On the New Wirtinger Type Inequalities

Mehmet Zeki Sarıkaya

1Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey
*Corresponding author E-mail: sarikayamz@gmail.com

Abstract

The aim of this paper to establish some generalized and refinement of Wirtinger type inequality.

Keywords: Wirtinger inequality, Hölder’s inequality.

2010 Mathematics Subject Classification: 26D15, 26A51, 26A33, 26A42.

1. Introduction

The classical Wirtinger inequality is given by

\[\int_a^b (f(x))^2 \, dx \leq \int_a^b (f'(x))^2 \, dx \] \hspace{2cm} (1.1)

for any \(f \in C^1([a,b]) \) satisfying \(f(a) = f(b) = 0 \) in [6]. Then, Beesack extended the inequality (1.1) and proved that

\[\int_a^b (f(x))^4 \, dx \leq \frac{4}{3} \int_a^b (f'(x))^4 \, dx \]

for any \(f \in C^2([a,b]) \) satisfying \(f(a) = f(b) = 0 \) in [5].

One of the most impressive issues in inequality theory is integral inequalities involving a function and its derivative. Wirtinger inequality in this area of the theorems has been a particular attraction due to close coupling to linear differential equations and differential geometry. Wirtinger’s inequality compares the integral of a square of a function with that of a square of its first derivative. Over the last twenty years a large number of papers have been appeared in the literature which deals with the simple proofs, various generalizations and discrete analogues of Wirtinger’s inequality and its generalizations, see [1]-[11]. The purpose of this paper is to establish some generalized and refinement of Wirtinger type inequalities.

2. Main Results

Now, we present the main results:

Theorem 2.1. Let \(f \in C^4([a,b]) \) with \(f(a) = f(b) = 0 \) and \(f' \in L^2[a,b] \), then, we have the following inequality

\[\int_a^b |f(x)|^2 \, dx \leq \frac{(b-a)^2}{6} \int_a^b |f'(x)|^2 \, dx. \]

Proof. From the hypotheses, we have

\[|f(x)|^2 \leq \left(\int_a^x f'(t) \, dt \right)^2, \quad \text{with} \ f(a) = 0 \]
Then using Fubini’s theorem it follows that

\[[f(x)]^2 \leq \left(\int_a^b f'(t) \, dt \right)^2, \quad \text{with } f(b) = 0. \]

By using the Cauchy-Shwartz inequality, we have

\[[f(x)]^2 \leq (x-a) \int_a^b [f'(t)]^2 \, dt \quad \text{(2.1)} \]

and

\[[f(x)]^2 \leq (b-x) \int_a^b [f'(t)]^2 \, dt. \quad \text{(2.2)} \]

By integrating both sides of the inequality (2.1) from \(a \) to \(a\lambda + (1-\lambda)b \) for \(\lambda \in [0,1] \), we get

\[
\int_a^{a\lambda + (1-\lambda)b} [f(x)]^2 \, dx \leq \int_a^{a\lambda + (1-\lambda)b} \int_a^b (x-a) [f'(t)]^2 \, dt \, dx.
\]

Then using Fubini’s theorem it follows that

\[
\int_a^{a\lambda + (1-\lambda)b} [f(x)]^2 \, dx \leq \frac{1}{2} \int_a^{a\lambda + (1-\lambda)b} \left((1-\lambda)^2 (b-a)^2 - (t-a)^2 \right) \int_a^b [f'(t)]^2 \, dt.
\]

By the change of variable \(t = au + (1-u)b \), on the right hand sides integrals, we get

\[
\int_a^{a\lambda + (1-\lambda)b} [f(x)]^2 \, dx \leq \frac{(b-a)^3}{2} \int_a^{a\lambda + (1-\lambda)b} \left[(1-\lambda)^2 (b-a)^2 - (u-a)^2 \right] \left[f'(au + (1-u)b) \right]^2 \, du.
\]

Similarly, by integrating both sides of the inequality (2.2) from \(a\lambda + (1-\lambda)b \) to \(b \) for \(\lambda \in [0,1] \), we get

\[
\int_{a\lambda + (1-\lambda)b}^b [f(x)]^2 \, dx \leq \int_{a\lambda + (1-\lambda)b}^b \int_a^b (b-x) [f'(t)]^2 \, dt \, dx.
\]

