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Abstract
In this paper, we investigate the forward kinematics of dual rolling contact motion without
sliding of one dual unit sphere S̃2

m on the fixed sphere S̃2
f along their dual spherical curves,

which correspond to ruled surfaces generated by the straight lines in the real line space
E3. We adopt a dual Darboux frame method to develop instantaneous kinematics of dual
rolling motion. We obtain some new kinematic equations of rolling motion of the moving
sphere S̃2

m with regards to dual unit vectors, dual rolling velocity, and dual geometric
invariants. Namely, the dual translational velocity equation of an arbitrary dual point
and the equation of the dual angular velocity on the moving sphere S̃2

m are derived. The
equation represented by geometric invariants can be handily generalized to suit arbitrary
dual spherical curve on S̃2

m and can be differentiated to any order.
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1. Introduction
The introduction of dual numbers was made by Clifford in 1873 [5]. The set D containing

all dual numbers forms a commutative group under addition. The associative laws hold
for multiplication. Dual numbers are distrubutive and form a commutative ring having
the numbers εa∗ as divisors of zero over the real number field [16]. P. Kotelnikov [9]
and E. Study [14] applied dual numbers to space mechanism by means of the principle
of transference. With respect to this principle, there exists a one-to-one correspondence
between unit vectors of the unit dual sphere S̃2 and the oriented lines of the line space E3.
This means that a spherical curve on the surface of the sphere S̃2 represents a ruled surface
in the line space E3 [16]. Dual Lorentzian space which is a wider algebraic structure than
dual space, the principle of transference between Lorentz spaces and other basic concepts
were defined by Uğurlu [15].

Ruled surfaces are defined as a special type of surfaces that can be created by the
movement of a straight line following a certain path. For this reason, the concepts such as
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dual numbers, dual vectors, dual angle, E. Studys Mapping, etc., are the most fundamen-
tal concepts for the use of dual geometry in engineering. Since ruled surfaces are widely
used in many fields of science such as moving geometry, mathematical physics, kinematics
for modelling the problems and model-based manufacturing of mechanical products, and
Computer Aided Geometric Design (CAGD), dual spherical curves on S̃2 become a signif-
icant research field of robotics and engineering [1,4,10,13,16–18]. Besides, rolling contact
motion is used by many robotic devices such as spherical robots, single wheel robots, and
multi-fingered robotic hands to drive from one position and orientation to another [6].

The contact kinematics is given in two classifications in the Euclidean 3-space E3 :
forward kinematics and inverse kinematics. In forward kinematics of rolling contact, the
geometry of curves on surfaces is used to observe how the moving surface rolls with time.
In inverse kinematics of rolling contact, the desired motion of the moving surface is used to
obtain the rolling direction, rolling rate and compensatory spin rate. For the fundamental
concepts of kinematics, (see, [3, 6–8,11–13]).

The Darboux frame based kinematics of rolling contact motion was studied by Cui and
Dai [6] in Euclidean 3-space. They investigated the forward kinematics of a moving surface
making rolling contact motion on a fixed surface. By using the invariants on both surfaces
with Darboux frames separately, they obtained new kinematic equations and solved the
forward kinematics of rolling contact motion with these equations.

On the other hand, it is well known that thanks to the E. Study mapping or transference
principle, the directed lines in line space correspond to dual unit vectors in dual space
[9, 14]. In this context, a connection can be established between a ruled surface in real
space and a dual spherical curve in dual space. It is easier to study the theory of curves
than the theory of surfaces. This means that we can derive simpler equations. Therefore,
it is advantageous to examine the unit spherical curves in dual space representing the
ruled surfaces in real space. Besides, we can examine these dual unit spherical curves in
two parts as real part and dual part.

In this paper, we apply the theory (in [6]) of the Darboux frame based rolling contact
motion to the unit dual spheres S̃2

f and S̃2
m along their dual spherical curves with respect

to their dual Darboux frames by determining the relevant ruled surfaces. We extend the
rolling contact motion of ruled surfaces in Euclidean 3-space to the rolling contact motion
of dual curves on unit dual spheres in dual space. This rolling contact motion of the dual
sphere S̃2

m can be called as dual rolling contact motion. Namely, we aim to solve the
forward kinematics of dual rolling contact motion of the spheres S̃2

m and S̃2
f . Note that at

any dual contact point, the sphere S̃2
f is assumed to be fixed and the other S̃2

m is rolling
on it and the dual spheres have different dual cartesian coordinate systems. We consider
that during the dual rolling contact motion, both of the dual Darboux frames of dual
spherical curves are made to coincide at any moment and therefore, the Frenet frames of
ruled surfaces are coincident.

