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Abstract

In this article, we deal with a special class of local rings and determine some of its properties. Later, several properties of the (left) modules
constructed over the class are examined, and a projective coordinate space over the (left) modules is constructed. In a 3-dimensional
projective coordinate space, all points of a line given with the incidence matrix and, dually, the incidence matrix for the line passing through
two points are obtained by the help of the Maple programme.
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1. Introduction

Recently, algebraic structures with fewer conditions and the geometric structures coordinated by them have been substantially studied. Local
rings constitute an important class of these structures. The goal of this article is primarily to investigate a special class of local rings and the
projective spaces over these classes.
In [1], Erdogan et. al. examined some properties of the (left) modules constructed over the real plural algebra of order n. Later, in [2], Ciftci
and Erdogan obtained an n-dimensional projective coordinate space over (n+1)-dimensional (left) module constructed by the help of this
real plural algebra. For more detailed information on the real plural algebra, see [3, 4].
In the present article, we will study the algebra A := Fη0 +Fη1 +Fη2 +Fη3 with the basis {η0 = 1,η1,η2,η3} for η1,η2,η3 /∈ F, where F
is a field, so the ones similar to almost all of the results that are obtained in [1, 2] will also be available on A. Moreover, we can state that the
results obtained here are richer and more complex, although we are studying with an algebra of order 4 instead of the algebra of order n used
in [2, 1].
The remaining part of the article is structured as follows:
Section 2 gives some properties of the local ring A. Section 3 introduces some properties of the modules constructed over A, and a projective
coordinate space over the module is presented in Section 4. This article has been finalized with that result. In a 3-dimensional projective
coordinate space, all points of a line given with the incidence matrix and the incidence matrix for a line passing through two points are
obtained by the help of the Maple programme.

2. Some Properties of A

In this section, first of all, we will start by giving a definition of a local ring: A ring with an identity element is called local if the set of its
non-units form an ideal. Now, let us take a closer look at the local ring A and determine some properties of A.
Let F be a field. Consider A := Fη0 +Fη1 +Fη2 +Fη3 with componentwise addition and multiplication as follows:

a ·b = (a0 +a1η1 +a2η2 +a3η3) · (b0 +b1η1 +b2η2 +b3η3)

= a0b0 +(a0b1 +a1b0 +a2b3−a3b2)η1 +(a0b2−a1b3 +a2b0 +a3b1)η2

+(a0b3 +a1b2−a2b1 +a3b0)η3

where
· η1 η2 η3

η1 0 η3 -η2
η2 -η3 0 η1
η3 η2 -η1 0
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with the property ηi ·η j =
ηiη j−η jηi

2 for 1≤ i, j ≤ 3 and the set {1,η1,η2,η3} is a basis of A. Then, A is a unital local ring with the maximal
ideal

I = η A = {a1η1 +a2η2 +a3η3 |ai ∈ F, 1≤ i≤ 3} .

Note that A is neither commutative nor associative. Therefore, we reach the following result stating which elements in A have an inverse.

Proposition 2.1. An element α = a0 +a1η1 +a2η2 +a3η3 ∈ A is a unit if and only if a0 6= 0.

Proof. We must find an element β = b0 + b1η1 + b2η2 + b3η3 ∈ A such that α ·β = 1 = β ·α in A. From α ·β = 1, we can write the
following equations:

a0b0 = 1

a0b1 +a1b0 +a2b3−a3b2 = 0

a0b2−a1b3 +a2b0 +a3b1 = 0

a0b3 +a1b2−a2b1 +a3b0 = 0.

From the first equation, it is obvious that b0 = a−1
0 . By putting this result in other equations, we have the following system of linear equations:

a0b1 +a2b3−a3b2 = −a1a−1
0

a0b2−a1b3 +a3b1 = −a2a−1
0

a0b3 +a1b2−a2b1 = −a3a−1
0 .

The determinant of coefficients of the system is

4=

∣∣∣∣∣∣
a0 −a3 a2
a3 a0 −a1
−a2 a1 a0

∣∣∣∣∣∣= a0

(
a2

0 +a2
1 +a2

2 +a2
3

)
.

If4 6= 0 (that is, a0 6= 0), then the system is Cramer and has a unique solution. In this case, the solutions are bi =−a−2
0 ai for 1≤ i≤ 3.

