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Abstract

The aim of this paper to establish some generalized and refinement of Wirtinger type inequality.
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1. Introduction

The classical Wirtinger inequality is given by

b∫
a

( f (x))2 dx≤
b∫

a

(
f ′(x)

)2 dx (1.1)

for any f ∈C1([a,b]) satisfying f (a) = f (b) = 0 in [6]. Then, Beesack extended the inequality (1.1) and proved that

b∫
a

( f (x))4 dx≤ 4
3

b∫
a

(
f ′(x)

)4 dx

for any f ∈C2([a,b]) satisfying f (a) = f (b) = 0 in [5].
One of the most impressive issues in inequality theory is integral inequalities involving a function and its derivative. Wirtinger inequality in
this area of the theorems has been a particular attraction due to close coupling to linear differential equations and differential geometry.
Wirtinger’s inequality compares the integral of a square of a function with that of a square of its first derivative. Over the last twenty years
a large number of papers have been appeared in the literature which deals with the simple proofs, various generalizations and discrete
analogues of Wirtinger’s inequality and its generalizations, see [1]-[11]. The purpose of this paper is to establish some generalized and
refinement of Wirtinger type inequalities.

2. Main Results

Now, we present the main results:

Theorem 2.1. Let f ∈C1([a,b]) with f (a) = f (b) = 0 and f ′ ∈ L2 [a,b] , then, we have the following inequality

b∫
a

[ f (x)]2 dx≤ (b−a)2

6

b∫
a

[
f ′(x)

]2 dx.

Proof. From the hypotheses, we have

[ f (x)]2 ≤

 x∫
a

f ′(t)dt

2

, with f (a) = 0
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[ f (x)]2 ≤

 b∫
x

f ′(t)dt

2

, with f (b) = 0.

By using the Cauchy-Shwartz inequality, we have

[ f (x)]2 ≤ (x−a)
x∫

a

[
f ′(t)

]2 dt (2.1)

and

[ f (x)]2 ≤ (b− x)
b∫

x

[
f ′(t)

]2 dt. (2.2)

By integrating both sides of the inequality (2.1) from a to aλ +(1−λ )b for λ ∈ [0,1] , we get

aλ+(1−λ )b∫
a

[ f (x)]2 dx≤
aλ+(1−λ )b∫

a

x∫
a

(x−a)
[

f ′(t)
]2 dtdx.

Then using Fubini’s theorem it follows that

aλ+(1−λ )b∫
a

[ f (x)]2 dx≤ 1
2

aλ+(1−λ )b∫
a

[
(1−λ )2 (b−a)2− (t−a)2

][
f ′(t)

]2 dt.

By the change of variable t = au+(1−u)b,on the right hand sides integrals, we get

aλ+(1−λ )b∫
a

[ f (x)]2 dx (2.3)

≤ (b−a)3

2

1∫
λ

[
(1−λ )2− (1−u)2

][
f ′(au+(1−u)b)

]2 du.

Similarly, by integrating both sides of the inequality (2.2) from aλ +(1−λ )b to b for λ ∈ [0,1] , we get

b∫
aλ+(1−λ )b

[ f (x)]2 dx≤
b∫

aλ+(1−λ )b

b∫
x

(b− x)
[

f ′(t)
]2 dtdx.

Then using Fubini’s theorem it follows that

b∫
aλ+(1−λ )b

[ f (x)]2 dx≤ 1
2

b∫
aλ+(1−λ )b

[
λ

2 (b−a)2− (b− t)2
][

f ′(t)
]2 dt.

By the change of variable t = au+(1−u)b,on the right hand sides integrals, we get

b∫
aλ+(1−λ )b

[ f (x)]2 dx≤ (b−a)3

2

λ∫
0

[
λ

2−u2
][

f ′(au+(1−u)b))
]2 du. (2.4)

Adding (2.3) and (2.4), it follows that

b∫
a

[ f (x)]2 dx ≤ (b−a)3

2

1∫
λ

[
(1−λ )2− (1−u)2

][
f ′(au+(1−u)b)

]2 du

+
(b−a)3

2

λ∫
0

[
λ

2−u2
]∣∣ f ′(au+(1−u)b))

∣∣2 du.

By integrating both sides of the inequality from 0 to 1 with respect to λ , we get

b∫
a

[ f (x)]2 dx ≤ (b−a)3

2

1∫
0

1∫
λ

[
(1−λ )2− (1−u)2

][
f ′(au+(1−u)b)

]2 dudλ

+
(b−a)3

2

1∫
0

λ∫
0

[
λ

2−u2
][

f ′(au+(1−u)b))
]2 dudλ .
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By using change order of the integrals, we have

b∫
a

[ f (x)]2 dx ≤ (b−a)3

2

1∫
0

u∫
0

[
(1−λ )2− (1−u)2

][
f ′(au+(1−u)b)

]2 dλdu

+
(b−a)3

2

1∫
0

1∫
u

[
λ

2−u2
][

f ′(au+(1−u)b))
]2 dλdu

=
(b−a)3

6

1∫
0

[
f ′(au+(1−u)b))

]2 du,

which is the desired inequality.