2. Preliminaries
A dual number is formally expressed as ā = (a, a∗) = a + εa∗, where a and a∗ are real

part and dual part of the dual number, respectively, and ε = (0, 1) is the dual unit. In
this case, the rules are given as follows:

ε ̸= 0 , ε2 = 0, 0 ε = ε 0 = 0, 1 ε = ε 1 = ε .

Let D denotes the set of all dual numbers. Then the set is given by

D =
{

ā = a + εa∗ : a , a∗ ∈ R , ε2 = 0
}

.
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Equality, addition and multiplication operations are defined on D as
a + εa∗ = b + εb∗ ⇔ a = b and a∗ = b∗,
(a + εa∗) + (b + εb∗) = (a + b) + ε (a∗ + b∗) ,
(a + εa∗) (b + εb∗) = ab + ε (ab∗ + a∗b) ,

respectively. We should note that (D, +, . ) is called as a commutative ring with unity.
Furthermore, the division of dual numbers a + εa∗, b + εb∗ ∈ D for b ̸= 0 is defined as
follows:

a + ε a∗

b + ε b∗ = a

b
+ ε

(
a∗

b
− a b∗

b2

)
.

Suppose f denotes a differentiable function with dual variable x̄ = x + εx∗. In this case,
the expansion of function f in a Maclaurin series can be given as

f(x̄) = f(x + εx∗) = f(x) + εx∗f ′(x),

where f ′(x) is the derivative of f(x) with respect to x. Therefore, we can write
cos x̄ = cos(x + εx∗) = cos x − εx∗ sin x,

sin x̄ = sin(x + εx∗) = sin x + εx∗ cos x,

√
x̄ =

√
x + εx∗ =

√
x + ε

x∗

2
√

x
, (x > 0).

Let D3 denotes the set of all triples of dual numbers, then

D3 =
{

ã = (ā1, ā2, ā3) | āi ∈ D, 1 ≤ i ≤ 3
}

and the elements of D3 are called dual vectors. Thus, we may give a dual vector ã in the
form ã = a⃗ + εa⃗∗ = (⃗a, a⃗∗), where a⃗ = (a1, a2, a3) and a⃗∗ = (a∗

1, a∗
2, a∗

3) are the vectors at
R3.
Assume that ã = a⃗ + εa⃗∗, b̃ = b⃗ + ε⃗b∗ ∈ D3 are two dual vectors and λ̄ = λ + ελ∗ ∈ D is a
dual number. In this case, we can write

ã + b̃ = a⃗ + b⃗ + ε(⃗a∗ + b⃗∗),
λ̄ã = λa⃗ + ε(λa⃗∗ + λ∗a⃗).

So, D3 is a unitary D-module with respect to the above operations. It is called D-module
or dual space.
Let ã = a⃗ + εa⃗∗ and b̃ = b⃗ + ε⃗b∗ ∈ D3 be two dual vectors. Then the inner product and
cross product are defined, respectively, as⟨

ã, b̃
⟩

=
⟨
a⃗, b⃗
⟩

+ ε
(⟨

a⃗, b⃗∗
⟩

+
⟨
a⃗∗, b⃗

⟩)
and

ã × b̃ = a⃗ × b⃗ + ε
(
a⃗ × b⃗∗ + a⃗∗ × b⃗

)
,

where
⟨
a⃗, b⃗
⟩

and a⃗ × b⃗ yield usual scalar and cross products of a⃗ and b⃗ in R3, respectively.
The norm of a dual vector ã is obtained by the formula as follows:

∥ã∥ =
√

⟨ã, ã⟩ = ∥a⃗∥ + ε
⟨⃗a, a⃗∗⟩

∥a⃗∥
, (⃗a ̸= 0) .

