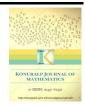


Konuralp Journal of Mathematics

Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath e-ISSN: 2147-625X



A Note on (m, n)- Γ -Ideals of Ordered LA- Γ -Semigroups

Abul Basar^{1*}

¹Department of Mathematics, Jamia Millia Islamia, New Delhi, India *Corresponding author E-mail: basar.jmi@gmail.com

Abstract

In this paper, we investigate the notion of (m, n)-ideals in a non-associative algebraic structure, which we call an ordered LA- Γ -semigroup. We prove that if (S, Γ, \cdot, \leq) is a unitary ordered LA- Γ -semigroup with zero and S has the condition that it contains no non-zero nilpotent (m, n)-ideals and if R(L) is a 0-minimal right (left) ideal of S, then either $(R\Gamma L] = \{0\}$ or $(R\Gamma L]$ is a 0-minimal (m, n)-ideal of S. Also, we prove that if (S, Γ, \cdot, \leq) is a unitary ordered LA- Γ -semigroup; A is an (m, n)-ideal of S and B is an (m, n)-ideal of A such that B is idempotent, then B is an (m, n)-ideal of S.

Keywords: LA-semigroups, (m,n)-ideals, ordered LA- Γ -semigroups 2010 Mathematics Subject Classification: 16D25, 20M10, 20N99

1. Introduction

The notion of a left almost semigroup (*LA*-semigroup) was introduced by M. A. Kazim and M. Naseeruddin [8]. Interestingly, *LA*-semigroups have been given different names like "left invertive groupoid" and "Abel-Grassmann's groupoid" (AG-groupoid) by different algebraists [10] and [5].

The concept of an *LA*- Γ -semigroup (Γ -AG-groupoid) was introduced by T. Shah and I. Rehman [18]. These objects are, in fact, 2-sorted non-associative algebraic structures with one ternary operation subjected to a sort of axiom. More precisely, they are ordered triplets (S, Γ, \cdot) consisting of two sets *S* and Γ and a ternary operation $S \times \Gamma \times S \to S$ with the property that $(x \cdot \alpha \cdot y) \cdot \beta \cdot z = (z \cdot \alpha \cdot y) \cdot \beta \cdot x$ for all $x, y, z \in S$ and all $\alpha, \beta \in \Gamma$. Note that every plain *LA*-semigroup *S* can be considered as an *LA*- Γ -semigroup by taking Γ as a singleton {1}, where 1 is the identity element of *S*, when *S* has a such element, or it is a symbol not representing an element of *S*, and the Γ -multiplication in *S* is defined by a1b = ab, where ab is the usual product in plain *LA*-semigroup *S*.

Various types of ideals, rough ideals, prime (m, n)-ideals have been studied in different algebraic structures by many algebraists [1], [2], [3], [4], [6], [7], [9], [10], [11], [12], [13], [14], [15], [17], [19] and [20]. All the results of this paper can be obtained for *LA*-semigroups without order and without Γ .

Definition 1.1. An LA-semigroup (S, \cdot) together with a partial order \leq on S that is compatible with LA-semigroup operation such that for all $x, y, z \in S$ and $\alpha, \beta \in \Gamma$, we have

$$x \leq y \Rightarrow z \alpha x \leq z \beta y \text{ and } x \alpha z \leq y \beta z,$$

is called an ordered LA- Γ -semigroup.

For subsets *A*, *B* of an *LA*- Γ -semigroup *S*, the product set *AB* of the pair (*A*, *B*) relative to *S* is defined as $A\Gamma B = \{a\gamma b : a \in A, b \in B \text{ and } \gamma \in \Gamma\}$ and for $A \subseteq S$, the product set *AA* relative to *S* is defined as $A^2 = AA = A\Gamma A$. Note that A^0 acts as an identity operator. That is, $A^0\Gamma S = S = S\Gamma A^0$. Also, (*A*] = $\{s \in S : s \leq a \text{ for some } a \in A\}$. Let (S, Γ, \cdot, \leq) be an ordered *LA*- Γ -semigroup and let *A*, *B* be nonempty subsets of *S*, then we easily have the following:

