then up to parametrization for γ is in the form ψ(t)h(t),
which completes the proof. �
Theorem 3.5. Let γ = γ(s) be a unit speed rectifying curve in H3(−r). Then Tγ̄ can be
written in the form, Tγ̄ = α(s)Nγ + β(s)Bγ, where α(s) = λκγ−µτγ

a−aλ , β(s) = b−bλ+µ
′

a−aλ and
a, b ∈ R.

Proof. Let us consider γ = γ(s) be a unit speed rectifying curve in H3(−r). Then position
vector γ of a curve satisfies the equation,

γ(s) = λ(s)Tγ(s) + µ(s)Bγ(s), (3.16)
where λ(s) and µ(s) are differentiable functions. On differentiating the equation (3.16),
we obtain Tγ = λ

′
Tγ + µ

′(s)Bγ + λκγNγ − µτγNγ , which implies

⇒ (1 − λ
′)Tγ + (µτγ − λκγ)Nγ − µ

′(s)Bγ = 0. (3.17)
Since γ = γ(s) is a unit speed rectifying curve in H3(−r) therefore Tγ = aTγ̄ − bBγ , where
a, b ∈ R. Thus from the equation (3.17), we get (a− aλ)Tγ̄ + (µτγ − λκγ)Nγ − (b− bλ+
µ

′)Bγ = 0, which gives
Tγ̄ = α(s)Nγ + β(s)Bγ , (3.18)

where α(s) = λκγ−µτγ

a−aλ and β(s) = b−bλ+µ
′

a−aλ , a, b ∈ R. This completes the proof. �

Theorem 3.6. Let γ = γ(s) be a unit speed curve in H3(−r). Then γ is a rectifying
general helix if and only if the torsion and curvature of the curve are given by

(i)τ2
γ (s) = sinh2(ρ

r ) cosh2( s+s0
r )[A tanh2( s+s0

r ) + C tanh( s+s0
r ) +B],

where A = c2
1κ2

V r2

v4 , B = c2
2κ2

V r2

v4 , C = 2c1c2κ2
V r2

v4 ,

(ii) κ2
γ(s) = sinh2(ρ

r ), if A = c2
1, B = c2

2, C = 2c1c2.

Proof. By using Theorem 2.3 and Theorem 2.4, we obtain

τ2
γ (s) = κ2

V r
2 sinh2(ρ/r)
v4 (c1 sinh(s+ s0

r
) + c2 cosh(s+ s0

r
))2,

which implies

τ2
γ (s) = A sinh2(ρ/r) sinh2(s+ s0

r
) + C sinh2(ρ/r) sinh(s+ s0

r
) cosh(s+ s0

r
)

+B sinh2(ρ/r) cosh2(s+ s0
r

),

where A = c2
1κ2

V r2

v4 , B = c2
2κ2

V r2

v4 , C = 2c1c2κ2
V r2

v4 . Thus

τ2
γ (s) = sinh2(ρ/r) cosh2(s+ s0

r
)[A

sinh2( s+s0
r )

cosh2( s+s0
r )

+ C
sinh( s+s0

r ) cosh( s+s0
r )

cosh2( s+s0
r )

+B],

⇒ τ2
γ (s) = sinh2(ρ/r) cosh2(s+ s0

r
)[A tanh2(s+ s0

r
) + C tanh(s+ s0

r
) +B].

Also, again by using Theorem 2.3 and Theorem 2.4, we obtain

κ2
γ(s) =

τ2
γ

(c1 sinh( s+s0
r ) + c2 cosh( s+s0

r ))2 ,
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⇒ κ2
γ(s) =

sinh2(ρ/r) cosh2( s+s0
r )[A tanh2( s+s0

r ) + C tanh( s+s0
r ) +B]

cosh2( s+s0
r )[c2

1 tanh2( s+s0
r ) + 2c1c2 tanh( s+s0

r ) + c2
2]

.

Thus κ2
γ(s) = sinh2(ρ/r) if A = c2

1, B = c2
2 and C = 2c1c2, which concludes the

theorem. �
Corollary 3.7. The geodesic curvature κV of rectifying general helix in H3(−r) is given
by κV = v2

r , where v is the speed of rectifying general helix.
Proof. The proof is obtained from Theorem 3.6. �
Theorem 3.8. A curve γ(s) = exp(ρ(s)V (s)) in H3(−r) is a rectifying general helix with
geodesic curvature κV (t) = c(cos2(t+t0)−a2)−3/2 and torsion τ(s) = d1 sinh((s+s0)/r)+
d2 cosh((s+ s0)/r) then its curvature κγ is of the form κγ = d1

c1
if and only if∣∣∣∣ c1 c2

d1 d2

∣∣∣∣ = 0.

Proof. By using Corollary 9 of [7], we obtain

κγ = d1 sinh((s+ s0)/r) + d2 cosh((s+ s0)/r)
c1 sinh( s+s0

r ) + c2 cosh( s+s0
r )

,

⇒ κγ = d1(tanh(s+ s0)/r) +A)
c1(tanh( s+s0

r ) +B)
,

where A = d2
d1

and B = c2
c1

.

Thus κγ = d1
c1

if and only if A = B i.e.∣∣∣∣ c1 c2
d1 d2

∣∣∣∣ = 0.

�
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