Therefore, we uniquely find that

β = α
−1 = a−1

0 −a−2
0 a1η1−a−2

0 a2η2−a−2
0 a3η3.

This completes the proof.

Now, we can give the following result related to zero divisors of A, as an analogue to Theorem 6 in [1].

Proposition 2.2. None of the units of A are zero divisors, namely for every α,β ∈ A; α = a0 + a1η1 + a2η2 + a3η3, a0 6= 0 and β =
b0 +b1η1 +b2η2 +b3η3 if α ·β = 0 or β ·α = 0, so β = 0. Moreover, for 1 ≤ k ≤ 3 and α = akηk + · · ·+a3η3, ak 6= 0 if α ·β = 0 or
β ·α = 0, so β = b1η1 +b2η2 +b3η3.

Proof. From α ·β = 0 = β ·α , we have a0b0 = 0⇒ b0 = 0 since a0 6= 0, and

a0b1 +a2b3−a3b2 = 0

a0b2−a1b3 +a3b1 = 0

a0b3 +a1b2−a2b1 = 0.

Then, it is clear that b1,b2 and b3 = 0 with the help of the4 in the proof of Proposition 2.1. Therefore, we find β = 0. Now, let a1 6= 0 for
k = 1 while α = a1η1 +a2η2 +a3η3. In this case, from α ·β = 0 = β ·α , we obtain

a1b0 +a2b3−a3b2 = 0

−a1b3 +a2b0 +a3b1 = 0

a1b2−a2b1 +a3b0 = 0,

a non-Cramer linear system. The matrix of coefficients of the system is a1 0 −a3 a2
a2 a3 0 −a1
a3 −a2 a1 0


and as the principal determinant of the system we can choose

δ3 =

∣∣∣∣∣∣
a1 −a3 a2
a2 0 −a1
a3 a1 0

∣∣∣∣∣∣= a1

(
a2

1 +a2
2 +a2

3

)
6= 0

since a1 6= 0. Then we can rearrange the system in the following manner according to δ3:

a1b0−a3b2 +a2b3 = 0

a2b0−a1b3 = −a3b1

a3b0 +a1b2 = a2b1.
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The last system is Cramer and its solutions are

b0 = 0

b2 = a−1
1 a2b1

b3 = a−1
1 a3b1

depending on b1. It can be seen that b0 = 0 by similar calculations to those in the cases a2 6= 0 or a3 6= 0.

Now, we can give the following result without proof as an analogue to Proposition 7 in [1]. The result implies that there exists a matrix
algebra that is isomorphic to the local ring A.

Proposition 2.3. Let K = M4x4(F) be the (linear) algebra of a matrix

k =


a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0


which also can be stated in the form

k = a0I4 +a1


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


︸ ︷︷ ︸

η1

+a2


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


︸ ︷︷ ︸

η2

+a3


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


︸ ︷︷ ︸

η3

and ηi ·η j =
ηiη j−η jηi

2 for 1≤ i, j ≤ 3. Then, the map f : A→K which is defined by f (a) = k for every a = a0 +a1η1 +a2η2 +a3η3 ∈ A
is an isomorphism.
Thus we have that the set {η0 = I4,η1,η2,η3} is a basis of K with the property ηi ·η j =

ηiη j−η jηi
2 for 1≤ i, j ≤ 3, see the following table

for the operation

· η1 η2 η3
η1 0 η3 -η2
η2 -η3 0 η1
η3 η2 -η1 0

Moreover, {η1,η2,η3} is the canonical basis of the Lie algebra sp (1) of the matrix Lie group SP (1) with the similar multiplication table, [5,
p. 340].
The local ring we will study is considered the vector space. Throughout this article, we restrict ourselves to the local ring A or the algebra K,
which is isomorphic to it.

3. A-Modules

In this section, we will investigate some properties of the modules constructed over A, which are called an A-module. Therefore, we can give
the following definition from [4, p. 69].

Definition 3.1. Let A be a local ring. Let M be a finitely generated A-module. Then M is an A-space of finite dimension if there exists
E1,E2, ...,En in M where

i. M = AE1⊕AE2⊕ ...⊕AEn;
ii. the map A→ AEi defined by x→ xEi is an isomorphism for 1≤ i≤ n.