When the norm of ã is equal to 1 + ε0, it is called a dual unit vector. Besides, a dual unit
sphere is expressed as the set that contains all dual unit vectors and given by

S̃2 =
{

ã = (ā1, ā2, ā3) ∈ D3 | ⟨ã, ã⟩ = 1 + ε0
}

.

Just as an angle can be assumed as a real number, the dual angle between two dual unit
vectors in dual space can also be thought of as a dual number ā = a + εa∗ in differential
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geometry of spatial mechanisms and in motion analysis. The real part a and the dual
part a∗ of the dual angle denote the projected angle and shortest length between the two
oriented lines, respectively.
Dual numbers and dual vectors were used by E. Study in his research on the geometry of
lines and kinematics. He deviated great importance to the representation of directed lines
with unit dual vectors and presented the mapping which is known by his name as follows:

Theorem 2.1. (E. Studys Mapping): There exists one-to-one correspondence between
the dual unit vectors of the dual unit sphere S̃2 and the directed lines of the Euclidean
3-space E3.

(For details of Section 2, see [2, 7, 14,16]).

3. Dual representation of ruled surfaces
A unit direction vector a⃗ of the line L and a point p ∈ L determine an oriented line L

in the Euclidean 3-space E3. In this case, if the moment vector a⃗∗ = p⃗ × a⃗ is defined with
regards to origin at the Cartesian coordinate system in E3, then the components for the
line L can be obtained. The value of a⃗∗ has no dependency on the point p. Therefore, one
can write as q⃗ = p⃗ + λa⃗ for any other point q ∈ L and we get

q⃗ × a⃗ = (p⃗ + λa⃗) × a⃗ = p⃗ × a⃗ = a⃗∗.

Thus, an oriented line L is demonstrated by the pair (⃗a, a⃗∗). On the contrary, any pair
(⃗a, a⃗∗) of vectors satisfying ⟨⃗a, a⃗⟩ = 1, ⟨⃗a, a⃗∗⟩ = 0 describes one oriented line L as

L =
{

(⃗a × a⃗∗) + λa⃗ | a⃗, a⃗∗ ∈ R3, λ ∈ R
}

.

The dual angle θ̄ = θ + εθ∗ between two dual unit vectors ã and b̃ can be obtained as⟨
ã, b̃
⟩

= cos θ̄ = cos θ − εθ∗ sin θ.

If the geometric interpretation of a dual angle is considered, θ gives the real angle between
the lines L1 and L2 corresponding to the dual unit vectors ã and b̃, respectively, and θ∗

gives the shortest distance between those lines [2]. The representation and dual geodesic
trihedron (dual Darboux frame) of a ruled surface are established by Veldkamp [16]. His
procedure can be briefly summarized by as follows:
Suppose (ẽ) is a dual curve on the dual unit sphere S̃2 represented by ẽ(u) = e⃗(u)+εe⃗∗(u).
In this case, the spherical curve determined by the unit vector e⃗ on (real) unit sphere S2

is called the (real) indicatrix of (ẽ) . Another assumption is that it is not a single point.
When the parameter u is given as the arc-length parameter s of the real indicatrix and
the differentiation is denoted with respect to s by primes, we get

⟨
e⃗ ′, e⃗ ′⟩ = 1, where

e⃗ ′ = t⃗ is the unit tangent vector of the indicatrix. It can be considered that there
exists an equation e⃗ ∗(s) = p⃗(s) × e⃗(s) with infinite solution for the function p⃗(s). When
we take a solution of the equation as p⃗o(s), the set of all solutions of the equation has
the form p⃗(s) = p⃗o(s) + λ(s) e⃗(s), where λ is a real scalar function of s. In this case,⟨
p⃗ ′, e⃗ ′⟩ =

⟨
p⃗o

′, e⃗ ′⟩+λ is obtained. If λ = λo = −
⟨
p⃗o

′, e⃗ ′⟩ is taken, then one can see that
p⃗o(s) + λo(s) e⃗(s) = c⃗(s) is the unique solution for p⃗(s) with

⟨
c⃗ ′, e⃗ ′⟩ = 0. We should note

that c⃗(s) is also the position vector of the striction curve. The dual curve (ẽ) corresponding
to the ruled surface Xe(s, v) = c⃗(s) + ve⃗(s), can be written by ẽ(s) = e⃗ + εc⃗ × e⃗, where

⟨e⃗, e⃗ ⟩ = 1,
⟨
e⃗ ′, e⃗ ′⟩ = 1,

⟨
c⃗ ′, e⃗ ′⟩ = 0.

