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Abstract

In this paper, we introduce some new multiplier sequence spaces by using sequences in a normed space X and matrix domain of Cesaro
summability method in /. and cg. Then we obtain the characterizations of completeness and barrelledness of normed space X through its
weakly and weakly* unconditionally Cauchy series.
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1. Introduction

By w, we denote the space of all real sequences x = (x;). Any vector subspace of w is called a sequence space. Let {w, ¢ and c( be the
spaces of all bounded, convergent and null sequences x = (x; ), respectively, normed by ||x||l. = supy|xi|, where k € N, the set of positive
integers. Also by cs and ¢;, we denote the spaces of all convergent and absolutely convergent series, respectively.

A sequence space A with a linear topology is called a K-space provided each of the maps p; : A — R defined by p;(x) = x; is continuous for
all i € N. A K-space 4 is called an FK-space provided A is a complete linear metric space. We say that an FK space A D ¢qg has AD if ¢ is
dense in A, where cgp = span{e” : n € N}, the set of all finitely non-zero sequences and ¢” (n € N) the sequences with e}, = 1 and e} = 0 for
k # n.

Let A = (ay) be an infinite matrix of real numbers a,;, where n, k € N. Then, we write Ax = ((Ax),), the A-transform of x € w, if
(Ax)n = Xx anixy converges for each n € N. For simplicity in notation, here and in what follows, the summation without limits runs from 1
to o. For a sequence space A, the matrix domain A4 of an infinite matrix A is defined by

M={x=(x)ew:Axe A},

which is a sequence space. The Cesaro matrix C with Cesaro mean of order one, which is a well-known method of summability and is
defined by the matrix C = (cy) as follows;

L 1<k<n,
Cnk = 8

The C-transform of a sequence a = (ay) is the sequence 7(a) = (7,(a)) defined by
1 n
Tu(a) = — Z ag forall neN.
=

The set of all sequences whose C-transforms are in the spaces /.. and ¢y were defined by Shiue in [12], Ng and Lee in [10], and Sengoniil
and Bagar in [13], respectively. Some other works about the study of sequence spaces are [3, 6,7, 8, 9, 14].

Let X be a real Banach space, X* is a dual space of X and }'; x; be a series in X. A series };x; is called weakly unconditionally Cauchy series
(wuCs) if (¥, xm)’Z ¢ 18 @ weakly Cauchy for every permutation 7 of N. It is known that };x; is a wuCs if and only if ¥; | f(x;)| < e for
every f € X*. A series ) ;x; is called unconditionally convergent series (ucs) if Y. Xn(;y converges for every permutation 7 of N. By ucs(X),
uCs(X), £1(X), es(X), wes(X) and wuCs(X), we denote the X-valued sequence spaces of unconditionally convergent, unconditionally
Cauchy, absolutely convergent, convergent, weakly convergent and weakly unconditionally Cauchy series, respectively.

It is well known that [2, 4, 5]:
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(1) The sequence x = (x;) € ucs(X) if and only if (azx;) € cs(X) for every a = (ag) € lw.
(2) The sequence x = (x;) € wuCs(X) if and only if (agxy) € cs(X) for every a = (ay) € cp.
(3) Let X be a normed space. The sequence x = (x;) € wuCs(X) if and only if the set

n
S{Zaixi:|ai|<1,i1,2,...,n;n€N} (1.1)

i=1
is bounded.

Let x = (x;) be a sequence in normed space X and f = (f;) be a sequence in X*. In this work we will study the following subspaces of (¢w)c,
which are defined by

SC(x) = {a = (ai) € (loo)c : Zri(a)xi converges inX},

SCy(x) = {a = (a;) € (o) Z’L’;(a)x[ weakly converges inX} ,
i
and
SCy (f) = {a = (a;) € ()¢ : Y Tila) f; weak™ — converges inX*} .
i

The sets SC(x), SC,,(x) and SCy,~(f) are linear spaces with the co-ordinatewise addition and scalar multiplication which are the normed
spaces with the norm ||al|sc = ||Cal|co-

2. Main results

In the section, for x € wuCs(X) we will give necessary and sufficient conditions to be complete of a normed space X by means of the spaces
SC(x) and SCy,(x). Also, for f € w*uCs(X*) we will characterize the barrelledness of a normed space X through the space SC,- (f).
Firstly, we give a sufficient condition for equality between SC(x) and SC,, (x).

Lemma 2.1. Let X be a normed space and x € uCs(X). Then, SC(x) = SCy(x).

Proof. Since every convergent sequence is weakly convergent the inclusion SC(x) C SC,,(x) holds.
We will prove that SC,,(x) C SC(x). Let a = (a;) € SCyy(x). Then there exists x € X such that for every f € X*,

ti(a)f(xi) = f(x).