Now, we will construct a module M over the algebra K in the following proposition, as obtained in Proposition 8 of [1]. Thanks to this, we
will obtain a basis of M.

Proposition 3.2. M = F4
m is a left module over the linear algebra of a matrix K =M4x4(F). Then the following set is a basis of the K-module

M.E1 =


1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0


4xm

,E2 =


0 1 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0


4xm

, . . . , Em =


0 0 0 · · · 1
0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0


4xm


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Proof. Linear independence of this set is obvious. Moreover, for every X ∈M, X can be written as follows:

X =


x11 x12 x13 · · · x1m
x21 x22 x23 · · · x2m
x31 x32 x33 · · · x3m
x41 x42 x43 · · · x4m


4×m

=


x11 −x21 −x31 −x41
x21 x11 −x41 x31
x31 x41 x11 −x21
x41 −x31 x21 x11


4x4


1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0


4×m

+


x12 −x22 −x32 −x42
x22 x12 −x42 x32
x32 x42 x12 −x22
x42 −x32 x22 x12


4x4


0 1 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0


4×m

+ · · ·+


x1m −x2m −x3m −x4m
x2m x1m −x4m x3m
x3m x4m x1m −x2m
x4m −x3m x2m x1m


4x4


0 0 0 · · · 1
0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0


4×m

.

Thus, [E1,E2, · · · ,Em] = M. Consequently, the set {E1,E2, · · · ,Em} is a basis of the K-module M.

Now, from [6] or [2, p. 943], we recall a definition which will be used in the next section.

Definition 3.3. Let R be a local ring, R0 be the maximal ideal of R, and M be a free module with unity over R. Let S be a non-empty subset
of the module M. Let M0 be a submodule of M constructed over R0. For x1,x2, · · · ,xk ∈ S and α1,α2, · · · ,αk ∈ R, if

k

∑
i=1

αixi ∈M0⇒ αi ∈ R0 for every i

holds, then S is called R−independent. Otherwise, S is called an R−dependent subset.

Finally, we would like to complete this section by giving two results on A-spaces without proof. They are the analogues of Theorem 9 and
Proposition 10 in [1], respectively.

Proposition 3.4. Let M = An. Then, for u1,u2, ...,uk ∈ A \ I and xi j ∈ I, there are linearly independent vectors such that α1 =
(u1,x21,x31, ...,xn1), α2 = (x12,u2,x32, ...,xn2), α3 = (x13,x23,u3, ...,xn3),...,αk = (x1k,x2k,x3k, ...,uk). For k = n, the set {α1,α2, ...,αn}
is a basis for M.

Proposition 3.5. An A-module M over a local ring A is an A-space if and only if it is a free finitely dimensional module.

4. Construction of a Projective Coordinate Space

In this section, an (m−1)-dimensional projective coordinate space over the left module obtained in the previous section will be constructed
with the help of equivalence classes, by the similar method given in [2]. Therefore, the points and lines of this projective space are determined
and the points are classified.
We know from the previous section that the set M = F4

m is an m-dimensional module over the local ring K =M4x4(F) and that the set
{E1,E2, . . . ,Em} is a basis of M. Each element of the K-module M can be expressed uniquely as a linear combination of E1,E2, . . . ,Em.
Furthermore, a maximal ideal of K is denoted by

I =




0 −a1 −a2 −a3
a1 0 −a3 a2
a2 a3 0 −a1
a3 −a2 a1 0


∣∣∣∣∣∣∣∣ ai ∈ F,1≤ i≤ 3} .

Now let us define the set

M0 =

{
m

∑
i=1

AiEi |Ai ∈ I, 1≤ i≤ m

}
.

Then, we have

M0 =




0 0 0 · · · 0
x21 x22 x23 · · · x2m
x31 x32 x33 · · · x3m
x41 x42 x43 · · · x4m

∣∣ xi j ∈ F

 .

