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Abstract

In this paper, our aim is to introduce the class of β1−paracompact spaces in ideal topological spaces. Then, some fundamental properties
of β1−I−paracompact spaces are given. Also, the relationships between β1−I−paracompact spaces and other types of paracompact
spaces are studied.
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1. Introduction

In 1944, Dieudonne [9] introduced the paracompact spaces. In 1948, Stone [28] proved the fundamental theorem that every metric space is
a paracompact space. Since then, a lot of works has been done on paracompact spaces and many interesting results have been obtained
[1, 2, 7, 8, 13, 23].
The notion of an ideal topological space was studied independently by Kuratowski [17] and Vaidyanathaswamy [29]. Hamlet and Jankovic
[15] investigated further properties of ideal topological spaces.
Zahid [31] introduced the concept of paracompactness with respect to an ideal. Later, I−paracompactness studied by Hamlet et al. [14]
and Sathiyasundari and Renukadevi [26]. Also, Sanabria et al. [25] studied this concept to define S− paracompactness in ideal topological
spaces. In recent years, the use of ideals has taken a significant role in the generalization of some topological notions such as regularity,
compactness, paracompactness, semi-paracompactness and β−paracompactness [22, 24].
In this work, we introduce and study a stronger version of I−paracompact space called β1−I−paracompact space which is defined on an
ideal space. Then, we investigate the relationships between β1−I−paracompact spaces and the other types of paracompactness. Moreover,
we obtain various properties, examples and counterexamples concerning β1−I−paracompactness.

2. Preliminaries

Throughout the present paper, (X ,τ) denotes a topological space. If F is a subset of X , then the closure of F and the interior of F will be
denoted by cl(F) and int(F), respectively. Also, we denote the class of all subsets of X by P(X).

Definition 2.1. [17, 29] An ideal I ⊆P(X) on a set X is a nonempty collection of subsets of X which satisfies

(i) If A ∈I and B⊆ A, then B ∈I ,

(ii) If A ∈I and B ∈I , then A∪B ∈I .

In this paper, we denote a topological space (X ,τ) together with an ideal I defined on X by the triple (X ,τ,I ) that will be called an ideal
space.

Lemma 2.2. [14] If I 6= /0 is an ideal on X and F is a subset over X, then IF = {F ∩ I : I ∈I } is an ideal on X.

Definition 2.3. [17] Let (X ,τ,I ) be an ideal space. A set operator ()∗ : P(X)−→P(X), called local function of F with respect to I
and τ , is defined as follows

F∗(I ,τ) = {x ∈ X : (F ∩G) /∈I for every G ∈ τ(x)}
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where τ(x) = {G⊆ X : x ∈ G and G ∈ τ}. We simply write F∗ instead of F∗(I ,τ) in case there is no chance for confusion.

Definition 2.4. [15] Let (X ,τ,I ) be an ideal space. A Kuratowski closure operator cl()∗ for a topology τ∗(I ,τ) (also denoted by τ∗ ),
called ∗−topology, finer than τ is defined by cl∗(F) = F ∪F∗. A basis β (I ,τ) for τ∗ can be described as follows

β (I ,τ) = {V − I : V ∈ τ and I ∈I }.

Definition 2.5. [10] Let (X ,τ) be a topological space and F ⊆X. Then, F is said to be a β−open (semi-preopen [3]) set if F ⊆ cl(int(cl(F))).
The complement of β−open set is said to be a β−closed set. The collection of all β−open ( β−closed) subsets of X is denoted by βO(X ,τ)
( βC(X ,τ)).

Definition 2.6. [20] Let (X ,τ) be a topological space and F ⊆ X. F is said to be an α−open set if F ⊆ int(cl(int(F))). The collection of
all α−open subsets of X is denoted by τα , forms a topology on X, finer than τ .

Definition 2.7. [3, 12] Let (X ,τ) be a topological space and F ⊆ X. The intersection of all β−closed sets over X containing F is called
β−closure of F, and it is denoted by βcl(F).

Theorem 2.8. [19] Let (X ,τ) be a topological space, F ⊂ Y ⊂ X and Y be a β−open set over X. Then F is a β−open set over X if and
only if F is a β−open set over (Y,τY ).

