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Abstract

In this article, we deal with a special class of local rings and determine some of its properties. Later, several properties of the (left) modules
constructed over the class are examined, and a projective coordinate space over the (left) modules is constructed. In a 3-dimensional
projective coordinate space, all points of a line given with the incidence matrix and, dually, the incidence matrix for the line passing through
two points are obtained by the help of the Maple programme.
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1. Introduction

Recently, algebraic structures with fewer conditions and the geometric structures coordinated by them have been substantially studied. Local
rings constitute an important class of these structures. The goal of this article is primarily to investigate a special class of local rings and the
projective spaces over these classes.

In [1], Erdogan et. al. examined some properties of the (left) modules constructed over the real plural algebra of order n. Later, in [2], Ciftci
and Erdogan obtained an n-dimensional projective coordinate space over (n + 1)-dimensional (left) module constructed by the help of this
real plural algebra. For more detailed information on the real plural algebra, see [3, 4].

In the present article, we will study the algebra A := Fng +Fn; +Fn, + Fns with the basis {19 = 1,11,M2,M3} for n1,M2,M3 ¢ F, where F
is a field, so the ones similar to almost all of the results that are obtained in [1, 2] will also be available on A. Moreover, we can state that the
results obtained here are richer and more complex, although we are studying with an algebra of order 4 instead of the algebra of order n used
in[2,1].

The remaining part of the article is structured as follows:

Section 2 gives some properties of the local ring A. Section 3 introduces some properties of the modules constructed over A, and a projective
coordinate space over the module is presented in Section 4. This article has been finalized with that result. In a 3-dimensional projective
coordinate space, all points of a line given with the incidence matrix and the incidence matrix for a line passing through two points are
obtained by the help of the Maple programme.

2. Some Properties of A

In this section, first of all, we will start by giving a definition of a local ring: A ring with an identity element is called local if the set of its
non-units form an ideal. Now, let us take a closer look at the local ring A and determine some properties of A.
Let IF be a field. Consider A :=Fng +Fn; +Fn, +Fns3 with componentwise addition and multiplication as follows:
a-b = (ap+arm+axma+asn)-(bo+bim +bana+b3n3)
aobo + (apby +aibo +azbs — azby) N1 + (aobs — a1bz +azbo +azbi) m
+ (agbz +aiby — azby +aszbo) M3

where

: \ m M 13
m| 0 m -m
m|-n 0 m
m | -m 0
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with the property 1; - n; = M for 1 <i,j <3 and the set {1,7],72,M3} is a basis of A. Then, A is a unital local ring with the maximal
ideal

I=nA={am+am+tanslaeF, 1<i<3}.
Note that A is neither commutative nor associative. Therefore, we reach the following result stating which elements in A have an inverse.
Proposition 2.1. An element a@ = ag+a Ny +axNy +aznz € A is a unit if and only if ay # 0.

Proof. We must find an element 8 = by + b1 + by +b3ns €Asuchthat - f=1=f- 0o in A. From a-f3 = 1, we can write the
following equations:

agby =

agby +a1by+axbs —azb, =

aoby —aibz +asbo+azby =

o o o =

apby +aiby —axby +azby =

1

From the first equation, it is obvious that by = a;, . By putting this result in other equations, we have the following system of linear equations:

1

agby +axby —azb, = —ayay
agby) —aby+a3b; = —azaal
agpbs +ayby —arb; = 7&3616] .
The determinant of coefficients of the system is
ag —ay a
A= a3 apg —ap :ao<aé+a%+a%+a§>.
—az a ap
If A # 0 (that is, ag # 0), then the system is Cramer and has a unique solution. In this case, the solutions are b; = —ag 2a,< for 1 <i<3.

Therefore, we uniquely find that

I 2 )
B=o""=a; —ay ain —ay an —ay-azns.

This completes the proof. O
Now, we can give the following result related to zero divisors of A, as an analogue to Theorem 6 in [1].