Then we have ∥∥ẽ ′∥∥ = 1 + ε det
(
c⃗ ′, e⃗, t⃗

)
= 1 + ε∆,
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where ∆ = det
(
c⃗ ′, e⃗, t⃗

)
. Likewise, the dual curve (ẽ) has the dual arc-length s̄ given as

follows:

s̄ =
s∫

0

∥∥ẽ′(u)
∥∥ du =

s∫
0

(1 + ε∆)du = s + ε

s∫
0

∆du.

Consequently, s̄′ = 1 + ε∆ is obtained. Thus, the dual unit tangent to the dual curve (ẽ)
is

dẽ

ds̄
= ẽ′

s̄′ = ẽ′

1 + ε∆
= t̃ = t⃗ + ε

(
c⃗ × t⃗

)
.

Lastly, from the definition of dual unit vector g̃ = ẽ × t̃ = g⃗ + ε
(
c⃗ × g⃗

)
, we can construct

the dual frame
{
ẽ, t̃, g̃

}
which is called dual Darboux frame (dual geodesic trihedron) of

Xe (or (ẽ)). Furthermore, the real orthonormal frame
{

e⃗, t⃗, g⃗
}

along the striction curve
(c) of the ruled surface is called the Frenet frame of ruled surface Xe. The derivatives of
the vectors forming the frame

{
e⃗, t⃗, g⃗

}
can be presented as follows:

e⃗ ′ = t⃗, t⃗ ′ = γg⃗ − e⃗, g⃗ ′ = −γt⃗ (3.1)
where γ is called the conical curvature [8]. The derivatives of the dual vectors forming the
the dual Darboux frame

{
ẽ, t̃, g̃

}
can be presented as follows:

dẽ

ds̄
= t̃,

dt̃

ds̄
= γ̄g̃ − ẽ,

dg̃

ds̄
= −γ̄t̃ (3.2)

where
γ̄ = γ + ε(δ − γ∆), δ =

⟨
c⃗ ′, e⃗

⟩
. (3.3)

In this case, the dual Darboux vector of
{
ẽ, t̃, g̃

}
is d̃ = γ̄ẽ + g̃. By using the equality of ∆

and the equations in (3.3), we get
c⃗ ′ = δe⃗ + ∆g⃗.

The dual curve (ruled surface) ẽ(s) has dual curvature given by

R̄ = 1√(
1 + γ̄2) .

When we transform the dual Darboux vector d̃ = γ̄ẽ + g̃ into a unit vector d̃o, we get

d̃o = γ̄√(
1 + γ̄2) ẽ + 1√(

1 + γ̄2) g̃.

If ρ̄ denotes the dual spherical radius of curvature, then the dual angle between the dual
unit vectors d̃o and ẽ yield

cos ρ̄ = γ̄√(
1 + γ̄2) , sin ρ̄ = 1√(

1 + γ̄2) .
Thus, R̄ = sin ρ̄ and γ̄ = cot ρ̄.

4. The forward kinematics of rolling contact of dual unit spheres
In this section, we study the forward kinematics of dual rolling contact motion of dual

unit spheres S̃2
f and S̃2

m by applying the dual Darboux frame method in dual space. The
main contribution of this section is that a new equation of the dual angular velocity of the
rolling motion of a moving sphere S̃2

m on a fixed sphere S̃2
f is formed. The new formulation

is specified with respect to three dual unit vectors and dual geometric invariants, which
are dual arc lengths of the dual contact curves and the dual induced curvature of these
two spheres.
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4.1. The kinematics of dual rolling contact motion
In this subsection, we give the dual geometric kinematics of rolling motion of two contact

dual unit spheres. We note that during the dual rolling contact motion, both of the spheres
have the same dual unit normal vectors at the dual contact point. Let denote the dual
contact point by P̃ and denote the fixed sphere and moving sphere at P̃ by S̃2

f and S̃2
m,

respectively. We should define two different dual cartesian coordinate systems for each
sphere, when they undergo dual rolling contact motion. We assume that S̃2

f and S̃2
m are

established in the coordinate systems (x̃, ỹ, z̃) with origin Õ and (x̃m, ỹm, z̃m) with origin
Õm, respectively.