(i) $A \subseteq (A]$; (ii) If $A \subseteq B$, then $(A] \subseteq (B]$; (iii) $(A]\Gamma(B] \subseteq (A\Gamma B]$; (iv) (A] = ((A]]; (v) $((A]\Gamma(B]] = (A\Gamma B]$; (vi) For every left (resp. right) ideal *T* of *S*, (T] = T. **Definition 1.2.** Suppose (S, Γ, \cdot, \leq) is an ordered LA- Γ -semigroup and m, n are non-negative integers. An LA-sub-semigroup A of S is called an (m,n)- Γ -ideal of S if:

(*i*) $A^m \Gamma S \Gamma A^n \subseteq A$; (ii) for any $a \in A$ and $s \in S$, $s \leq a$ implies $s \in A$.

108

Equivalently: an ordered LA- Γ -semigroup A of S is called an (m,n)- Γ -ideal of S if

 $(A^m \Gamma S \Gamma A^n] \subseteq A.$

If A is an (m,n)-ideal of an ordered LA- Γ -semigroup (S,Γ,\cdot,\leq) , then (A] = A.

The purpose of this paper is to investigate (m, n)- Γ -ideals in ordered LA- Γ -semigroups as an extension of the results in [7]. Also, the results of this paper can be obtained for a locally associative ordered LA-semigroup which will generalize and extend the notion of a locally associative LA-semigroup [16].

2. (m,n)- Γ -ideals in ordered *LA*- Γ -semigroups

We start with the following example:

Example 2.1. Suppose $S = \{x, y, z, w, e\}$ with a left identity w. Let $x \cdot \gamma \cdot y = x \cdot y$. The following multiplication table and order show that (S, Γ, \cdot, \leq) is a unitary ordered LA- Γ -semigroup with a zero elemmaent x:

•	x	у	z	W	е
x	x	x	x	x z y w e	x
у	x	е	е	z	е
z	x	е	е	у	е
w	x	у	z	w	е
е	x	е	е	е	е

Lemma 2.2. Suppose R and L are respectively the right and the left ideals of a unitary ordered LA- Γ -semigroup (S, Γ, \cdot, \leq) , then $(R\Gamma L)$ is an (m,n)-ideal of S.

Proof. Suppose *R* and *L* are the right and the left ideals of *S* respectively, then we have the following:

$$\begin{aligned} \left(\left((R\Gamma L)^{m} \right] \Gamma S\Gamma \left((R\Gamma L)^{n} \right] \right) &\subseteq \left(\left((R\Gamma L)^{m} \Gamma S\Gamma ((R\Gamma L)^{n} \right] \right) \\ &\subseteq \left((R\Gamma L)^{m} \Gamma S\Gamma ((R\Gamma L)^{n} \right) \right) \\ &= \left((R^{m} \Gamma L^{m} \Gamma S) \Gamma (R^{n} \Gamma L^{n}) \right) \\ &= \left((R^{m} \Gamma R^{m} \Gamma R^{n}) \Gamma (S\Gamma L^{n}) \right) \\ &= \left((R^{m} \Gamma R^{m} \Gamma L^{m}) \Gamma (S\Gamma L^{n}) \right) \\ &= \left((R^{m+n} \Gamma L^{m}) \Gamma (S\Gamma L^{n}) \right) \\ &= \left((R^{m+n} \Gamma L^{m}) \Gamma (S\Gamma L^{n}) \right) \\ &= \left(S\Gamma (R^{m+n} \Gamma L^{m} \Gamma R^{m+n}) \right) \\ &= \left((S\Gamma S) \Gamma L^{m+n} \Gamma R^{m+n} \right) \\ &= \left((S\Gamma S) \Gamma L^{m+n} \Gamma R^{m+n} \right) \\ &= \left(S\Gamma L^{m+n} \Gamma S\Gamma R^{m+n} \right) \\ &= \left((R^{m+n} \Gamma S\Gamma L^{m+n} \Gamma S) \right) \\ &= \left((R^{m+n} \Gamma S\Gamma S) \Gamma (L^{m} \Gamma L^{n} \Gamma (S\Gamma S)) \right) \\ &\subseteq \left(((R^{m} \Gamma R^{n} \Gamma (S\Gamma S)) \Gamma (L^{m} \Gamma L^{n} \Gamma (S\Gamma S)) \right) \\ &\subseteq \left((S\Gamma S\Gamma R^{n} \Gamma R^{m}) \Gamma (S\Gamma S\Gamma L^{n} \Gamma L^{m}) \right) \\ &\subseteq \left(((S\Gamma S) \Gamma R^{n} \Gamma R^{m}) \Gamma (S\Gamma S\Gamma L^{n} \Gamma L^{m}) \right) \\ &= \left((S\Gamma S\Gamma R^{n} \Gamma R^{m}) \Gamma (S\Gamma S\Gamma L^{n} \Gamma L^{m}) \right) \\ &= \left((S\Gamma S\Gamma R^{n} \Gamma R^{m}) \Gamma (S\Gamma S\Gamma L^{n} \Gamma L^{m}) \right) \end{aligned}$$