Proposition 2.2. None of the units of A are zero divisors, namely for every o, 3 € A; o0 = ap+a;n +axNy +aznz, ag #0 and f =
bo+bim +bom+bsnzifa-B=0o0rB-a=0,s0 B =0. Moreover, for | <k<3and a =aqM+ - +a3n3, ax Z0ifa-B=0o0r
B-a=0,s0p =bim+byna+b3ns.

Proof. From o.- 3 =0 = - a, we have agbg = 0 = by = 0 since ag # 0, and

apb +asby —azby =
agby — aybz +azb; 0
agpbs +aybp —arby = 0.

Then, it is clear that by,b, and b3 = 0 with the help of the A in the proof of Proposition 2.1. Therefore, we find f = 0. Now, let a; # 0 for
k=1 while & = a1M +ayM, + azns. In this case, from o - f = 0= f - o, we obtain

aibg+axby—azb, = 0
—aibs+aybg+azby = 0
aiby —ayby +azby = 0,
a non-Cramer linear system. The matrix of coefficients of the system is
aj 0 —az ap
ay as 0 —ay
as —dap aj 0
and as the principal determinant of the system we can choose
ay —az a
G=|a 0 —a |=a (a%Jra%Jra%);éO
az  ap 0

since aj # 0. Then we can rearrange the system in the following manner according to 63:

0
7a3b|

a1b0 — a3b2 +612b3

a2b0 7a|b3

asbg+arby = axb.
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The last system is Cramer and its solutions are

by = 0
b2 = Lll_lazbl
by = a;1a3b1
depending on b;. It can be seen that by = 0 by similar calculations to those in the cases a; # 0 or a3 # 0. O

Now, we can give the following result without proof as an analogue to Proposition 7 in [1]. The result implies that there exists a matrix
algebra that is isomorphic to the local ring A.

Proposition 2.3. Let K = My (F) be the (linear) algebra of a matrix

apg —aj —dpy —dajs

k= | @ a —a @

a as apn —aj

a3 —ay; a ap

which also can be stated in the form
0 -1 0 O 0O 0 -1 0 0 0 0 -1
K — aoly+ 1 0 0 O n 0 0 0 1 n 0 0 -1 0
TalTal g 0 0 -1 [Tl 1 0 0 0o |T® o1 0 o0
0 0 1 O 0O -1 0 O 1 0 0 0
T 2 m

and n;-m; = M for 1 <i,j < 3. Then, the map f : A — K which is defined by f(a) =k for every a=ag+an; +ayn +aznz €A
is an isomorphism.

Thus we have that the set {19 = I4,71,M2,M3} is a basis of K with the property n;-1; = M for 1 <1i,j <3, see the following table
for the operation

\ m 2 n3
m| 0 mn -m
m|-ns 0 m
m | -m 0

Moreover, {N1,M2,M3} is the canonical basis of the Lie algebra sp (1) of the matrix Lie group SP (1) with the similar multiplication table, [5,
p. 340].

The local ring we will study is considered the vector space. Throughout this article, we restrict ourselves to the local ring A or the algebra K,
which is isomorphic to it.

3. A-Modules

In this section, we will investigate some properties of the modules constructed over A, which are called an A-module. Therefore, we can give
the following definition from [4, p. 69].

Definition 3.1. Letr A be a local ring. Let M be a finitely generated A-module. Then M is an A-space of finite dimension if there exists
E\,E,...,E, in M where

i. M=AE| QAE,® ... DAE,;
ii. the map A — AE; defined by x — xE; is an isomorphism for 1 <i <n.

Now, we will construct a module M over the algebra K in the following proposition, as obtained in Proposition 8 of [1]. Thanks to this, we
will obtain a basis of M.