Now, suppose (ẽ) and (ẽm) are two dual contact curves on S̃2
f and S̃2

m, respectively.
Let us denote the dual Darboux frames attached to the dual contact point P̃ of the dual
curves (ẽ) and (ẽm) as

{
ẽ, t̃, g̃

}
and

{
ẽm, t̃m, g̃m

}
, respectively. By rolling constraints, the

dual vectors t̃ and t̃m are always collinear and, consequently, are ẽ and ẽm. Therefore,
the two dual frames can always be made to coincide at the dual contact point P̃ where ẽ
points outward of the S̃2

f and ẽm points inward of the S̃2
m.

Let s̄ and s̄m be the dual arc lengths of the dual curves (ẽ) and (ẽm), respectively. Then
the derivative formulas of the dual Darboux frames

{
ẽ, t̃, g̃

}
and

{
ẽm, t̃m, g̃m

}
are

dp̃

ds̄
= t̃,

d

ds̄

 ẽ
t̃
g̃

 =

 0 1 0
−1 0 γ̄
0 −γ̄ 0

 ẽ
t̃
g̃

 (4.1)

and
dp̃m

ds̄m
= t̃m,

d

ds̄m

 ẽm

t̃m

g̃m

 =

 0 1 0
−1 0 γ̄m

0 −γ̄m 0

 ẽm

t̃m

g̃m

 (4.2)

where p̃ and p̃m are the dual position vectors of P̃ with respect to the dual Darboux frames{
ẽ, t̃, g̃

}
and

{
ẽm, t̃m, g̃m

}
, respectively.

Now, let Q̃ denote an arbitrary dual point on S̃2
m and q̃m denote the dual position vector

of Q̃ in the dual frame
{
ẽm, t̃m, g̃m

}
given by

q̃m = p̃m + λ̄1ẽm + λ̄2t̃m + λ̄3g̃m

where λ̄1, λ̄2 and λ̄3 are dual functions. Differentiating q̃m with respect to s̄m gives

dq⃗m

ds̄m
=
(

dλ̄1
ds̄m

− λ̄2

)
ẽm +

(
1 + λ̄1 + dλ̄2

ds̄m
− λ̄3γ̄m

)
t̃m +

(
λ̄2γ̄m + dλ̄3

ds̄m

)
g̃m (4.3)

where γ̄m is dual spherical curvature function at the dual point Q̃ of S̃2
m. Since Q̃ is a

fixed dual point of S̃2
m, then dq̃m

ds̄m
= 0. Substituting this into (4.3) gives

dλ̄1
ds̄m

= λ̄2,
dλ̄2
ds̄m

= −1 − λ̄1 + λ̄3γ̄m,
dλ̄3
ds̄m

= −λ̄2γ̄m. (4.4)

Now, let q̃ denote the dual position vector of Q̃ in the dual frame
{
ẽ, t̃, g̃

}
given by

q̃ = p̃ + µ̄1ẽ + µ̄2t̃ + µ̄3g̃

where µ̄1, µ̄2 and µ̄3 are dual functions. Differentiating q̃ with respect to s̄ gives
dq̃

ds̄
=
(

dµ̄1
ds̄

− µ̄2

)
ẽ +

(
1 + µ̄1 + dµ̄2

ds̄
− µ̄3γ̄

)
t̃ +

(
µ̄2γ̄ + dµ̄3

ds̄

)
g̃ (4.5)

where γ̄ is dual spherical curvature function at the dual point Q̃ of S̃2
f . By the constraints

for dual rolling contact, two dual contact curves have the same dual arc lengths at the
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dual contact point. Since the dual Darboux frames
{
ẽ, t̃, g̃

}
and

{
ẽm, t̃m, g̃m

}
are made to

coincide at any moment, it follows that
λ̄1 = µ̄1, λ̄2 = µ̄2, λ̄3 = µ̄3.