Now, we consider the equivalence relation on the elements of

M∗ = M \M0 =




x11 x12 x13 · · · x1m
x21 x22 x23 · · · x2m
x31 x32 x33 · · · x3m
x41 x42 x43 · · · x4m

 |1≤ i≤ m, ∃ x1i 6= 0


whose equivalence classes are the one-dimensional left submodules of M with the set M0 deleted. Thus, if X ,Y ∈M∗, then X is equivalent to
Y if Y = λX for λ ∈K∗ = K\ I. The set of equivalence classes is denoted by P(M). Then P(M) is called an (m−1)-dimensional projective
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coordinate space and the elements of P(M) are called points; the equivalence class of vector X is the point X . Consequently, X is called a
coordinate vector for X or that X is a vector representing X . In this case, λX with λ ∈K∗ also represents X ; that is, by λX = X . Thus, X can
be expressed as follows:

X =


a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0


4x4


x11 x12 x13 · · · x1m
x21 x22 x23 · · · x2m
x31 x32 x33 · · · x3m
x41 x42 x43 · · · x4m


4xm

=


z11 z12 z13 · · · z1m
z21 z22 z23 · · · z2m
z31 z32 z33 · · · z3m
z41 z42 z43 · · · z4m


4×m

where a0 6= 0 ∧ 1≤ i≤ m,∃ x1i 6= 0. Note that ∃ z1i 6= 0.
Let X ,Y , · · · be p+1 points such that any two of them are K-independent. Then the set Πp = Sp{X ,Y , · · ·}\M0 is called a subspace of
dimension p or p-space.
In P(M), a point is a subspace of dimension 0 and a line is a subspace of dimension 1.
For X ∈M∗, the set X = {λX | λ ∈K∗ } is a 0-dimensional subspace of P(M). Therefore, X is a point of P(M).
Now, we investigate the condition of being K-independent for two different points X and Y of P(M).
Firstly, let us denote the coordinate vectors for the points X and Y by X and Y , respectively. We form a linear combination as

a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0




x11 x12 x13 · · · x1m
x21 x22 x23 · · · x2m
x31 x32 x33 · · · x3m
x41 x42 x43 · · · x4m

+


b0 −b1 −b2 −b3
b1 b0 −b3 b2
b2 b3 b0 −b1
b3 −b2 b1 b0




y11 y12 y13 · · · y1m
y21 y22 y23 · · · y2m
y31 y32 y33 · · · y3m
y41 y42 y43 · · · y4m

 .

If this linear combination is an element of M0, then we can write

a0x11−a1x21−a2x31−a3x41 +b0y11−b1y21−b2y31−b3y41 = 0

a0x12−a1x22−a2x32−a3x42 +b0y12−b1y22−b2y32−b3y42 = 0
... (4.1)

a0x1m−a1x2m−a2x3m−a3x4m +b0y1m−b1y2m−b2y3m−b3y4m = 0.

Therefore, a homogeneous system of linear equations, which involve m equations and eight variables a0, a1, a2, a3, b0, b1, b2, and b3, is
obtained. Let us denote the coefficient matrix of (4.1) by

A =


x11 −x21 −x31 −x41 y11 −y21 −y31 −y41
x12 −x22 −x32 −x42 y12 −y22 −y32 −y42

...
...

...
...

...
...

...
...

x1m −x2m −x3m −x4m y1m −y2m −y3m −y4m


mx8

.

Now, we would like to interpret solutions of the system according to a0 and b0:
1. If rankA = 8, then we have a0 = a1 = a2 = a3 = b0 = b1 = b2 = b3 = 0. Therefore, this shows that

a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0

=


b0 −b1 −b2 −b3
b1 b0 −b3 b2
b2 b3 b0 −b1
b3 −b2 b1 b0

=


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ∈ I.

In that case, the coordinate vectors X and Y for the points X and Y, respectively, are K-independent if and only if the rank of the coefficient
matrix is equal to 8.
2. If rankA = 7, then we have a0 = rt and b0 = st where t is a parameter. There are four cases for a0 = b0 = 0:

i. If r = s = 0, then t can be arbitrarily chosen,
ii. If r = 0 and s 6= 0, then t must be chosen zero,

iii. If r 6= 0 and s = 0, then t must be chosen zero,
iv. If r 6= 0 and s 6= 0, then t must be chosen zero.