Proposition 3.2. M = Im is a left module over the linear algebra of a matrix K =My,4(F). Then the following set is a basis of the K-module

JEr =

[l e e
(el el e Bl en]
[ e o]
[ el e ]
oS oo O
[ R R R
[N oo
[N oo

oy

3

Il
[l e Rl el en]
[l el el e]
[l el olNe]
[ R R

4xm 4xm
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Proof. Linear independence of this set is obvious. Moreover, for every X € M, X can be written as follows:

X1l X12 X13 cct Xim X|1 —X21  —X31  —X41 1 00 0
x| *or X2 X3 Xom _ X2l X11 —X41  X3] 0 00 0
X31 X3 X33 cct Xag X31  X41  X;1 X2 0 0 0 0
X4 X4z X430 Xam ) 4 X41  —X31 X1 11 J4u N0 0 0 0/ aum
X|2  —Xp  —X3  —X4 0 1 0 0
X X122 —X4 X3 0 0 0 0
+ X3 Xgp  X;p —X 0 0 0 0
xgp —xx x» X2 J,,\N0 0 O 0/ asm
Xlm  —X2m  —X3m x4m) (0 00 1
Xom  Xlm —Xdm  X3m 0 00 0
ot
X3m Xdm X1m —X2m 0 0 0 0
Xdm  —X3m  X2m X1im Axd 0 00 0 dxm
Thus, [E1,E>, - ,Eu] = M. Consequently, the set {Ej,E», -+ ,Ey;} is a basis of the K-module M. O

Now, from [6] or [2, p. 943], we recall a definition which will be used in the next section.

Definition 3.3. Let R be a local ring, Ry be the maximal ideal of R, and M be a free module with unity over R. Let S be a non-empty subset
of the module M. Let My be a submodule of M constructed over Ry. For x{,x,--- X € S and Q,0p,--- ,0 € R, if

k
Za,-x,- € My = a; € Ry for everyi

i=1
holds, then S is called R—independent. Otherwise, S is called an R—dependent subset.

Finally, we would like to complete this section by giving two results on A-spaces without proof. They are the analogues of Theorem 9 and
Proposition 10 in [1], respectively.

Proposition 3.4. Let M = A". Then, for uj,uy,...,ux € A\ and x;j € 1, there are linearly independent vectors such that oy =
(U121, X315 5 X1 )y O = (X12,U2,X32, -, X02), 03 = (X13,X23, U35 -0y Xn3)seres Ok = (X1ks X2, X3k o5 U ). FOT k = n, the set {0, 0,..., 0 }
is a basis for M.

Proposition 3.5. An A-module M over a local ring A is an A-space if and only if it is a free finitely dimensional module.

4. Construction of a Projective Coordinate Space

In this section, an (m — 1)-dimensional projective coordinate space over the left module obtained in the previous section will be constructed
with the help of equivalence classes, by the similar method given in [2]. Therefore, the points and lines of this projective space are determined
and the points are classified.

We know from the previous section that the set M = Fi is an m-dimensional module over the local ring K =My,4(IF) and that the set
{E\,E,...,Ep} is a basis of M. Each element of the K-module M can be expressed uniquely as a linear combination of Ey,Ey, ..., Ey,.
Furthermore, a maximal ideal of K is denoted by

0 —a -a -—a3
a 0 —a a .
I= ! 3® a; € F,1<i<3}.
a az 0 —ay
as —dy ai 0
Now let us define the set
m
My=< Y AE|A el 1<i<m ;.
i=1
Then, we have
0 0 o - 0
X X X e X
MO _ 21 22 23 2m Xij cF
X31 X322 X33t X3
X41  X42 X430 X4m