Lemma 2.9. [3, 12] Let (X ,τ) be a topological space and F ⊆ X. Then, the set βcl(F) is a β−closed set over X.

Definition 2.10. [11] Let (X ,τ) be a topological space. If for each β−open set U and each x ∈U, there exists a β−open set F over X such
that x ∈ F ⊆ βcl(F)⊆U, then it is called β−regular space.

Definition 2.11. [30] Let (X ,τ) be a topological space. Then it is called extremally disconnected if the closure of every open set is an open
set over X.

Definition 2.12. [5] Let (X ,τ) be a topological space. Then it is called submaximal if each dense subset of X is an open set over X.

Example 2.13. Let (X ,τ) be a topological space where X = {x1,x2} and τ = { /0,X ,{x2}}. Clearly, (X ,τ) is an extremally disconnected
and submaximal topological space.

Lemma 2.14. [16] Let (X ,τ) be an extremally disconnected and submaximal topological space. Then all semi-open sets over X are open.

Definition 2.15. [18] Let (X ,τ) and (Y,σ) be topological spaces. A function f : (X ,τ)→ (Y,σ) is said to be a β−irresolute if for every
β−open set F over Y , f−1(F) is a β−open set over X.

Definition 2.16. [30] Let (X ,τ) be a topological space. A collection V = {Vλ ⊆ X : λ ∈ ∧} is said to be a locally finite if for each x ∈ X,
there exists an open set U containing x such that Vλ ∩U 6= /0 for all λ ∈ {λ1, ...,λn}.

Lemma 2.17. [4] The union of a family of locally finite collection of sets in a topological space is a locally finite family of sets.

Theorem 2.18. [5] Let (X ,τ) be a topological space and U = {Uλ : λ ∈ ∧} be a locally finite collection. If Vλ ⊂Uλ for each λ ∈ ∧,
then {Vλ : λ ∈ ∧} is a locally finite collection.

Definition 2.19. [14] Let (X ,τ,I ) be an ideal space. An ideal I is called weakly τ−local on X if F∗ = /0 implies F ∈I .

Example 2.20. Let (X ,τ) be as in Example 2.13 with the ideal I = { /0,{x2}}. It is obvious that, I is a weakly τ−local on X.

Definition 2.21. [14] Let (X ,τ,I ) be an ideal space. An ideal I is called τ−locally finite on X if the union of each locally finite collection
contained in I belongs to I .

Theorem 2.22. [14] Let (X ,τ,I ) be an ideal space. If I is a weakly τ−local on X, then I is a τ−locally finite on X.

Definition 2.23. [9] Let (X ,τ) be a topological space. Then it is said to be a paracompact space, if every open cover of X has a locally
finite open refinement which covers to X.

Definition 2.24. [14] Let (X ,τ,I ) be an ideal space. Then it is said to be an I−paracompact space if every open cover U of X has a

locally finite open refinement V such that X−
⋃{

V ⊆ X : V ∈ V
}
∈I .

Definition 2.25. [31] Let (X ,τ) be a topological space. The collection V satisfying X−
⋃{

V : V ∈ V
}
∈I is called an I−cover of X.

Theorem 2.26. [26] Let (X ,τ) be a topological space. If (X ,τ) is a paracompact space, then it is a I−paracompact space.

Definition 2.27. [1] Let (X ,τ) be a topological space. Then it is called β1− paracompact if every β−open cover of X has a locally finite
open refinement.

Theorem 2.28. [1] Let (X ,τ) be a topological space. If (X ,τ) is a β1−paracompact space, then it is a paracompact space.

Definition 2.29. [6] Let (X ,τ) be a topological space and F ⊆ X. Then F is said to be a N−closed relative to X (briefly, N−closed) [9] if
for every cover {Uα : α ∈ ∧} of F by open sets over X, there exists a finite subfamily ∧0 of ∧ such that F ⊂

⋃
{int(cl(Uα )) : α ∈ ∧0}.

Definition 2.30. [27] Let (X ,τ) and (Y,σ) be topological spaces and f : (X ,τ)→ (Y,σ) be a function. Then f is said to be an almost
closed mapping if f (F) is closed over Y for each regular closed set F over X.