Then,
dλ̄1
ds̄m

= dµ̄1
ds̄

,
dλ̄2
ds̄m

= dµ̄2
ds̄

,
dλ̄3
ds̄m

= dµ̄3
ds̄

. (4.6)

Substituting (4.4) and (4.6) into (4.5) gives
dq̃

ds̄
= (µ̄3γ̄i) t̃ − (µ̄2γ̄i) g̃ (4.7)

where γ̄i = γ̄m − γ̄ is induced dual spherical curvature function.

4.2. Dual velocity formulation of dual rolling contact motion
The dual velocity of an arbitrary dual point Q̃ on S̃2

m in terms of dual parameter t̄ can
be obtained from (4.7) as follows:

ṽQ̃ = dq̃

ds̄

ds̄

dt̄
= σ̄ (µ̄3γ̄i) t̃ − σ̄ (µ̄2γ̄i) g̃ (4.8)

where σ̄ = ds̄
dt̄

is the magnitude of dual rolling velocity. This equation gives the dual
Darboux-frame-based translational velocity formulation of an arbitrary dual point. Let
the dual angular velocity of S̃2

m relative to S̃2
f be

d̃ = d̄1ẽ + d̄2t̃ + d̄3g̃. (4.9)
When the dual vector r̃P̃ Q̃ = µ̄1ẽ + µ̄2t̃ + µ̄3g̃ is given, the dual velocity of the dual point
Q̃ can be obtained as

ṽQ̃ = d̃ × r̃P̃ Q̃ =
(
d̄2µ̄3 − d̄3µ̄2

)
ẽ +

(
−d̄1µ̄3 + d̄3µ̄1

)
t̃ +

(
d̄1µ̄2 − d̄2µ̄1

)
g̃. (4.10)

If we take d̄2 = 0 into consideration from the definition of dual Darboux vector and
compare (4.8) with (4.10), the solution of the equations system yields

d̄1 = −σ̄ γ̄i, d̄2 = 0, d̄3 = 0. (4.11)
The dual angular velocity of S̃2

m rolling on S̃2
f is obtained from (4.9) and (4.11) as

d̃ = −σ̄ γ̄iẽ. (4.12)
Consequently, the forward kinematics of dual rolling contact motion of S̃2

m relative to S̃2
f

with the dual Darboux frame method is completed.

Now, let give an example to understand this method.

4.3. Example
In this subsection, we give an example of dual Darboux frame based forward kinematics

of one dual unit sphere rolling on another along their dual spherical curves by determining
the relevant ruled surfaces. In this example, we consider that dual curve denoted by (ẽ)
on the fixed dual unit sphere denoted by S̃2

f corresponds to one-sheeted hyperboloid and
dual curve denoted by (ẽm) on the moving dual unit sphere denoted by S̃2

m (rolling on S̃2
f )

corresponds to cone. To understand the example better, we present some pictures drawn
with Mathematica computer program.

Let take the parametrization of one-sheeted hyperboloid as
X(t, v) = (cos t, sin t, 0) + v (− sin t, cos t, 1) .



1590 M. Aydınalp

where the striction curve is c(t) = (cos t, sin t, 0). Also, let denote the Frenet frame of
X(t, v) as

{
e⃗, t⃗, g⃗

}
along the striction curve (c). Then we have

e⃗(t) = 1√
2 (− sin t, cos t, 1) ,

t⃗(t) = (− cos t, − sin t, 0) ,
g⃗(t) = 1√

2 (sin t, − cos t, 1) ,

where
∥∥ e⃗′(t)

∥∥ = 1√
2 . When the arc-length of (c) is given as s, we have s =

t∫
0

∥∥ e⃗′(u)
∥∥ du = t√

2 .

Now, we can write the striction curve (c) and
{

e⃗, t⃗, g⃗
}

elements with respect to the arc-
length s as

c(s) =
(
cos

√
2s, sin

√
2s, 0

)
and

e⃗(s) = 1√
2

(
− sin

√
2s, cos

√
2s, 1

)
,

t⃗(s) =
(
− cos

√
2s, − sin

√
2s, 0

)
,

g⃗(s) = 1√
2

(
sin

√
2s, − cos

√
2s, 1

)
,

(4.13)

respectively. Furthermore, It can be easly seen that the position vector of the striction
curve is c⃗(s) =

(
cos

√
2s, sin

√
2s, 0

)
.