Now, we consider the equivalence relation on the elements of

X1l X12 X133 Xim
X X X s X .
M* = M\ My = 21 X2 X3 2m H<i<m, Fxy; 40
X31 X3 X33 X3y
X41  X42 X430 Xdm

whose equivalence classes are the one-dimensional left submodules of M with the set M deleted. Thus, if X,Y € M*, then X is equivalent to
Y if Y = AX for A € K* = K\ L The set of equivalence classes is denoted by P(M). Then P(M) is called an (m — 1)-dimensional projective
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coordinate space and the elements of P(M) are called points; the equivalence class of vector X is the point X. Consequently, X is called a
coordinate vector for X or that X is a vector representing X. In this case, AX with A € K* also represents X; that is, by AX = X. Thus, X can
be expressed as follows:

a —ap —a —a3 X1 X122 X130 Xim

X = aj a —az  a X21 X2 X3 ot X
a as a —a X31  X32 X33 o X3
az  —a; a ag aed \ X4l X422 X430 Xdmo ) 4
21 212 23t ZUm

_ 221 22 23 "t 2m

731 232 233 0 3m
241 42 43 Zm ) gum

where ag #0 A 1 <i<m,3 x; #0. Note that 3 z;; # 0.

Let X,Y,--- be p+ 1 points such that any two of them are K-independent. Then the set IT, = Sp{X,Y,--- }\Mj is called a subspace of
dimension p or p-space.

In P(M), a point is a subspace of dimension 0 and a line is a subspace of dimension 1.

For X € M*, the set X = {1X | A € K* } is a O-dimensional subspace of P(M). Therefore, X is a point of P(M).

Now, we investigate the condition of being K-independent for two different points X and Y of P(M).

Firstly, let us denote the coordinate vectors for the points X and ¥ by X and Y, respectively. We form a linear combination as

ay —ay —ap —asz X1 X12 X130t Xim by —-by —by —b3 Yiio Y12 Y13 Vim
a a —a3 a X1 X X3 e Xom | by by b3 Db Y21 Y2 Y23t Yom
a a a —a X31 X3 X33t X3 by b3y by b Y3l Y32 Y33 Yim
az —ay ap  a X4l X42  X43 o X by —by by b YAl Y42 Y43 o Vam

If this linear combination is an element of M), then we can write

apx1] — ajxp) — axx3) — asx4) +boyr1 —b1ya1 —bay31 —b3ysr =0

apX12 — a1xp2 — axx3y — asx4y +boy1a —b1yan —baysn — b3y =0
“.1)

QX1 — A1X2m — A2 X3 — A3X4m + bOY1m — D1Y2m — D2Y3m — b3Yam = 0.

Therefore, a homogeneous system of linear equations, which involve m equations and eight variables ag, a1, az, a3, by, b1, by, and b3, is
obtained. Let us denote the coefficient matrix of (4.1) by

X110 —X21 31 —X41 Yiro —Y21 Y31 T4l
A X12 —X22 X3 X2 Y12 TY22 Y32 V42

Xlm  —X2m  —X3m  —Xdm Yim —Y2m  —Yim  —Yim mx8

Now, we would like to interpret solutions of the system according to ay and bg:
1. If rankA =8, then we have ay = a; = ap = a3 = by = by = by = b3 = 0. Therefore, this shows that

apy —a; —a —aj by —-by —by —bj 0 0 0 O
aj ap —das an _ b] b() 7b3 b2 _ 0 0 0 O cl
a az ap —ay by b3 by —by 0O 0 0 O ’
as —ap aj apn b3 7172 bl bo 0 0 0 O

In that case, the coordinate vectors X and Y for the points X and Y, respectively, are K-independent if and only if the rank of the coefficient
matrix is equal to 8.
2. If rankA =1, then we have ag = rt and by = st where ¢ is a parameter. There are four cases for ag = by = 0:

i. If r =5 =0, then ¢ can be arbitrarily chosen,
ii. If r =0 and s # 0, then # must be chosen zero,
iii. If r # 0 and s = 0, then ¢ must be chosen zero,
iv. If r £ 0 and s # 0, then # must be chosen zero.