In this case, we have the result that the coordinate vectors X and Y for the points X and Y, respectively, are K-independent if and only if at
least one of the conditions i-iv is satisfied. Similarly, it is possible to determine the conditions of K-independent for the cases 2≤ rankA≤ 6.
Let the set Sp{X ,Y}= {λX + γY |∃ λ ,γ ∈K∗ } be a 1-dimensional subspace of P(M) such that X and Y are K-independent elements. Then
Sp{X ,Y} is a line of P(M). It is denoted by

Sp{X ,Y}=

 a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0


 x11 x12 x13 · · · x1m

x21 x22 x23 · · · x2m
x31 x32 x33 · · · x3m
x41 x42 x43 · · · x4m

+

 b0 −b1 −b2 −b3
b1 b0 −b3 b2
b2 b3 b0 −b1
b3 −b2 b1 b0


 y11 y12 y13 · · · y1m

y21 y22 y23 · · · y2m
y31 y32 y33 · · · y3m
y41 y42 y43 · · · y4m


where a0 6= 0∧1≤ i≤ m, ∃ x1i 6= 0 or b0 6= 0∧1≤ i≤ m, ∃y1i 6= 0.
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We know that, for every coordinate vector X ∈M∗ of the point X ∈ P(M), X can be written uniquely as a linear combination of the vectors

E1,E2, · · · ,Em. Therefore, the matrix X is expressed as X =
m
∑

i=1
XiEi or as

X = (X1,X2, · · · ,Xm) ∈Km

where

X1 =


x11 −x21 −x31 −x41
x21 x11 −x41 x31
x31 x41 x11 −x21
x41 −x31 x21 x11

 , X2=


x12 −x22 −x32 −x42
x22 x12 −x42 x32
x32 x42 x12 −x22
x42 −x32 x22 x12

 · · · ,Xm=


x1m −x2m −x3m −x4m
x2m x1m −x4m x3m
x3m x4m x1m −x2m
x4m −x3m x2m x1m

 .

There are two cases:
Case 1: For the first component of the coordinate vector X of the point X , if x11 6= 0, then X1 /∈ I and X1 is a unit element, so there is an
inverse of X1. If we multiply both sides of the equation with the inverse matrix X−1

1 , we have

X = (I4,X2, · · · ,Xm) =


1 x12 x13 · · · x1m
0 x22 x23 · · · x2m
0 x32 x33 · · · x3m
0 x42 x43 · · · x4m

 .

Thus, these points are called proper points.
Case 2: For the first component of the coordinate vector X of the point X , if x11 = 0, then X1 ∈ I. Therefore, the inverse of the matrix X1
does not exist. Thus, we call the points of P(M) whose coordinate vectors are in the form

0 x12 x13 · · · x1m
x21 x22 x23 · · · x2m
x31 x32 x33 · · · x3m
x41 x42 x43 · · · x4m


as ideal points.
Now, by giving a definition which is an analogue of the definition in [2, p. 947], we will handle a special example related to the definition.

Definition 4.1. An s-space is the set of points whose representing vectors
x11 x12 x13 · · · x1m
x21 x22 x23 · · · x2m
x31 x32 x33 · · · x3m
x41 x42 x43 · · · x4m

= (X1,X2, · · · ,Xm)

of the points X satisfy the equations XA = 0, where A is an m× ((m−1)− s) matrix of rank (m−1)− s with coefficients in K.

Now let us take m = 4 and n = 2, so we study an example of a 3-dimensional projective coordinate space P(M). For the 3-dimensional
projective coordinate space, first we will determine all points of a line whose incidence matrix is given and we will then determine the
incidence matrix of a line that goes through the given points.

Example 4.2. In the 3-dimensional projective coordinate space P(M), any line, a 1-dimensional subspace Π1, is the set of points whose

representing vectors


x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44

= (X1,X2,X3,X4) of the points X satisfy the equations XA = 0, where A is a 4×2 matrix