- L^m
 - $(S\Gamma R^{m+n}\Gamma S\Gamma L^{m+n}].$
- -)]

Therefore,

$$(S\Gamma R^{m+n}\Gamma S\Gamma L^{m+n}] = ((S\Gamma R^{m+n-1}\Gamma R)\Gamma(S\Gamma L^{m+n-1}\Gamma L))$$

$$= ((S\Gamma (R^{m+n-2}\Gamma R\Gamma R))\Gamma(S\Gamma (S\Gamma (L^{m+n-2}\Gamma L\Gamma L))))$$

$$\subseteq (S\Gamma (R\Gamma R\Gamma R^{m+n-2}))\Gamma(S\Gamma (L\Gamma L\Gamma L^{m+n-2})))$$

$$\subseteq ((S\Gamma S\Gamma R\Gamma R^{m+n-2})\Gamma (S\Gamma L\Gamma S\Gamma L^{m+n-2}))$$

$$\subseteq ((R^{m+n-2}\Gamma S\Gamma R\Gamma S)\Gamma (L\Gamma S\Gamma L^{m+n-2}))]$$

$$\subseteq ((R^{m+n-2}\Gamma S\Gamma (R\Gamma S))\Gamma (L\Gamma S\Gamma L^{m+n-2}))]$$

$$\subseteq ((R^{m+n-2}\Gamma S\Gamma R\Gamma S)\Gamma (S\Gamma L\Gamma L^{m+n-2}))]$$

$$\subseteq (((R^{m+n-2}\Gamma S\Gamma R)\Gamma (S\Gamma L\Gamma L^{m+n-2}))]$$

$$\subseteq (((R^{m+n-2}\Gamma S\Gamma R))\Gamma (S\Gamma L\Gamma L^{m+n-2}))]$$

$$\subseteq$$
 (*R* $\Gamma R^{m+n-2}\Gamma S\Gamma L^{m+n-1}$]

$$\subseteq (S\Gamma R^{m+n-1}\Gamma S\Gamma L^{m+n-1}].$$

So,

$$\begin{array}{lcl} (((R\Gamma L)^{m}]\Gamma S\Gamma ((R\Gamma L)^{n}]] & \subseteq & (S\Gamma R^{m+n}\Gamma S\Gamma L^{m+n}] \\ & \subseteq & (S\Gamma R^{m+n-1}\Gamma S\Gamma L^{m+n-1}] \\ & \subseteq & \cdots \\ & \subseteq & (S\Gamma R\Gamma S\Gamma L] \subseteq (S\Gamma R\Gamma (S\Gamma L)] \\ & \subseteq & (S\Gamma R\Gamma L] \subseteq ((S\Gamma S\Gamma R)\Gamma L] \\ & = & ((R\Gamma S\Gamma S)\Gamma L] \subseteq (((R\Gamma S)\Gamma S)\Gamma L] \subseteq (R\Gamma L]. \end{array}$$

Furthermore,

 $\begin{aligned} (R\Gamma L]\Gamma(R\Gamma L] &\subseteq (R\Gamma L\Gamma R\Gamma L] = ((L\Gamma R\Gamma L\Gamma R)\Gamma L] \\ &= ((R\Gamma R\Gamma L)\Gamma L] = ((R\Gamma R\Gamma L)\Gamma L] \subseteq (((R\Gamma S]\Gamma S)\Gamma L] \subseteq (R\Gamma L]. \end{aligned}$

This proves that $(R\Gamma L]$ is an (m, n)-ideal of S.