Lemma 2.31. [21] Let (X ,τ) and (Y,σ) be topological spaces and f : (X ,τ)→ (Y,σ) be an almost closed surjection with N−closed point
inverse. If {Uα : α ∈ ∧} is a locally finite open cover of X, then { f (Uα ) : α ∈ ∧} is a locally finite cover of Y .
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3. β1−I − paracompact spaces

Definition 3.1. An ideal space (X ,τ,I ) is said to be a β1−I−paracompact space if every β−open cover U of X has a locally finite

open refinement V such that X−
⋃{

V ⊆ X : V ∈ V
}
∈I .

It is clear that every β1−paracompact space (X ,τ) is a β1−I−paracompact space for any ideal I on X. But the following example
shows that the converse is not true in general.

Example 3.2. Let (X ,τ,I ) be an ideal space where X = {a,b,c} with the topology τ = { /0,X ,{b},{c},{b,c}} and the ideal I =
{ /0,{a},{b},{a,b}}. Then, one can verify (X ,τ,I ) is a β1−I−paracompact space, but (X ,τ) is not a β1−paracompact since the
collection U = {{a,b},{a,c}} is a β−open cover of X which admits no locally finite open refinement of U which covers to X.

Remark 3.3. Definition 3.1 coincides with β1−paracompactness when the ideal I just consists of empty set.

Theorem 3.4. If (X ,τ,I ) is a β1−I−paracompact space, then it is an I−paracompact space.

Proof. The simple proof is omitted.

The converse of Theorem 3.4 is not necessarily true as we can see in the following example.

Example 3.5. Let X = Z be the set of integer numbers with the topology τ = { /0,X ,{0}} and the ideal I = { /0,{0},{1},{0,1}}. Observe
that (X ,τ,I ) is an I− paracompact space, but is not a β1−I−paracompact space. Since the collection U = {{0,x} : x ∈ Z} is a
β−open cover of X which admits no locally finite open refinement which is an I−cover of X.

Remark 3.6. Let (X ,τ) be a topological space and I be an ideal on X. Then, the following diagram obtains immediately from Theorem
2.26, Theorem 2.28, Definition 3.1 and Theorem 3.4.

(X ,τ) β1−paracompact =⇒ (X ,τ,I ) β1−I−paracompact

⇓ ⇓

(X ,τ) paracompact =⇒ (X ,τ,I ) I−paracompact

Theorem 3.7. Let (X ,τ,I ) be an ideal space. If (X ,τ,I ) is a β1−I−paracompact space, then (X ,τα ,I ) is a β1−I− paracompact
space.

Proof. The proof follows immediately from βO(X ,τ) = βO(X ,τα ) and τ ⊆ τα .

The following example shows that the converse of Theorem 3.7 may not be true, in general.

Example 3.8. Let (X ,τ,I ) be an ideal space where X = {0,1,2,3}with the topology τ = { /0,X ,{0}} and the ideal I = { /0,{0},{1},{0,1}}.
Then, one can readily verify (X ,τα ,I ) is a β1−I−paracompact space, but (X ,τ,I ) is not a β1−I−paracompact since the collection
{{0,1},{0,2},{0,3}} is a β−open cover of X which admits no locally finite open refinement which is an I−cover of X.

Theorem 3.9. Let (X ,τ,I ) be an ideal space. If (X ,τα ,I ) is a β1−I−paracompact space, then (X ,τ,I ) is an I−paracompact
space.

Proof. Let U = {Uγ ⊆ X : γ ∈ ∧} be an open cover of X . Since βO(X ,τ) = βO(X ,τα ), then U is a β -open cover of (X ,τα ). By
hypothesis, there exists a locally finite open collection V = {Vλ ⊆ X : λ ∈∨} of (X ,τα ) which refines U such that X−

⋃
{Vλ : λ ∈∨} ∈I .

Let Vλ ∈ V . Since V refines U , there is some Uγλ
∈U such that Vλ ⊆Uγλ

which implies that the collection G = {int(cl(int(Vλ )))∩Uγλ
:

Vλ ⊆Uγλ
and Uγλ

∈U } is an open refinement of U such that X−
⋃
{int(cl(int(Vλ )))∩Uγλ

: Vλ ⊆Uγλ
and Uγλ

∈U } ∈I .