In this case, we have the result that the coordinate vectors X and Y for the points X and Y, respectively, are K-independent if and only if at
least one of the conditions i-iv is satisfied. Similarly, it is possible to determine the conditions of K-independent for the cases 2 < rankA < 6.
Let the set Sp{X,Y} = {AX +yY |3 1,y € K* } be a 1-dimensional subspace of P(M) such that X and Y are K-independent elements. Then
Sp{X,Y} is a line of P(M). It is denoted by

ag —ap —ay —a3 x| X2 X130t Xig bo —bi —by —b3 YooYz Y13 ot Yim

Sp{X,7} = a  a —a3 a X X;mo X3 Xam | by by —bz b Y21 Y2 Y3 ot Yom
’ a a3 ag  —ai X31 X3 X33t X3 by b3 bo  —b; Yii Y2 Y3 Yim

a  —a  a ap X4l X42  X43 v Xdm by —by by bo Y41 Va2 Y43+ YVam

where ag ZON1 <i<m,Ix;; #0o0rby #ON1<i<m,Jy; #0.
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We know that, for every coordinate vector X € M* of the point X € P(M), X can be written uniquely as a linear combination of the vectors

m
E\,E,,--- ,E,. Therefore, the matrix X is expressed as X = AZIX,-E,- or as
i—

X= (XlaXZa"' 7Xm) € K"

where
X111 —X21 —X31  —X4] X2 —X22  —X32  —X42 Xlm  —X2m  —X3m  —Xdm
X _ X21 X11 —X41 X31 Xo— X22 X12 —X42 X32 X, — X2m Xlm —X4m X3m
1 - bl 2 - e b) m—
x31 X41 X11 —X21 X32 X42 X12 —X22 X3m Xdm Xlm —X2m
X41 —X31 X21 X11 X42  —X32 X22 X12 Xdm  —X3m X2m Xim

There are two cases:
Case 1: For the first component of the coordinate vector X of the point X, if x;; # 0, then X; ¢ I and X] is a unit element, so there is an
inverse of X;. If we multiply both sides of the equation with the inverse matrix X, ", we have

I X2 x13 - Xim
0 xp» x3 -+ X
X =(I4,Xo,-+ , Xim) = 0
X33 X33 X3
0 x40 x43 -+ Xam

Thus, these points are called proper points.
Case 2: For the first component of the coordinate vector X of the point X, if x;; = 0, then X € I. Therefore, the inverse of the matrix X
does not exist. Thus, we call the points of P(M) whose coordinate vectors are in the form

0 xpp x13 - Xim
X21 X2 X23 ccr X2y
X31 X332 X33 ot X3y
X41  X42  X43 o Xam

as ideal points.
Now, by giving a definition which is an analogue of the definition in [2, p. 947], we will handle a special example related to the definition.

Definition 4.1. An s-space is the set of points whose representing vectors

X1 X2 X130 0 Xim
21 22 23 om = (X17X27"' 7Xm)
X31 X32 X33 0 X3y
X41  X42  X43 o X4

of the points X satisfy the equations XA = 0, where A is an m x ((m— 1) —s) matrix of rank (m — 1) — s with coefficients in K.

Now let us take m = 4 and n = 2, so we study an example of a 3-dimensional projective coordinate space P(M). For the 3-dimensional
projective coordinate space, first we will determine all points of a line whose incidence matrix is given and we will then determine the
incidence matrix of a line that goes through the given points.

Example 4.2. In the 3-dimensional projective coordinate space P(M), any line, a 1-dimensional subspace 11y, is the set of points whose
X11 X12 X13 X14
X21 X2 X23  X24
X31  X32 X33 X34
X41 X42  X43  X44
of rank 2 with coefficients in K. Thus, I1} = {Y ’XA =0,A¢€ Kg\lg } is obtained. Now, we identify all points of a line whose incidence
matrix is

representing vectors = (X1,X2,X3,X4) of the points X satisfy the equations XA = 0, where A is a 4 x 2 matrix

apy —a; —ay —az eg —e; —ex —e3
ap ay —az a ey e —e3 e
ap as ap —dai €2 €3 €0 —eq
a3 —ay ap  a e3 —ey e e
by —by —by —b3 fo =i —f2 —f3
by by b3 Db fi fo -3 f
by b3 by —Dy L2 i fo —h
by —by by by =L fn f e KNI

|
53]
tEEE)