Theorem 2.3. Suppose (S, Γ, \cdot, \leq) is a unitary ordered LA- Γ -semigroup with zero. If *S* has the property that it contains no non-zero nilpotent (m, n)-ideals and if R(L) is a 0-minimal right(left) ideal of *S*, then either $(R\Gamma L] = \{0\}$ or $(R\Gamma L]$ is a 0-minimal (m, n)-ideal of *S*.

Proof. Let R(L) is a 0-minimal right (left) ideal of *S* such that $(R\Gamma L] \neq \{0\}$, then by lemmama 2.1, $(R\Gamma L]$ is an (m, n)-ideal of *S*. Now we prove that $(R\Gamma L]$ is a 0-minimal (m, n)-ideal of *S*. Suppose $\{0\} \neq M \subseteq (R\Gamma L]$ is an (m, n)-ideal of *S*. We see that as $(R\Gamma L] \subseteq R \cap L$, we obtain $M \subseteq R \cap L$. Therefore, $M \subseteq R$ and $M \subseteq L$. By the assumption, $M^m \neq \{0\}$ and $M^n \neq \{0\}$. As $\{0\} \neq (S\Gamma M^m] = (M^m \Gamma S]$, so

$$\{0\} \neq (M^m \Gamma S] \subseteq (R^m \Gamma S] = (R^{m-1} \Gamma R \Gamma S] = (S \Gamma R \Gamma R^{m-1}]$$
$$= (S \Gamma R \Gamma R^{m-2} \Gamma R] \subseteq (R \Gamma R^{m-2} \Gamma (R \Gamma S)]$$
$$\subseteq (R \Gamma R^{m-2} \Gamma R] = (R^m],$$

and

$$\begin{array}{rcl} (R^{m}] &\subseteq & S\Gamma(R^{m}] \subseteq (S\Gamma R^{m}] \subseteq (S\Gamma S\Gamma R\Gamma R^{m-1}] \\ &\subseteq & (R^{m-1}\Gamma R\Gamma S] = ((R^{m-2}\Gamma R\Gamma R)\Gamma S] \\ &= & ((R\Gamma R\Gamma R^{m-2})\Gamma S] \subseteq (S\Gamma R^{m-2}\Gamma (R\Gamma S)] \\ &\subseteq & (S\Gamma R^{m-2}\Gamma R] \subseteq ((S\Gamma S\Gamma R^{m-3}\Gamma R)\Gamma R] \\ &= & ((R\Gamma R^{m-3}\Gamma S\Gamma S)\Gamma R] \subseteq (((R\Gamma S)\Gamma R^{m-3}\Gamma S)\Gamma R] \\ &\subseteq & (R\Gamma R^{m-3}\Gamma S)\Gamma R] \subseteq ((R^{m-3}\Gamma (R\Gamma S))\Gamma R] \\ &\subseteq & (R^{m-3}\Gamma R\Gamma R] = (R^{m-1}], \end{array}$$

so, $\{0\} \neq (M^m \Gamma S] \subseteq (R^m] \subseteq (R^{m-1}] \subseteq \cdots \subseteq (R] = R$. It is obvious to see that $(M^m \Gamma S]$ is a right ideal of S. Therefore, $(M^m \Gamma S] = R$ as R is o-minimal. Moreover,

.