Now, we shall show that G is a locally finite collection of (X ,τ). Let x ∈ X . Since V is a locally finite collection of (X ,τα ), there exists an
Fx ∈ τα containing x such that Vλ ∩Fx 6= /0 for all λ ∈ {λ1, ...,λn}. Therefore, we get Fx ⊆ int(cl(int(Fx))) and

Vλ ∩Fx ⊆
(
int(cl(int(Vλ )))∩Uγλ

)
∩ int(cl(int(Fx)))

and so that
(
int(cl(int(Vλ )))∩Uγλ

)
∩ int(cl(int(Fx))) 6= /0 for all λ ∈ {λ1, ...,λn}. Hence, (X ,τ,I ) is an I−paracompact space.

The converse of Theorem 3.9 need not be true as shown by the following example.

Example 3.10. Let (X ,τ,I ) be an ideal space where X = {a,b,c} with the topology τ = { /0,X ,{c},{a,b}} and the ideal I = { /0,{c}}.
Observe that (X ,τ,I ) is an I−paracompact space, but (X ,τα ,I ) is not a β1−I−paracompact since the collection {{a},{b},{c}} is a
β−open cover of (X ,τα ) which admits no open locally finite refinement of (X ,τα ) which is an I−cover of X.

Remark 3.11. Let (X ,τ) be a topological space and I be an ideal on X. Then, the following diagram obtains immediately from Theorem
2.26, Theorem 2.28, Definition 3.1, Theorem 3.4, Theorem 3.7 and Theorem 3.9.
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(X ,τ) β1−paracompact =⇒ (X ,τ,I ) β1−I−paracompact

⇓

⇓ (X ,τα ,I ) β1−I−paracompact

⇓

(X ,τ) paracompact =⇒ (X ,τ,I ) I−paracompact

Theorem 3.12. Let (X ,τ,I ) be an extremally disconnected and submaximal space. If (X ,τα ,I ) is a β1−I−paracompact space, then
(X ,τ,I ) is a β1−I−paracompact space.

Proof. This follows directly from the fact that if (X ,τ,I ) is an extremally disconnected and submaximal space, then from Lemma 2.14
τ = τα .

Theorem 3.13. Let (X ,τ,I ) be an ideal space. If it is a β1−I−paracompact space and the collection F is an ideal on X such that
I ⊆F , then (X ,τ,F ) is a β1−F−paracompact space.

Proof. Let U = {Uλ ⊆ X : λ ∈ ∧} be a β−open cover of X . By hypothesis, U has a locally finite open refinement V such that
X−

⋃
{V : V ∈ V } ∈I . Since I ⊆F , X−

⋃
{V : V ∈ V } ∈F . Thus, (X ,τ,F ) is a β1−F−paracompact space.

Theorem 3.14. Let (X ,τ,I ) be an ideal space. If (X ,τ,I ) is a β1−I−paracompact space and I is weakly τ−local, then (X ,τ∗,I )
is a β1−I−paracompact space.

Proof. Let U ∗ = {Uγ− Iγ : Uγ ∈ τ, Iγ ∈I ,γ ∈∧} be a β−open cover of (X ,τ∗). Then U = {Uγ ⊆ X : Uγ ∈ τ,γ ∈∧} is a β−open cover of
(X ,τ). By hypothesis, there exists locally finite open collection V = {Vλ ⊆ X : λ ∈∨} which refines U such that X−

⋃
{Vλ : Vλ ∈ V } ∈I .

It is clear that V ∗ = {Vλ − Iγ : λ ∈ ∨,γ ∈ ∧} is an open collection of (X ,τ∗) which refines U ∗. Also, since τ ⊆ τ∗, V ∗ is a locally finite
collection of (X ,τ∗). It remains only to show that X−

⋃
{Vλ − Iγ : λ ∈ ∨,γ ∈ ∧} ∈I .

By Theorem 2.18, {Vλ ∩ Iγ : λ ∈ ∨,γ ∈ ∧} is a locally finite collection. Since I is weakly τ−local on X, by Theorem 2.22, we have I is
τ−locally finite on X. It follows that

⋃
(Vλ ∩ Iγ ) ∈I . Then,

X−
⋃
{Vλ − Iγ : λ ∈ ∨,γ ∈ ∧} ⊆ (X−

⋃
{Vλ : λ ∈ ∨}) ∪ (

⋃
(Vλ ∩ Iγ )) ∈I .