of rank 2 with coefficients in K. Thus, Π1 =
{

X
∣∣XA = 0,A ∈K4

2�I4
2
}

is obtained. Now, we identify all points of a line whose incidence
matrix is


a e
b f
c g
d h

=




a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0




e0 −e1 −e2 −e3
e1 e0 −e3 e2
e2 e3 e0 −e1
e3 −e2 e1 e0




b0 −b1 −b2 −b3
b1 b0 −b3 b2
b2 b3 b0 −b1
b3 −b2 b1 b0




f0 − f1 − f2 − f3
f1 f0 − f3 f2
f2 f3 f0 − f1
f3 − f2 f1 f0




c0 −c1 −c2 −c3
c1 c0 −c3 c2
c2 c3 c0 −c1
c3 −c2 c1 c0




g0 −g1 −g2 −g3
g1 g0 −g3 g2
g2 g3 g0 −g1
g3 −g2 g1 g0




d0 −d1 −d2 −d3
d1 d0 −d3 d2
d2 d3 d0 −d1
d3 −d2 d1 d0




h0 −h1 −h2 −h3
h1 h0 −h3 h2
h2 h3 h0 −h1
h3 −h2 h1 h0





∈K4
2�I4

2.
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As a consequence of the incidence matrix, it is trivial to see that ∃a0,b0,c0,d0,e0, f0,g0,h0 6= 0.
For XA = 0, we have the following cases:

Case 1: For the coordinate vector X of the point X, if x11 6= 0, then X = (I4,X2,X3,X4) ∈K4. Thus, we obtain 32 equations with 12 variables
from XA = 0. If we solve this system of linear equations by using the Maple programme, we have the following solutions:

x12 = a′+b′x14 + c′x24 +d′x34 + e′x44

x22 = a′′+b′′x14 + c′′x24 +d′′x34 + e′′x44

x32 = a′′′+b′′′x14 + c′′′x24 +d′′′x34 + e′′′x44

x42 = aıv +bıvx14 + cıvx24 +dıvx34 + eıvx44

x13 = av +bvx14 + cvx24 +dvx34 + evx44

x23 = avı +bvıx14 + cvıx24 +dvıx34 + evıx44

x33 = avıı +bvııx14 + cvııx24 +dvııx34 + evııx44

x43 = avııı +bvıııx14 + cvıııx24 +dvıııx34 + evıııx44

x14 = x14, x24 = x24, x34 = x34,x44 = x44

where a′,b′,c′,d′,e′,a′′,b′′,c′′,d′′,e′′,a′′′,b′′′,c′′′,d′′′,e′′′,aıv,bıv,cıv,dıv,eıv,av,bv,cv,dv,ev,avı,bvı,cvı,dvı,evı,avıı,
bvıı,cvıı,dvıı,evıı,avııı,bvııı,cvııı,dvııı,evııı ∈ F.

Case 2: For the coordinate vector X of the point X , if x11 = 0, then X is an ideal point of the formX1 =


0 −x21 −x31 −x41

x21 0 −x41 x31
x31 x41 0 −x21
x41 −x31 x21 0

 , X2=


x12 −x22 −x32 −x42
x22 x12 −x42 x32
x32 x42 x12 −x22
x42 −x32 x22 x12



X3=


x13 −x23 −x33 −x43
x23 x13 −x43 x33
x33 x43 x13 −x23
x43 −x33 x23 x13

 , X4=


x14 −x24 −x34 −x44
x24 x14 −x44 x34
x34 x44 x14 −x24
x44 −x34 x24 x14


 .

Here, we know that ∃ x12,x13,x14 6= 0. Thus, we reach the followings solutions from XA = 0 by using the Maple programme:
x11, x12, x21, x22, x31, x32, x41, x42 are written as depending on the parameters x13 = t1, x14 = t2, x23 = t3, x24 = t4, x33 = t5, x34 = t6,
x43 = t7, x44 = t8. Therefore, x11 can be written as
x11 = u1t1 +u2t2 +u3t3 +u4t4 +u5t5 +u6t6 +u7t7 +u8t8 where u1, u2, u3, u4, u5, u6, u7, u8 ∈ F. Then, we have the following situations:

(a) If ∀ti = 0, then x11 = x12 = x21 = x22 = x31 = x32 = x41 = x42 = 0. Therefore,


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ∈M0 is obtained. However, this is a

contradiction because the zero matrix does not represent a point. Therefore, ∃ti 6= 0.

(b) If ∀ui = 0, then x11 = 0. In this situation, from (a), we can choose either ∃t1 = 1 or ∃t2 = 1. The ideal point is then


0 x12 1 t2

x21 x22 t3 t4
x31 x32 t5 t6
x41 x42 t7 t8

∈

M∗ or


0 x12 t1 1

x21 x22 t3 t4
x31 x32 t5 t6
x41 x42 t7 t8

 ∈M∗.