$$\{0\} \neq (S\Gamma M^n] \subseteq (S\Gamma L^n] = (S\Gamma L^{n-1}\Gamma L] \subseteq (L^{n-1}\Gamma(S\Gamma L)] \subseteq (L^{n-1}\Gamma L) = (L^n],$$

and

$$\begin{aligned} (L^n] &\subseteq (S\Gamma L^n] \subseteq (S\Gamma S\Gamma L\Gamma L^{n-1}] \subseteq (L^{n-1}\Gamma L\Gamma S) \\ &= ((L^{n-2}\Gamma L\Gamma L)\Gamma S] \subseteq ((S\Gamma L]\Gamma L^{n-2}\Gamma L] \\ &\subseteq (L\Gamma L^{n-2}\Gamma L] \subseteq (L^{n-2}\Gamma S\Gamma L) \\ &\subseteq (L^{n-2}\Gamma L] = (L^{n-1}] \subseteq \cdots \subseteq (L], \end{aligned}$$

so, $\{0\} \neq (S\Gamma M^n] \subseteq (L^n] \subseteq (L^{n-1}] \subseteq \cdots \subseteq (L] = L$. It is obvious to see that $(S\Gamma M^n]$ is a left ideal of S. Therefore, $(S\Gamma M^n] = L$ as L is 0-minimal. So,

$$M \subseteq (R\Gamma L] = ((M^m \Gamma S) \Gamma(S\Gamma M^n)] = (M^n \Gamma S\Gamma S\Gamma M^m)$$

= $((S\Gamma M^m \Gamma S) \Gamma M^n] \subseteq ((S\Gamma M^m \Gamma S\Gamma S) \Gamma M^n]$
 $\subseteq ((S\Gamma M^m \Gamma S) \Gamma M^n] = ((M^m \Gamma S\Gamma S) \Gamma M^n)$
 $\subset (M^m \Gamma S\Gamma M^n) \subseteq M.$

Therefore, $M = (R\Gamma L]$. It implies that $(R\Gamma L]$ is a 0-minimal (m, n)-ideal of S.

It is easy to see that if (S, Γ, \cdot, \leq) is a unitary ordered *LA*- Γ -semigroup and $M \subseteq S$, then $(S\Gamma M^2)$ and $(S\Gamma M)$ are the left and the right ideals of S respectively.

Theorem 2.4. Suppose (S, Γ, \cdot, \leq) is a unitary ordered LA- Γ -semigroup with zero 0. If R(L) is a 0-minimal right (left) ideal of S, then either $(R^m \Gamma L^n] = \{0\} \text{ or } (R^m \Gamma L^n] \text{ is a 0-minimal } (m,n)\text{-ideal of S}.$

Proof. Let R(L) is a 0-minimal right (left) ideal of S such that $(R^m \Gamma L^n] \neq \{0\}$, then $R^m \neq \{0\}$ and $L^n \neq \{0\}$. Hence $\{0\} \neq R^m \subseteq R$ and $\{0\} \neq L^n \subseteq L$, which proves that $R^m = R$ and $L^n = L$ as R(L) is a 0-minimal right (left) ideal of S. So by Lemma 2.1, $(R^m \Gamma L^n] = (R \Gamma L)$ is an (m,n)-ideal of S. Now we prove that $(R^m \Gamma L^n)$ is a 0-minimal (m,n)-ideal of S. Suppose $\{0\} \neq M \subseteq (R^m \Gamma L^n] = (R \Gamma L) \subseteq R \cap L$ is an (m,n)-ideal of S. Therefore,

$$\{0\} \neq (S\Gamma M^2] \subseteq (M\Gamma M\Gamma S\Gamma S] = (M\Gamma S\Gamma M\Gamma S] \subseteq ((R\Gamma S]\Gamma (R\Gamma S)] \subseteq R,$$

and

$$\{0\} \neq (S\Gamma M] \subseteq (S\Gamma L] \subseteq L$$

Therefore, $R = (S\Gamma M^2)$ and $(S\Gamma M) = L$ as R(L) is a 0-minimal right (left) ideal of S. As

$$(S\Gamma M^2] \subseteq (M\Gamma M\Gamma S\Gamma S] = (S\Gamma M\Gamma M] \subseteq (S\Gamma M]$$

Thus,

 $M \subseteq (R^m \Gamma L^n] \subseteq (((S \Gamma M)^m] \Gamma ((S \Gamma M)^n]] = ((S \Gamma M)^m \Gamma (S \Gamma M)^n]$ $= (S^m \Gamma M^m \Gamma S^n \Gamma M^n] = (S \Gamma S \Gamma M^m \Gamma M^n] \subseteq (M^n \Gamma M^m \Gamma S]$ $\subseteq ((S\Gamma S)\Gamma(M^{m-1}\Gamma M)\Gamma M^n] = ((M\Gamma M^{m-1})\Gamma(S\Gamma S)\Gamma M^n]$ \subset $(M^m \Gamma S \Gamma M^n] \subset M,$

So $M = (R^m \Gamma L^n]$, which implies that $(R^m \Gamma L^n]$ is a 0-minimal (m, n)-ideal of S.