QU o
00 o

cg, ¢ - g1 & & &
o ¢ g —cC] & 8 8 —&
83 —&2 81 80
hy —hy —hy —h3
hy  hy —h3 h
hy  hs hy —m
hs —hy  h ho

3 —c ¢ ¢
dy —di —dy —ds
d dy —-dz d
dy ds dy —di
dy —dy d dop
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As a consequence of the incidence matrix, it is trivial to see that Jay, by, cq,do,eo, fo,80,ho 7 O.
For XA = 0, we have the following cases:

Case 1: For the coordinate vector X of the point X, if x11 # 0, then X = (I4,X2,X3,X4) € K*. Thus, we obtain 32 equations with 12 variables

from XA = 0. If we solve this system of linear equations by using the Maple programme, we have the following solutions:

xip = d+bxia+cx+dxzs+exu

xn = d"+b" x4+ x4 +d" 335+ € x44

Xy = a" 6" x4 4 " xpg +d" Xaq ¢"xqa

xgp = @V +bVxia+ g +dVxs34+€Vxys

x13 = @' +b"x14+"xp+d x34+€"x44

x3 = a’+b"xa+c"xa+d"x3s+ e xy

x33 — aVll +bv”)C14 _"_ CVllx24 +dVllx34 + eVllx44
x43 — aVlll +bv”1x14 +CVl”x24 +dV”1x34 +gvmx44
X14 = X4, X4 = X4, X34 = X34,X44 = X44

Where a'7b’,C’,d',e’,a”7b",C",d”,e”,a”ﬂb’”,C"/,dm,e,”,a’v,bl‘/7C’v,d’v,ew,av,bv,cv,dv7ev7aw,bv',CV',dV',€V'7aV”,
b\/ll7CVll"ivll7611’117‘1\/1”7 bVlllycvlll7‘1\/”17 eVlll c IF‘

Case 2: For the coordinate vector X of the point X, if x| = 0, then X is an ideal point of the form

0 —x1 —x31 —xq X12  —X2 —X32  —X4
X21 0 —xu1  x3 X X122 —X4 X3
X = , Xo=
X31  X41 0 —x X3 Xg  X;2 =X
X41  —X31 X1 0 Xy —X3 X X2
X13  —X23  —X33 —X43 X14  —X4  —X34 —X44
oo | ¥23 X130 X3 X33 oo | ¥4 X1 xas xu
3= , X4=
X33 X43 X13 —X23 X34 X44 X14 —X24
X43  —X33 X3 X3 X44  —X34 X4 X4

Here, we know that 3 x13,x13,x14 # 0. Thus, we reach the followings solutions from XA = 0 by using the Maple programme:
X11, X12, X21, X202, X31, X32, X41, X4p are written as depending on the parameters x13 = t1, X14 = b, X3 = 13, Xp4 = l4, X33 =I5, X34 = I¢,

X43 = 17, X44 = tg. Therefore, x11 can be written as

X11 = Uity + upty + uszty + ugty + usts + ugte + w7ty + ugty where uy, uy, us, uq, us, ug, uy, ug € F. Then, we have the following situations:

0 0 0 O

0 0 0 O

(a) IfVt; =0, then x11 = x12 = X21 = X2p = Xx31 = X320 = X471 = X4p = 0. Therefore, 00 0 0

0O 0 0 O

contradiction because the zero matrix does not represent a point. Therefore, t; # 0.

0
(b) If Vu; =0, then x11 = 0. In this situation, from (a), we can choose either 3t; =1 or 3t, = 1. The ideal point is then ?1
31
X41

0 X1 N 1

X X 1 1.
M* or 21 22 3 4 c M*.