(c) For ∃k ∈ {1,2,3, ...,8}, if ∃uk 6= 0, then from x11 = u1t1 +u2t2 + · · ·+uktk + · · ·+u8t8 we have

uktk =−∑
i6=k

uiti, (4.2)

so x11 = 0 . Here, there are two cases:
i) If ti = 0 for ∀i where i 6= k in (4.2), then uktk = 0. Here tk = 0 since uk 6= 0. Thus, ∀ti = 0 for 1≤ i≤ 8 is obtained. This is a contradiction of

(a). Therefore, ti 6= 0 for ∃i, i 6= k. In that case, if k = 1, then by choosing ∃t2 = 1 6= 0 in (4.2), the ideal point


0 x12 t1 1

x21 x22 t3 t4
x31 x32 t5 t6
x41 x42 t7 t8

 ∈M∗

is obtained. If k = 2, then by choosing ∃t1 = 1 6= 0 in (4.2), the ideal point


0 x12 1 t2

x21 x22 t3 t4
x31 x32 t5 t6
x41 x42 t7 t8

 ∈M∗ is obtained. If 3≤ k ≤ 8, then by

choosing either ∃t1 = 1 6= 0 or ∃t2 = 1 6= 0 in (4.2) the ideal point can be found easily.
ii) If ui = 0 for ∀i ,i 6= k in (4.2), then tk = 0 since uktk = 0 and uk 6= 0. Therefore, if k = 1, then t1 = 0 and ∃ti 6= 0 from (a) by choosing

t2 = 1 in (4.2), the ideal point


0 x12 0 1

x21 x22 t3 t4
x31 x32 t5 t6
x41 x42 t7 t8

 ∈M∗is obtained. If k = 2, then t2 = 0 and ∃ti 6= 0 from (a) by choosing t1 = 1 in
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(4.2). The ideal point


0 x12 1 0

x21 x22 t3 t4
x31 x32 t5 t6
x41 x42 t7 t8

 ∈M∗ is obtained. If k = 3,4,5,6,7,8, then tk = 0 and ∃ti 6= 0 from (a) by choosing either

t1 = 1 or t2 = 1 in (4.2). The ideal point can be found easily.

Now conversely, we have a new situation. We determine the incidence matrix of a line whose points are given.

Let us take the general coordinate vectors

X =


x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44

 and Y =


y11 y12 y13 y14
y21 y22 y23 y24
y31 y32 y33 y34
y41 y42 y43 y44



of the points X and Y , respectively. Then we search the incidence matrix of the form


a e
b f
c g
d h

=




a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0




e0 −e1 −e2 −e3
e1 e0 −e3 e2
e2 e3 e0 −e1
e3 −e2 e1 e0




b0 −b1 −b2 −b3
b1 b0 −b3 b2
b2 b3 b0 −b1
b3 −b2 b1 b0




f0 − f1 − f2 − f3
f1 f0 − f3 f2
f2 f3 f0 − f1
f3 − f2 f1 f0




c0 −c1 −c2 −c3
c1 c0 −c3 c2
c2 c3 c0 −c1
c3 −c2 c1 c0




g0 −g1 −g2 −g3
g1 g0 −g3 g2
g2 g3 g0 −g1
g3 −g2 g1 g0




d0 −d1 −d2 −d3
d1 d0 −d3 d2
d2 d3 d0 −d1
d3 −d2 d1 d0




h0 −h1 −h2 −h3
h1 h0 −h3 h2
h2 h3 h0 −h1
h3 −h2 h1 h0





∈K4
2�I4

2.

We know that the coordinate vectors of these points are as follows:

X1 =


x11 −x21 −x31 −x41
x21 x11 −x41 x31
x31 x41 x11 −x21
x41 −x31 x21 x11

 , X2=


x12 −x22 −x32 −x42
x22 x12 −x42 x32
x32 x42 x12 −x22
x42 −x32 x22 x12



X3=


x13 −x23 −x33 −x43
x23 x13 −x43 x33
x33 x43 x13 −x23
x43 −x33 x23 x13

 , X4=


x14 −x24 −x34 −x44
x24 x14 −x44 x34
x34 x44 x14 −x24
x44 −x34 x24 x14


 .

and

Y1 =


y11 −y21 −y31 −y41
y21 y11 −y41 y31
y31 y41 y11 −y21
y41 −y31 y21 y11

 , Y2=


y12 −y22 −y32 −y42
y22 y12 −y42 y32
y32 y42 y12 −y22
y42 −y32 y22 y12



Y3=


y13 −y23 −y33 −y43
y23 y13 −y43 y33
y33 y43 y13 −y23
y43 −y33 y23 y13

 , Y4=


y14 −y24 −y34 −y44
y24 y14 −y44 y34
y34 y44 y14 −y24
y44 −y34 y24 y14


 .