.....

Theorem 2.5. Suppose (S, Γ, \cdot, \leq) is a unitary ordered LA- Γ -semigroup. Suppose A is an (m, n)-ideal of S and B is an (m, n)-ideal of A such that B is idempotent. Then B is an (m,n)-ideal of S.

Proof. It is easy to see that B is an LA-sub-semigroup of S. Furthermore, as $(A^m \Gamma S \Gamma A^n] \subseteq A$ and $(B^m \Gamma A \Gamma B^n] \subseteq B$, then

$$\begin{split} (B^m \Gamma S \Gamma B^n] &\subseteq ((B^m \Gamma B^m \Gamma S) \Gamma (B^n \Gamma B^n)] = ((B^n \Gamma B^n) \Gamma (S \Gamma B^m \Gamma B^m)] \\ &= (((S \Gamma B^m \Gamma B^m) \Gamma B^n) \Gamma B^n] \subseteq (((B^n \Gamma B^m \Gamma B^m) \Gamma (S \Gamma S)) \Gamma B^n] \\ &= (((B^m \Gamma B^n \Gamma B^m) \Gamma (S \Gamma S)) \Gamma B^n] = ((S \Gamma (B^n \Gamma B^m \Gamma B^m)) \Gamma B^n] \\ &= ((S \Gamma (B^n \Gamma B^m \Gamma B^m \Gamma B)) \Gamma B^n] = ((S \Gamma (B \Gamma B^{m-1} \Gamma B^m \Gamma B^n)) \Gamma B^n] \\ &= ((S \Gamma (B^m \Gamma B^m \Gamma B^n)) \Gamma B^n] \subseteq ((B^m \Gamma (S \Gamma S \Gamma B^m \Gamma B^n)) \Gamma B^n] \\ &= ((B^m \Gamma (B^n \Gamma B^m \Gamma S \Gamma)) \Gamma B^n] \subseteq ((B^m \Gamma (S \Gamma S \Gamma B^m \Gamma B^n)) \Gamma B^n] \\ &\subseteq ((B^m ((S \Gamma S \Gamma B^{m-1} \Gamma B) \Gamma B^n)) \Gamma B^n] \subseteq ((B^m \Gamma (B^m \Gamma S \Gamma B^n)) \Gamma B^n] \\ &\subseteq ((B^m (A^m \Gamma S \Gamma A^n]) \Gamma B^n] \subseteq (B^m \Gamma A \Gamma B^n) \subseteq B, \end{split}$$

which implies that *B* is an (m, n)-ideal of *S*.

Lemma 2.6. Suppose (S, Γ, \cdot, \leq) is a unitary ordered LA- Γ -semigroup. Then $\langle s \rangle_{(m,n)} = (s^m \Gamma S \Gamma s^n]$ is an (m, n)-ideal of S.

1117

Proof. Let S be a unitary ordered LA- Γ -semigroup. It is obvious to see that $(\langle s \rangle_{(m,n)})^n \subseteq \langle s \rangle_{(m,n)}$. Now