X31 X322 Is I

X41 X4 17 13
(c) For 3k € {1,2,3,...,8}, if Juy # 0, then from x11 = uit] +upty + -+ uty + - - - + ugty we have

Uty = _Zuith
iZk

so x11 = 0. Here, there are two cases:

X12
X22
X32
X42

€ My is obtained. However, this is a

1 n

13 I4

t5 g

7 13
4.2)

i) Ift; = 0 for Vi where i # k in (4.2), then uity = 0. Here tj, = 0 since u # 0. Thus, Vt; = 0 for 1 <i < 8 is obtained. This is a contradiction of

0 xp

(a). Therefore, t; # 0 for i, i # k. In that case, if k =1, then by choosing Ity = 1 # 0in (4.2), the ideal point iZI ?2
31 32

X4 X4

0 xp 1 1

n
3
15
7

eM*

is obtained. If k = 2, then by choosing 3t; = 1 # 0 in (4.2), the ideal point ;2] 2 03 € M* is obtained. If 3 < k < 8, then by
31

X3 15 Ig
X41 X4 l7 I3
choosing either 3t = 1 # 0 or 3t = 1 # 0 in (4.2) the ideal point can be found easily.

ii) If u; =0 for Vi ,i # k in (4.2), then ty, = 0 since uity = 0 and uy, # 0. Therefore, if k = 1, then t; = 0 and 3t; # 0 from (a) by choosing

0 xp 0 1
h=1i . . X21 X I3 Iy . . _ _ ) . 1
2 = 1in (4.2), the ideal point . N P € M*is obtained. If k =2, then t = 0 and 3t; # 0 from (a) by choosing t| = 1 in
32 5 6

X41 X42 17 1
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0

(4.2). The ideal point 21
3]

X41

X12
X22
X32
X42

1 0
3 I
15 16
7 I8

€ M* is obtained. If k = 3,4,5,6,7,8, then t;, = 0 and 3t; # 0 from (a) by choosing either

ty =1orty =1in(4.2). The ideal point can be found easily.

Now conversely, we have a new situation. We determine the incidence matrix of a line whose points are given.

Let us take the general coordinate vectors

of the points X and Y , respectively. Then we search the incidence matrix of the form

ISURESUIAN RN
S0 % 0

We know that the coordinate vectors of these points are as follows:

and

X1

X3=

"

X1l X12 X133 X14 Yir Yi2 Y13 Yi4
X21 X X23 X4 and Y — | Y21 Y2 ¥z v
X3l X3 X33 X34 Y3 ¥ Y33 ym
X41  X42  X43  X44 Y41 Y42 Y43 Va4
ay —ay —a; —a3 ep —eyp —ey —e3 ]
a  ay —a3 a ) eq e —e3 e
a a3 a —a e e3 ey —e
ay  —ay a ap e3 —ex e 2
by —by —by —b3 fo =H —f —-f
by by —b3 b fi o —f5 S
by bz by —b L B fo —-h
by —by by b i I I S U € KL,
g —c1 —C¢ —C3 g —8 —& —8&
4 ¢ - g1 & —8& &
o o —C & 8 & —8I
g —c  c o 8 —& & 80
dy —di —dy —ds ho —hi —hy —h3
d dy —d3 d hy  hy —h3 h
d dy dy —d hy hs  hy —I
d3 —dp dy dy h3 —hy hy kg i
X1 —X21 —X31 —X41 X12  —X2  —X32 —X4
X21 X111 —X41  X31 K= | 2 Y2 e awm
X3l X41 X1 —X1 X3 X X;p —Xx2
X41  —X31 X1 X1 X4 —X3 X X2
X13  —X23  —X33  —X43 X14  —X24  —X34 —X44
X3 X13 —X43 X33 P T
X33 X43  X13 —X23 X34 X44  X14 X4
X43  —X33  X23 X13 X44  —X34  X24 X14
Yir =y —Y3l Y4l Yi2o —Yn Y3 Y4
Y21 Yir —Y41 Y3l Y= | Y2 Y2 ym
Y31 Y41 Vi1 —y21 Y32 Y42 Y12 —y22
Y4 —y31L Y21 Vil Yoo =y yn o Y2
YI3 —Y23  —V33 V43 Yia  —Y4  —Yi4 —Va4
Y23 Y13 Y43 V33 Y= Y4 Y4 Va4 Y34
Y33 Y43 VI3 —Y23 Y34 Y44 Y4 Y4
Y43 —Y33 y23 Y13 Y44 —Y34 Y24 Yi4