Thus, we obtain 64 equations with 32 variables from XA = 0 and YA = 0:
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If we solve this linear equation system by using the Maple programme, we have the following solutions:

a0 = λ1 +λ2c0 +λ3c1 +λ4c2 +λ5c3 +λ6d0 +λ7d1 +λ8d2 +λ9d3

a1 = λ10 +λ11c0 +λ12c1 +λ13c2 +λ14c3 +λ15d0 +λ16d1 +λ17d2 +λ18d3

a2 = λ19 +λ20c0 +λ21c1 +λ22c2 +λ23c3 +λ24d0 +λ25d1 +λ26d2 +λ27d3

a3 = λ28 +λ29c0 +λ30c1 +λ31c2 +λ32c3 +λ33d0 +λ34d1 +λ35d2 +λ36d3

b0 = λ37 +λ38c0 +λ39c1 +λ40c2 +λ41c3 +λ42d0 +λ43d1 +λ44d2 +λ42d3

b1 = λ46 +λ47c0 +λ48c1 +λ49c2 +λ50c3 +λ51d0 +λ52d1 +λ53d2 +λ54d3

b2 = λ55 +λ56c0 +λ57c1 +λ58c2 +λ59c3 +λ60d0 +λ61d1 +λ62d2 +λ63d3

b3 = λ64 +λ65c0 +λ66c1 +λ67c2 +λ68c3 +λ69d0 +λ70d1 +λ71d2 +λ72d3

e0 = λ73 +λ74g0 +λ75g1 +λ76g2 +λ77g3 +λ78h0 +λ79h1 +λ80h2 +λ81h3

e1 = λ82 +λ83g0 +λ84g1 +λ85g2 +λ86g3 +λ87h0 +λ88h1 +λ89h2 +λ90h3

e2 = λ91 +λ92g0 +λ93g1 +λ94g2 +λ95g3 +λ96h0 +λ97h1 +λ98h2 +λ99h3

e3 = λ100 +λ101g0 +λ102g1 +λ103g2 +λ104g3 +λ105h0 +λ106h1 +λ107h2 +λ108h3

f0 = λ109 +λ110g0 +λ111g1 +λ112g2 +λ113g3 +λ114h0 +λ115h1 +λ116h2 +λ117h3

f1 = λ118 +λ119g0 +λ120g1 +λ121g2 +λ122g3 +λ123h0 +λ124h1 +λ125h2 +λ126h3

f2 = λ127 +λ128g0 +λ129g1 +λ130g2 +λ131g3 +λ132h0 +λ133h1 +λ134h2 +λ135h3

f3 = λ136 +λ137g0 +λ138g1 +λ139g2 +λ140g3 +λ141h0 +λ142h1 +λ143h2 +λ144h3

c0 = c0, c1 = c1, c2 = c2, c3 = c3, d0 = d0, d1 = d1, d2 = d2, d3 = d3

g0 = g0, g1 = g1, g2 = g2, g3 = g3, h0 = h0, h1 = h1, h2 = h2, h3 = h3

where λi ∈ F, 1≤ i≤ 144. Moreover, the following special cases for the general two points X and Y can be also examined. These are as
follows:
1. X and Y are proper points.
2. One is a proper point and the other is an ideal point.
3. X and Y are ideal points.

Finally, we have reached all of the results we have targeted in view of the papers in [1, 2].

5. Conclusion

In this study, we deal with the Lie algebra sp(1) of the matrix Lie group SP(1). It is found that the (left) modules were constructed over the
algebra (which is also a local ring); therefore, an (m-1)-dimensional projective coordinate space was constructed over the m-dimensional
module. As a concrete example, in a 3-dimensional projective coordinate space, all points of a line given with the incidence matrix and,
dually, the incidence matrix for the line going through two points are obtained by the help of the Maple programme since it is difficult to do
operations manually.
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