Then Fubini’s theorem it follows that

\[
\int_{a\lambda + (1-\lambda)b}^b [f(x)]^2 \, dx \leq \frac{1}{2} \int_{a\lambda + (1-\lambda)b}^b \left[\lambda^2 (b-a)^2 - (t-b)^2 \right] \int_a^b [f'(t)]^2 \, dt.
\]

By the change of variable \(t = au + (1-u)b \), on the right hand sides integrals, we get

\[
\int_{a\lambda + (1-\lambda)b}^b [f(x)]^2 \, dx \leq \frac{(b-a)^3}{2} \int_{a\lambda + (1-\lambda)b}^b \left[\lambda^2 - u^2 \right] \left[f'(au + (1-u)b) \right]^2 \, du.
\]

Adding (2.3) and (2.4), it follows that

\[
\int_a^b [f(x)]^2 \, dx \leq \frac{(b-a)^3}{2} \left\{ \int_0^1 \left[(1-\lambda)^2 - (1-u)^2 \right] \left[f'(au + (1-u)b) \right]^2 \, du \right\} dx
\]

\[
+ \frac{(b-a)^3}{2} \int_0^1 \left[\lambda^2 - u^2 \right] \left[f'(au + (1-u)b) \right]^2 \, du.
\]

By integrating both sides of the inequality from 0 to 1 with respect to \(\lambda \), we get

\[
\int_a^b [f(x)]^2 \, dx \leq \frac{(b-a)^3}{2} \left\{ \int_0^1 \left[(1-\lambda)^2 - (1-u)^2 \right] \left[f'(au + (1-u)b) \right]^2 \, dud\lambda \right\}
\]

\[
+ \frac{(b-a)^3}{2} \int_0^1 \left[\lambda^2 - u^2 \right] \left[f'(au + (1-u)b) \right]^2 \, dud\lambda.
\]
By using change of order of the integrals, we have
\[
\int_{a}^{b} |f(x)|^2 \, dx \leq \frac{(b-a)^3}{2} \int_{0}^{1} \left[(1-\lambda)^2 - (1-u)^2 \right] \left[f'(au + (1-u)b) \right]^2 \, d\lambda \, du
\]
\[
+ \frac{(b-a)^3}{2} \int_{0}^{1} \left[\lambda^2 - u^2 \right] \left[f'(au + (1-u)b) \right]^2 \, d\lambda \, du
\]
\[
= \frac{(b-a)^3}{6} \int_{0}^{1} \left[f'(au + (1-u)b) \right]^2 \, du,
\]
which is the desired inequality.

Theorem 2.2. Let \(f \in C^1([a,b]) \) with \(f(a) = f(b) = 0 \), \(p > 1 \), and \(f' \in L_p[a,b] \), then, we have the following inequality
\[
\int_{a}^{b} |f(x)|^p \, dx \leq \frac{(b-a)^{p-1}}{2^{p-1}p} \int_{a}^{b} |f'(x)|^p \, dx.
\]
\[(2.5)\]

Proof. From the hypotheses, we have
\[
|f(x)|^p \leq \left(\int_{a}^{b} |f'(t)| \, dt \right)^p, \quad \text{with } f(a) = 0
\]
\[
|f(x)|^p \leq \left(\int_{a}^{b} |f'(t)| \, dt \right)^p, \quad \text{with } f(b) = 0,
\]
and hence from Hölder’s inequality with indices \(p \) and \(\frac{p}{p-1} \), it follows that
\[
|f(x)|^p \leq (x-a)^{p-1} \int_{a}^{x} |f'(t)|^p \, dt
\]
\[(2.6)\]
and
\[
|f(x)|^p \leq (b-x)^{p-1} \int_{x}^{b} |f'(t)|^p \, dt.
\]
\[(2.7)\]