™

Il
_

On the other hand, since x € uCs(X) the partial sums of the series Y7 | 7;(a)x; form a Cauchy sequence in X. Then, there exists x** € X**
such that

Ti(a)x; = x*".

™

Il
—

Hence, from uniqueness of limit, x** = x. That is a = (a;) € SC(x). O

Now, we obtain necessary and sufficient condition for the space SC(x) to be complete.

Theorem 2.2. Let X be a Banach space. Then, x = (x;) is a sequence in wuCs(X) if and only if the space SC(x) is a Banach space.

Proof. First, we will show that necessary condition holds.

Let x € wuCs(X). Then, since S defined be equation (1.1) is a bounded set, we suppose that ||s|| < K for every s € S. Let (a) be a Cauchy
sequence in SC(x). Since SC(x) C (e )c and (fe)c is a Banach space, there exists a = (a?) € (fe)c such that @™ — a¥ in (£u)c as m — oo.
Therefore, for € > 0, there exists my € N such that for every m > mg andi € N,

‘L','(am) — T,-(ao) < —.
Since 37[(|’c,-(a’") —g(a)| <1, %K Y (ti(a™) — 1i(a®))x; € S, and hence for m > mg we have

i=1

< £
3

n

Y (s@) - (a)) %
i=1
Since for each m € N the sequence (a”) is in SC(x), there exists a sequence (y,,) C X such that for n > ng

£
3

n
Y w(d")xi—ym
i=1
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Then for p > g >mpandn € N,

[ngE

IN

lvp = ¥qll Ti(aP)xi —yp|| + +| X (mi(a?) — w(a?)) xi

-

n
Y wat)xi—y,
i=1

<
and thus (y;,) is a Cauchy sequence in X. Hence, for € > 0 there exists yg € X such that for each m > m;
€
Im=3oll < 5-

Take my = max{mq,m, }. Then for n > ny and m > m;,, we have

n n n
Z Ti(ao)xi —yll < (Ti(ao) —7(a™))xi|| + Z Ti(a@™)xi — ym|| + lym — Yol
i=1 i=1 i=1
< SiE i
33 3 7

As a consequence, (a°) € SC(x) and hence SC(x) is complete.

Now, suppose that SC(x) is complete, but x is not in wuCs(X). Then there exists a sequence a’ = (a¥) in ¢o such that Y, a¥x; is

not convergent. Therefore there exists 5° = (b?) € (co)c such that 7;(b°) = ¥ and hence Y, 7;(b°)x; is not convergent. That is,
0_ (10 . 3 . 3 :

b’ = (b;) ¢ SC(x) and so (cp)c € SC(x). On the other hand, since (¢o)c is a AD-space by [13, Theorem 2.4], there exists a Cauchy sequence

y = (y{") in cqp (also in SC(x)) such that

Jim 57" = b
Consequently, SC(x) is not complete. O

The following theorem gives us a characterization of completeness of normed spaces.

Theorem 2.3. The normed space X is a Banach space if and only if SC(x) is a Banach space for every x = (xi) in wuCs(X).

Proof. Necessary condition is obtained from Theorem 2.2.
Suppose that X is not a Banach space. Then there exists a sequence x = (x;) € £1(X) \ ¢s(X) such that for every k € N

1
< —.
el < e

We define the sequence y = (y;) by

_ kxy, if kis odd,
Y=\ —kx, ifkiseven,

and consider the sequence b = (by) € (co)c defined by

1, ifk=1,
b 2L ifk# 1 and ks odd,
—%7 if k is even,
then y = (yx) € wuCs(X) and Y T (b)yx does not converge. This proves (co)c € SC(y). Hence the space SC(y) is not complete. O

Now, we will extend some of the above results to weak topology. First, let us start with the following lemma.

Lemma 2.4. Let X be a Banach space. Then x = (x;) in wuCs(X) if and only if (co)c C SCy ().

Proof. Let x be a sequence in wuCs(X). Then for a = (a;) € ¢y, the series Y.} a;x; is convergent. If we take 7;(b) = a; for b = (b;) € (co)c,
the series ' ; 7;(b)x; is convergent, and hence weakly convergent. Therefore b = (b;) € SCy,(x).