Theorem 2.2. Let f ∈C1([a,b]) with f (a) = f (b) = 0, p > 1, and f ′ ∈ Lp [a,b] , then, we have the following inequality

b∫
a

| f (x)|p dx≤ (b−a)p−1

2p−1 p

b∫
a

∣∣ f ′(x)∣∣p dx. (2.5)

Proof. From the hypotheses, we have

| f (x)|p ≤

 x∫
a

∣∣ f ′(t)∣∣dt

p

, with f (a) = 0

| f (x)|p ≤

 b∫
x

∣∣ f ′(t)∣∣dt

p

, with f (b) = 0.

and hence from Hölder’s inequality with indices p and p
p−1 , it follows that

| f (x)|p ≤ (x−a)p−1
x∫

a

∣∣ f ′(t)∣∣p dt (2.6)

and

| f (x)|p ≤ (b− x)p−1
b∫

x

∣∣ f ′(t)∣∣p dt. (2.7)

By integrating both sides of the inequality (2.6) from a to aλ +(1−λ )b for λ ∈ [0,1] , we get

aλ+(1−λ )b∫
a

| f (x)|p dx (2.8)

≤
aλ+(1−λ )b∫

a

(x−a)p−1
x∫

a

∣∣ f ′(t)∣∣p dtdx

=
(x−a)p

p

∣∣ f ′(x)∣∣p∣∣∣∣aλ+(1−λ )b

a
− 1

p

aλ+(1−λ )b∫
a

(x−a)p ∣∣ f ′(x)∣∣p dx

≤ (1−λ )p (b−a)p

p

∣∣ f ′(aλ +(1−λ )b)
∣∣p

Similarly, by integrating both sides of the inequality (2.7) from aλ +(1−λ )b to b for λ ∈ [0,1] , we get

b∫
aλ+(1−λ )b

| f (x)|p dx (2.9)

≤
b∫

aλ+(1−λ )b

(b− x)p−1
b∫

x

∣∣ f ′(t)∣∣p dtdx

=
(b− x)p

p

∣∣ f ′(x)∣∣p∣∣∣∣b
aλ+(1−λ )b

− 1
p

b∫
aλ+(1−λ )b

(b− x)p ∣∣ f ′(x)∣∣p dx

≤ λ p (b−a)p

p

∣∣ f ′(aλ +(1−λ )b)
∣∣p .
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Adding (2.8) and (2.9), it follows that

b∫
a

| f (x)|p dx≤ (b−a)p

p
[(1−λ )p +λ

p]
∣∣ f ′(aλ +(1−λ )b)

∣∣p .
By integrating both sides of the inequality from 0 to 1 with respect to λ , we get

b∫
a

| f (x)|p dx≤ (b−a)p

p

1∫
0

[(1−λ )p +λ
p]
∣∣ f ′(aλ +(1−λ )b)

∣∣p dλ .

It is not difficult to reveal that the function

h(u) = (1−λ )p +λ
p

for all λ ∈ [0,1] attains its maximum 1
2p−1 at the point λ = 1

2 ∈ [0,1] and using the change of variable u = aλ +(1−λ )b, which is the same
as (2.5). This completes the proof.

Theorem 2.3. Let f ,g ∈C1([a,b]) with f (a) = f (b) = 0, g(a) = g(b) = 0, and f ′,g′ ∈ L2 [a,b] , then, we have the following inequality

b∫
a

| f (x)| |g(x)|dx≤ (b−a)2

8

b∫
a

[∣∣ f ′(x)∣∣2 + ∣∣g′(x)∣∣2]dx. (2.10)

Proof. From the hypotheses, we have

f (x) =
1
2

 x∫
a

f ′(t)dt−
b∫

x

f ′(t)dt

 (2.11)

and

g(x) =
1
2

 x∫
a

g′(t)dt−
b∫

x

g′(t)dt

 . (2.12)

Using the properties of modulus we have

| f (x)| ≤ 1
2

 b∫
a

∣∣ f ′(t)∣∣dt

 , (2.13)

|g(x)| ≤ 1
2

 b∫
a

∣∣g′(t)∣∣dt

 . (2.14)

Multiplying the left sides and right sides of (2.13) and (2.14) and then integrating both sides of the inequality from a to b with respect to x ,
we get

b∫
a

| f (x)| |g(x)|dx≤ (b−a)
4

 b∫
a

∣∣ f ′(t)∣∣dt

 b∫
a

∣∣g′(t)∣∣dt

 .

By using the Cauchy-Shwartz inequality, and then using elemantary inequality
√

mn≤ 1
2 (m+n), m,n≥ 0, we have

b∫
a

| f (x)| |g(x)|dx ≤ (b−a)2

4

 b∫
a

∣∣ f ′(t)∣∣2 dt


1
2
 b∫

a

∣∣g′(t)∣∣2 dt


1
2

≤ (b−a)2

8

b∫
a

[∣∣ f ′(x)∣∣2 + ∣∣g′(x)∣∣2]dx

which is the desired inequality.

Remark 2.4. By taking f = g and f ′ = g′ in Theorem 2.3, we have

b∫
a

[ f (x)]2 dx≤ (b−a)2

4

b∫
a

[
f ′(x)

]2 dx.
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