Thus, we obtain 64 equations with 32 variables from XA = 0 and YA = 0:
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If we solve this linear equation system by using the Maple programme, we have the following solutions:

ay = M +Aco+Azcr +Agep + Ases + Agdp + Ardy + Agds + Aods

ap = Ao+Aico+Aacr +Azer +Aacs + Aisdo + Aiedi + Arrda + Aigds

ay = Aig+Axco+Azicr + Ao+ Aa3es + Aoado + Aasdi + Apeda + Aazds

a3 = Apg+Axco+A3pct +Az102 + 3203 + A33do + A34d1 + Azsda + Azeds

by = Az7+Asgeo+Azgct +Ag0ca + Aa103 + Aando + Aazdy + Aqady + Aapds

by = e+ Agco+ Agcr + Aagea + Asoes + As1do + Aspdi + Aszda + Asads

by = Ass+Aseco+As7c1 + Asgea + Asocs + Agodo + Ae1d1 + Asadz + As3ds

by = Asa+Aesco+Assc1 +Ae7c2 + Aggcs + Agodo + Ar0d) + Aq1da + Aqads

eo = M3+ 2A7480 +MA1581 + Ar682 + A7783 + Mgho + Azohy + Agola + Ag1h3

e = g2+ Ag380 +Asag1 + Ass82 + Ag6g3 + As7ho + Asghy + Agolia + Agohs

e = o1 +2Ao280+ L0381 + Ao4ga + Aosg3 + Aogho + Agrhy + Aggha + Agohs

e = Ao+ 10180 +A10281 + A10382 + A10483 + A1osho + Aios1 + Aio7h2 + A1oshs
foo = Ao +A1080 +A1181 +Ar1282 + A13gz + Aiaho + Aishy + Aieha + A1k
S = Ais+Ai9go +A20g1 +A2182 + A12283 + Ai23hg + Aiaaht + Arasha + Aioghs
fr = A7+ Aisgo +Aoogr +Ai3082 + 413183 + Aisaho + Aizzhi + Aizah + Aizshs
fi = Aize+Aizzgo +Ai3sgr +A13082 + Aa083 + Aiarho + Araoht + Aiazhy + Aaghs
g = cpc1=cp =0y c3=c3 dy=dy dy=di, dy=dy d3=d3

8 = 80,81=281, 82 =282 8 =83 ho=ho, hy =h1, hp =hy, h3 = h3

where A; € F, 1 <i < 144. Moreover; the following special cases for the general two points X and Y can be also examined. These are as
follows:

1. X and Y are proper points.

2. One is a proper point and the other is an ideal point.

3. X and Y are ideal points.

Finally, we have reached all of the results we have targeted in view of the papers in [1, 2].

5. Conclusion

In this study, we deal with the Lie algebra sp(1) of the matrix Lie group SP(1). It is found that the (left) modules were constructed over the
algebra (which is also a local ring); therefore, an (m-1)-dimensional projective coordinate space was constructed over the m-dimensional
module. As a concrete example, in a 3-dimensional projective coordinate space, all points of a line given with the incidence matrix and,
dually, the incidence matrix for the line going through two points are obtained by the help of the Maple programme since it is difficult to do
operations manually.
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