Conversely, suppose that (co)c € SCy,(x). Then for every sequence b = (b;) € (cg)c, the sequence (7;(b)xy) is in wes(X). We define the
sequence

| (b)), ifn=mn,
= 0, ifn#n
for an increasing sequence of positive integers (n). Then the series Y | zix; = Y}_, T (b)x;, is weakly convergent, and thus Y} | 7;(b)x; is
subseries weakly convergent. From Orlicz-Pettis Theorem, (7;(b)x;) is in ucs(X). Then the series (7;(b)x;) belongs to ¢s(X), and hence x is
in wuCs(X). O

Theorem 2.5. Let X be a Banach space and x = (xi.) is a sequence in X. SC,,(x) is complete if and only if x € wuCs(X).
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Proof. Necessary condition can be easily obtained from Lemma 2.4.
Let x € wuCs(X). Then, since S is a bounded set, let ||s|| < K for every s € S. Let a = (a™) be a Cauchy sequence in SC,,(x) such that
a™ — a® in (fw)c as m — oo, Therefore, for € > 0 there exists mg € N such that for every m > mg and i € N

<t
3K

i(a") — 5(a”)|
Since 3K /¢|7;(a™) — 7:(a®)| < 1, 3K /e X, (:(a™) — 7:(a®)) x; € S, and hence for m > my
n

Z <Ti(am) — Ti(ao)) Xi

i=1

< £
3

On the other hand, there exists a sequence (y,;,) C X such that for n > ng and for all f € X*

<

é;’u(am)f(n)-f(ym)

W m

Also there exists f € By: such that ||y, —y,|| = | f(yp —¥¢)|- Then for p > g >mpandne N

lyp =gl = 1 p —¥g)| < &,

and thus (yy,) is a Cauchy sequence in X. Hence, for € > 0 there exists yo € X such that for m > m;
€

||ym—yo|| < g

Take my = max{mg,m, }. Then for n > ng and m > my we have

Y w(@)f @) - f00)| < (X (@) = @) f)| + | X wla™)f ()~ fom)
i=1 i=1 i=1
1 m) = £ (o)
£ € &£
< 5 + g + g = €.
Therefore (a°) € SC,,(x) and hence SC,, (x) is complete. O

Theorem 2.6. X is a Banach space if and only if SC\,(x) is a Banach space for every x € wuCs(X).

Proof. As in the proof of Theorem 2.2, suppose that X is not a Banach space. Then we can find a sequence y = (y;) € wuCs(X) and
(co)c € SC(y). Thus SC(y) is not a Banach space. Since y = (y;) € uCs(X), by Lemma 2.1 we obtain that SC(y) = SC,,(y), and hence
SCy(y) is not a Banach space. O

Finally, we give a characterization of barrelledness of normed spaces.
Theorem 2.7. Let X be a normed space and f = (f;) be a sequence in X*. Consider the following statements:

(1) f€ewuCs(X™*).
(2) SCy+(f) = (ls)c-
(3) few uCs(X™); that is, ;| fi(x)| < oo for every x € X.

Then (1) = (2) = (3). The normed space X is a barrelled space if and only if (3) = (1).
Proof. ((1) = (2)). We consider b = (b;) € (l)c. Then there exists a = (a;) € l» such that 7;(b) = (a;). Since f € wuCs(X*),

(aif;) € wuCs(X*), and hence (7;(b) f;) € wuCs(X™*). Therefore (s,) is a bounded sequence in X* and a Cauchy sequence for the weak*
topology on X*, where s, = Y7 | 7;(b) fi. Thus, ¥; 7;(b) f; is weak™ convergent.

((2) = (3)). Let Sy+ = (£w)c. Then for every x € X and b = (b;) € (L) the sequence (7;(b);f;(x)) in es(X). If we take 7;(b) = sgnf;(x),
then we have Y; | fi(x)| < oo.

Now, let X be a barrelled space. We will show (3) implies (1).
We define the set S’ by

n
y={2mﬁﬂw<lJ:lemmeN}
i=1

It can be easily seen that the set S’ is pointwise bounded and hence S’ is bounded for the norm topology of X*. So, (f;) € wuCs(X*).
Assume that (3) implies (1) holds but X is not a barrelled space. Then there exists a weak*-bounded set A C X* that is not bounded. Let
(fi) € A such that || f;| > 2% for i € N. If we take g; = %fi for i € N, then it is obvious that for every x € X, (gi(x)) € ¢;.

On the other hand, since ||g;|| > 2/ for every i € N, the series ¥; %g,- does not converge. Hence, (g;) & wuCs(X™). O

Corollary 2.8. X is a barrelled normed space if and only if wuCs(X*) = w*uCs(X*).
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3. Conclusion

In [1], some new spaces were defined and, by means of these spaces conditionally and weakly unconditionally Cauchy series were
characterized. Also using these spaces, Pérez-Fernandez et al. [11] obtained new characterizations of completeness and barrelledness of a
normed space via the behaviour of its weakly and weak* unconditionally Cauchy series.

In this paper, we will characterize the completeness and barrelledness of a normed space X in terms of SC(x), SCy,(x) and SC,+(f).
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