 $m = \alpha = \alpha$

$$\begin{aligned} (((~~_{(m,n)})^{m}\Gamma S)\Gamma(~~_{(m,n)})^{n}] &= (((((s^{m}\Gamma S)\Gamma s^{n}))^{m}]\Gamma S\Gamma(((s^{m}\Gamma S)\Gamma s^{n})^{n}]] \\ &\subseteq (((s^{m}\Gamma S)\Gamma s^{n})^{m}\Gamma S\Gamma((s^{m}\Gamma S)\Gamma s^{n})^{n}] \\ &= (((s^{mm}\Gamma S^{m})\Gamma s^{mn})\Gamma S\Gamma(s^{mn}\Gamma S^{n})\Gamma s^{mn}] \\ &= (s^{nn}\Gamma(s^{nn}\Gamma S^{n})\Gamma S^{mn})\Gamma S^{mn}\Gamma S^{n})\Gamma s^{mn}] \\ &= ((S\Gamma((s^{mm}\Gamma S^{m})\Gamma s^{mn})\Gamma s^{mn}\Gamma S^{n})\Gamma s^{nn}] \\ &= ((s^{mn}\Gamma (S\Gamma((s^{mm}\Gamma S^{m})\Gamma s^{mn})\Gamma S^{nn})\Gamma s^{nn}] \\ &= ((s^{mn}\Gamma S\Gamma s^{m})\Gamma S^{m})\Gamma s^{mn})\Gamma S^{nn}] \end{aligned}~~~~$$

$$\subseteq$$
 (5 1515] \subseteq (5 1515]

- $= ((s^m \Gamma S \Gamma s^n)^n] \subseteq (((s^m \Gamma S \Gamma s^n))^n]$
- $= ((< s >_{(m,n)})^n] \subseteq (< s >_{(m,n)}],$

Theorem 2.7. Suppose (S, Γ, \cdot, \leq) is a unitary ordered LA- Γ -semigroup and $\langle s \rangle_{(m,n)}$ is an (m,n)-ideal of S. Then the following assertions hold:

(*i*) $((< s >_{(1,0)})^m \Gamma S] = (s^m \Gamma S];$ (ii) $(S\Gamma(< s >_{(0,1)})^n] = (S\Gamma s^n];$ (iii) $((< s >_{(1,0)})^m \Gamma S\Gamma(< s >_{(0,1)})^n] = (s^m \Gamma S\Gamma s^n].$

Proof. (i) Since $\langle s \rangle_{(1,0)} = (s\Gamma S]$, we obtain

$$\begin{aligned} \langle (\langle s \rangle_{(1,0)})^m \Gamma S \rangle &= ((\langle s \Gamma S \rangle)^m \Gamma S \rangle \subseteq ((\langle s \Gamma S \rangle^m \Gamma S \rangle \\ &= (\langle s \Gamma S \rangle)^{m-1} \Gamma(s \Gamma S) \Gamma S \rangle = (S \Gamma(s \Gamma S) \Gamma(s \Gamma S)^{m-1} \rangle \\ &\subseteq (\langle s \Gamma S \rangle) \Gamma(s \Gamma S)^{m-1} \rangle = (\langle s \Gamma S \rangle) \Gamma(s \Gamma S)^{m-2} \Gamma(s \Gamma S) \rangle \\ &= (\langle s \Gamma S \rangle)^{m-2} \Gamma(s \Gamma S \Gamma S \Gamma S \Gamma S \rangle \rangle = (\langle s \Gamma S \rangle)^{m-2} \Gamma(s^2 \Gamma S) \rangle \\ &= \cdots = (\langle s \Gamma S \rangle)^{m-(m-1)} \Gamma(s^{m-1} \Gamma S) \rangle \text{ if m is odd} \\ &= \cdots = (\langle s^m \Gamma S \rangle) \Gamma(s \Gamma S)^{m-(m-1)} \rangle \text{ if m is even.} \\ &= (s^m \Gamma S). \end{aligned}$$

(ii) and (iii) can be proved similarly.

Conclusion: The notion of LA-F-semigroups has been widely studied algebraic structures and it is a very good field of study for future research work. In this paper, we studied the notion of (m,n)- Γ -ideals in LA- Γ -semigroups. We obtained that if $(S, \Gamma, \cdot, <)$ is a unitary ordered LA- Γ -semigroup with zero 0 and S satisfies the condition that it contains no non-zero nilpotent (m, n)- Γ -ideals and if R(L) is a 0-minimal right (left) Γ -ideal of S, then either ($R\Gamma L$] = {0} or ($R\Gamma L$] is a 0-minimal (m, n)- Γ -ideal of S. Also, we showed that if (S, Γ, \cdot, \leq) is a unitary ordered LA- Γ -semigroup; A is an (m, n)- Γ -ideal of S and B is an (m, n)- Γ -ideal of A such that B is idempotent, then B is an (m, n)- Γ -ideal of S.