Thus, we have X−
⋃
{Vλ − Iγ : λ ∈ ∨,γ ∈ ∧} ∈I . Therefore, (X ,τ∗,I ) is a β1−I−paracompact space.

Theorem 3.15. Let (X ,τ) be a β−regular space. If (X ,τ,I ) is β1−I−paracompact then every β−open cover of X has a locally finite
β−closed I−cover refinement.

Proof. Let U be a β−open cover of X. By β−regularity of X, for each x ∈ X and x ∈Ux ∈ U , there exists Fx ∈ βO(X ,τ) such that
x ∈ Fx ⊂ βcl(Fx)⊂Ux. Then the collection F = {Fx : x ∈ X} is a β−open cover of X . By hypothesis, there exists a locally finite open
collection V = {Vλ : λ ∈ Λ} which refines F such that X−

⋃
{Vλ : λ ∈ Λ} ∈I . Then X−

⋃
{βcl(Vλ ) : λ ∈ Λ} ∈I .

Let x∈X . Since V is locally finite, there exists a G∈ τ containing x such that Vλ ∩G 6= /0 for all λ ∈ {λ1, ...,λn}. Since Vλ ∩G⊂ βcl(Vλ )∩G,
we get βcl(Vλ )∩G 6= /0 for all λ ∈ {λ1, ...,λn}. So, the collection H = {βcl(Vλ ) : λ ∈ Λ} is locally finite. Let βcl(Vλ ) ∈H . Then
Vλ ∈ V . Since, V refines F , there exists Fx ∈F such that Vλ ⊂ Fx so that βcl(Vλ )⊂ βcl(Fx)⊂Ux. Hence, H refines U . Moreover by
Lemma 2.9, H = {βcl(Vλ ) : λ ∈ Λ} is a β−closed collection. Therefore, H is a locally finite β−closed I−cover refinement of U .

If I = { /0} in the above theorem, we have the Remark 3.16.

Remark 3.16. [ 1, Theorem 2.12] Let (X ,τ) be a β−regular space. If each β−open cover of the space X has a locally finite refinement,
then each β−open cover of X has a locally finite β−closed refinement.

4. β1−I− paracompact subsets

Definition 4.1. A subset F of X is called a β1−I−paracompact relative to (X ,τ,I ) if for every β−open cover U of F, there exists an
I ∈I and a locally finite open refinement V such that F ⊂

⋃
{V ⊆ X : V ∈ V }∪ I.

Theorem 4.2. (X ,τ,I ) be an ideal space and A, B ⊆ X. If A and B are β1−I−paracompact relative to (X ,τ,I ), then A∪B is a
β1−I−paracompact relative to (X ,τ,I ).

Proof. Let U = {Uγ : γ ∈ ∧} be a β−open cover of A∪B. Then U = {Uγ : γ ∈ ∧} is a β−open cover of A and B. By hypothesis, there
exists I1, I2 ∈I and locally finite open refinements V = {Vλ : λ ∈ ∆} of A and G = {Gi : i ∈5} of B such that

A⊆
⋃
{Vλ : λ ∈ ∆}∪ I1 and B⊆

⋃
{Gi : i ∈5}∪ I2.

Take H = {Vλ : λ ∈ ∆}∪{Gi : i ∈ 5}. Since the families V and G are locally finite by Lemma 2.17, H is a locally finite collection.
Therefore, H is a locally finite open refinement of U .

Now we shall show that A∪B⊆
⋃
{H : H ∈H }∪ I for some I ∈I . Since A⊆

⋃
{Vλ : λ ∈ ∆}∪ I1 and B⊆

⋃
{Gi : i ∈5}∪ I2, we get
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A∪B⊆
⋃
{Vλ : λ ∈ ∆}∪ I1∪

⋃
{Gi : i ∈5}∪ I2 =

⋃
{Vλ : λ ∈ ∆}∪

⋃
{Gi : i ∈5}∪ I

where I = I1∪ I2. Thus, A∪B is a β1−I−paracompact relative to (X ,τ,I ).