By integrating both sides of the inequality (2.6) from \(a \) to \(a\lambda + (1-\lambda) b \) for \(\lambda \in [0,1] \), we get
\[
\int_{a}^{a\lambda + (1-\lambda) b} |f(x)|^p \, dx
\]
\[
\leq \int_{a}^{a\lambda + (1-\lambda) b} (x-a)^{p-1} \int_{a}^{x} |f'(t)|^p \, dt \, dx
\]
\[
= \frac{(x-a)^p}{p} |f'(x)|_{a\lambda + (1-\lambda) b}^{a\lambda + (1-\lambda) b} - \frac{1}{p} \int_{a}^{a\lambda + (1-\lambda) b} (x-a)^p |f'(x)|^p \, dx
\]
\[
\leq \frac{(1-\lambda)^p (b-a)^p}{p} |f'(a\lambda + (1-\lambda) b)|^p
\]
Similarly, by integrating both sides of the inequality (2.7) from \(a\lambda + (1-\lambda) b \) to \(b \) for \(\lambda \in [0,1] \), we get
\[
\int_{a\lambda + (1-\lambda) b}^{b} |f(x)|^p \, dx
\]
\[
\leq \int_{a\lambda + (1-\lambda) b}^{b} (b-x)^{p-1} \int_{x}^{b} |f'(t)|^p \, dt \, dx
\]
\[
= \frac{(b-x)^p}{p} |f'(x)|_{a\lambda + (1-\lambda) b}^{b} - \frac{1}{p} \int_{a\lambda + (1-\lambda) b}^{b} (b-x)^p |f'(x)|^p \, dx
\]
\[
\leq \frac{\lambda^p (b-a)^p}{p} |f'(a\lambda + (1-\lambda) b)|^p.
\]
Adding (2.8) and (2.9), it follows that
\[\int_a^b |f(x)|^p \, dx \leq \frac{(b-a)^p}{p} |(1-\lambda)^p + \lambda^p| \left| f'(a\lambda + (1-\lambda)b) \right|^p. \]

By integrating both sides of the inequality from 0 to 1 with respect to \(\lambda \), we get
\[\int_a^b |f(x)|^p \, dx \leq \frac{(b-a)^p}{p} \int_0^1 |(1-\lambda)^p + \lambda^p| \left| f'(a\lambda + (1-\lambda)b) \right|^p \, d\lambda. \]

It is not difficult to reveal that the function
\[h(u) = (1-\lambda)^p + \lambda^p \]
for all \(\lambda \in [0, 1] \) attains its maximum \(\frac{1}{2} \) at the point \(\lambda = \frac{1}{2} \in [0, 1] \) and using the change of variable \(u = a\lambda + (1-\lambda)b \), which is the same as (2.5). This completes the proof. \(\square \)

Theorem 2.3. Let \(f, g \in C^1([a,b]) \) with \(f(a) = f(b) = 0 \), \(g(a) = g(b) = 0 \), and \(f', g' \in L^2[a,b] \), then, we have the following inequality
\[\int_a^b |f(x)||g(x)| \, dx \leq \frac{(b-a)^2}{8} \int_a^b \left[|f'(x)|^2 + |g'(x)|^2 \right] \, dx. \] (2.10)

Proof. From the hypotheses, we have
\[f(x) = \frac{1}{2} \left(\int_a^x f'(t) \, dt - \int_x^b f'(t) \, dt \right) \] (2.11)
and
\[g(x) = \frac{1}{2} \left(\int_a^x g'(t) \, dt - \int_x^b g'(t) \, dt \right). \] (2.12)

Using the properties of modulus we have
\[|f(x)| \leq \frac{1}{2} \left(\int_a^b |f'(t)| \, dt \right), \] (2.13)
\[|g(x)| \leq \frac{1}{2} \left(\int_a^b |g'(t)| \, dt \right). \] (2.14)

Multiplying the left sides and right sides of (2.13) and (2.14) and then integrating both sides of the inequality from \(a \) to \(b \) with respect to \(x \), we get
\[\int_a^b |f(x)||g(x)| \, dx \leq \frac{(b-a)^2}{4} \left(\int_a^b |f'(t)|^2 \, dt \right) \left(\int_a^b |g'(t)|^2 \, dt \right). \]

By using the Cauchy-Schwartz inequality, and then using elementary inequality \(\sqrt{mn} \leq \frac{1}{2}(m+n) \), \(m,n \geq 0 \), we have
\[\int_a^b |f(x)||g(x)| \, dx \leq \frac{(b-a)^2}{4} \left(\int_a^b |f'(t)|^2 \, dt \right)^{\frac{1}{2}} \left(\int_a^b |g'(t)|^2 \, dt \right)^{\frac{1}{2}} \leq \frac{(b-a)^2}{8} \int_a^b \left[|f'(x)|^2 + |g'(x)|^2 \right] \, dx \]
which is the desired inequality. \(\square \)

Remark 2.4. By taking \(f = g \) and \(f' = g' \) in Theorem 2.3, we have
\[\int_a^b |f(x)|^2 \, dx \leq \frac{(b-a)^2}{4} \int_a^b |f'(x)|^2 \, dx. \]
References