References

- [1] Abul Basar and M. Y. Abbasi, Some Properties of Q-Fuzzy Ideals in po-F-Semigroups, Palestine Journal of Mathematics, 7(2)(2018), 505-511.
- [2] Abul Basar, A note on intra-regular ordered Γ-semigroups with invo-lution, Eurasian Bulletin of Mathematics, 1(2) (2018), 78-84.
 [3] Abul Basar and M. Y. Abbasi, On covered Γ-ideals in Γ-semigroups, Global Journal of Pure and Applied Mathematics, 13(5)(2017), 1465–1472.
- Abul Basar and M. Y. Abbasi, On generalized bi-Γ-ideals in Γ-semigroups, Quasigroups And Related Systems, 23(2015), 181-186. [4]
- [5] F. Yousafzai, A. Khan and B. Davvaz, On fully regular AG-groupoids, Afrika Mathematica, 25(2014), 449-459.
- [6] F. Yousafzai, A. Khan, and A. Iampan, On (m,n)-ideals of an ordered Abel-Grassmann Groupoid, Korean J. Math., 3(23)(2015), 357-370.
- [7] M. Akram, N. Yaqoob and M. Khan, On (m,n)-ideals in LA-semigroups, Applied mathematical Sciences, 7(2013), 2187 2191.
- [8] M. A. Kazim and M. Naseeruddin, On almost semigroups, The Alig. Bull. Math., 2 (1972), 1-7.
 [9] M. Y. Abbasi and Abul Basar, A note on ordered bi-Γ-ideals in intra-regular ordered Γ-semigroups, Afrika Mathematica, (27)(7-8) (2016), 1403–1407.
- [10] M. Y. Abbasi and Abul Basar, On Generalizations of ideals in LA-Γ-semihypergroups, Southeast Asian Bulletin of Mathematics, (39) (2015), 1-12. [11] M. Y. Abbasi and A. Basar, Some properties of ordered 0-minimal (0, 2)-bi-r-ideals in po-r-semigroups, Hacettepe Journal of Mathematics and
- Statistics, 2(44)(2015), 247–254. [12] M. Y. Abbasi and Abul Basar, Weakly prime ideals in involution po-Γ-semigroups, Kyungpook Mathematical Journal, 54(2014), 629-638.
- [13] N. Yaqoob and M. Aslam, Prime (m,n)bi-Γ-hyperideals in Γ-semihypergroups, Applied Mathematics and Information Sciences, 8(5) (2014), 2243-2249.
- [14] N. Yaqoob, M. Aslam, B. Davvaz and A. B. Saeid, On rough (m,n)bi-Γ-hyperideals in Γ-semigroups, UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 1 (75) (2013), 119-128.
- [15] N. Yaqoob and R. Chinram, On prime (m,n)bi-ideals and rough prime (m,n)bi-ideals in semigroups, Far East Journal of Mathematical Sciences, 62(2) (2012), 145-159.
- [16] Q. Mushtaq and S. M. Yusuf, On locally associative LA-semigroups, J. Nat. Sci. Math., (19)(1979), 57-62.
- [17] Satyanarayana Bhavanari, M. Y. Abbasi, Abul Basar and Syam Prasad Kuncham, Some Results on Abstract Affine Gamma-Near-Rings, International Journal of Pure and Applied Mathematical Sciences, 7(1) (2014), 43-49
- [18] T. Shah and I. Rehman, On I⁻ideals and bi-I⁻ideals in I⁻AG-groupoid, International Journal of Algebra, 6(4)(2010), 267-276.
 [19] V. Amjad, K. Hila and F. Yousafzai, Generalized hyperideals in locally associative left almost semihypergroups, New York Journal of Mathematics,
- (20)(2014), 1063-1076.
 [20] W. Khan, F. Yousafzai and M. Khan, On (m,n)-ideals of left almost semigroups, European Journal of Pure and Applied Mathematics, 9(3)(2016), 277-291.