Theorem 4.3. (X ,τ,I ) be an ideal space and A, B ⊆ X. If A is a β1−I−paracompact relative to (X ,τ,I ) and B is a β−closed set over
X, then A∩B is a β1−I−paracompact relative to (X ,τ,I ).

Proof. Let U = {Uδ : δ ∈ ∧} be a cover of A∩B such that Uδ ∈ βO(X ,τ). Then G = {Uδ : δ ∈ ∧}∪ (X −B) is a β−open cover of
A. By hypothesis, there exists I ∈ I and locally finite open collection V = {Vλ : λ ∈ ∨}∪V (V ⊂ X −B) which refines U such that
A⊂

⋃
{Vλ : λ ∈ ∨}∪V ∪ I. Then,

A∩B⊂ (
⋃
{Vλ : λ ∈ ∨}∪V ∪ I)∩B ⊆

⋃
{Vλ ∩B : λ ∈ ∨}∪ (I∩B)

which A∩B⊆
⋃
{Vλ : λ ∈ ∨}∪ IB where IB = I∩B.

Since V is a locally finite collection, by Teorem 2.18, H = {Vλ : λ ∈ ∨} is a locally finite refinement of U . Thus A∩B is a β1−
I−paracompact relative to (X ,τ,I ).

Remark 4.4. If (X ,τ,I ) is a β1−I−paracompact space and B is a β−closed set over X, then B is a β1−I−paracompact relative to
(X ,τ,I ).

Proof. The proof is direct from Theorem 4.3.

Theorem 4.5. Let (X ,τ,I ) be an ideal space and A⊂ B⊂ X. If A is a β1−I−paracompact relative to (X ,τ,I ) and B is a β−open set
over X then A is a β1−I−paracompact relative to (B,τB,IB).

Proof. Let U = {Uα : α ∈ ∆} be a cover of A such that Uα ∈ βO(B,τB). Since B is a β−open set over X, by Theorem 2.8, U is a
β−open cover of A. By hypothesis, there exists I ∈I and locally finite open collection V = {Vβ : β ∈ ∆1} which refines U such that
A⊆

⋃
{Vβ : β ∈ ∆1}∪ I, which implies A⊆

⋃
{Vβ ∩B : β ∈ ∆1}∪ IB where IB = I∩B.

Let x ∈ B. Since V is a locally finite collection of X , there exists an open set F containing x such that F ∩Vβ = /0 for β /∈ {β1, ...,βn} which
implies (F ∩B)∩ (Vβ ∩B) = /0 for β /∈ {β1, ...,βn}. Thus, the collection VB = {Vβ ∩B : β ∈ ∆1} is a locally finite open collection of (B,τB)
which refines U . Therefore, A is a β1−I−paracompact relative to (B,τB,IB).

Theorem 4.6. f : (X ,τ,I )→ (Y,σ ,F ) be an open, β−irresolute, almost closed bijective function with N−closed point inverse with
f (I )⊆F . If (X ,τ,I ) is a β1−I−paracompact space, then (Y,σ ,F ) is a β1−F−paracompact space.

Proof. Let U = {Uλ : λ ∈ ∧} be a β−open cover of Y . Since f is a β−irresolute function, G = { f−1(Uλ ) : λ ∈ ∧} is a β− open cover
of X . Since (X ,τ,I ) is a β1−I−paracompact space, the collection G has a locally finite open refinement V = {Vλ : λ ∈ ∨} such that
X−

⋃
{Vλ : Vλ ∈ V } ∈I . Since f is an open function, by Lemma 2.31, f (V ) = { f (Vλ ) : λ ∈ ∨} is a locally finite open collection which

refines U . Also, f (V ) is a F cover of Y , because

Y = f (X) = f (
⋃
{Vλ : λ ∈ ∧}∪ I) = f (

⋃
{Vλ : λ ∈ ∧})∪ f (I) =

⋃
{ f (Vλ ) : λ ∈ ∧}∪ f (I).

This implies that Y −
⋃
{ f (Vλ ) : λ ∈ ∧} ∈ f (I )⊆F . So, (Y,σ ,F ) is a β1−F−paracompact space.
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