Now, let denote the invariants of one-sheeted hyperboloid as γ, δ and ∆. We obtain these
invariants as follows, respectively:
Via the derivative formulas of the Darboux frame

{
e⃗, t⃗, g⃗

}
, the conical curvature is ob-

tained as γ(s) =
⟨

t⃗
′(s), g⃗(s)

⟩
= 1. Via the derivative of c⃗(s), the other two functions are

obtained as δ(s) =
⟨

c⃗′(s), e⃗(s)
⟩

= 1 and ∆(s) = det
(

c⃗′(s), e⃗(s), t⃗(s)
)

= −1. By using
Eqs. (4.13), the moment vectors are obtained as follows:

e⃗∗(s) = c⃗(s) × e⃗(s) = 1√
2

(
sin

√
2s, − cos

√
2s, 1

)
,

t⃗∗(s) = c⃗(s) × t⃗(s) = (0, 0, 0) ,

g⃗∗(s) = c⃗(s) × g⃗(s) = 1√
2

(
sin

√
2s, − cos

√
2s, −1

)
.

(4.14)

From the Eqs. (4.13) and (4.14) the dual unit vectors correspond to one-sheeted hyper-
boloid are obtained as

ẽ(s) = 1√
2

(
− sin

√
2s, cos

√
2s, 1

)
+ ε 1√

2

(
sin

√
2s, − cos

√
2s, 1

)
,

t̃(s) =
(
− cos

√
2s, − sin

√
2s, 0

)
,

g⃗(s) = 1√
2

(
sin

√
2s, − cos

√
2s, 1

)
+ ε 1√

2

(
sin

√
2s, − cos

√
2s, −1

)
,

(4.15)

where (ẽ) is the dual curve on S̃2
f . From (3.3), the dual curvature of one-sheeted hyper-

boloid is obtained as
γ̄ = γ + ε(δ − γ∆) = 1 + 2ε. (4.16)

We assume that S̃2
f is established in the fixed coordinate system (x̃, ỹ, z̃) with origin Õ.

Therefore, the real parts of S̃2
f , the dual curve (ẽ) lying on S̃2

f and the coordinate system
of S̃2

f are given by S2
f , (e) and (x, y, z) with origin O, respectively. For the real indicatrix

of E. Study mapping between one-sheeted hyperboloid and (e) on S2
f , see Figure 1.
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Figure 1. The real indicatrix of E. Study mapping between one-sheeted hyper-
boloid and (e) on S2

f .

Let take the parametrization of cone as

Y (tm, vm) = (0, −1, 0) + vm (cos tm, sin tm, 1) .

Suppose the striction curve is denoted by (cm). It is easy to see that cm(tm) = (0, −1, 0).
Also, let denote the Frenet frame of Y (tm, vm) as

{
e⃗m, t⃗m, g⃗m

}
along the striction curve

(cm). Then we have

e⃗m(tm) = 1√
2 (cos tm, sin tm, 1) ,

t⃗m(tm) = (− sin tm, cos tm, 0) ,
g⃗m(tm) = 1√

2 (− cos tm, − sin tm, 1) ,

where
∥∥ e⃗′

m(tm)
∥∥ = 1√

2 . When the arc-length of (cm) is given as sm, we have sm =
tm∫
0

∥∥ e⃗′
m(u)

∥∥ du = tm√
2 . Now, we can write the striction curve (cm) and

{
e⃗m, t⃗m, g⃗m

}
elements

with respect to the arc-length sm as

cm(sm) = (0, −1, 0)

and
e⃗m(sm) = 1√

2

(
cos

√
2sm, sin

√
2sm, 1

)
,

t⃗m(sm) =
(
− sin

√
2sm, cos

√
2sm, 0

)
,

g⃗m(sm) = 1√
2

(
− cos

√
2sm, − sin

√
2sm, 1

)
,

(4.17)

respectively. Furthermore, one can easly see that the position vector of the striction curve
is c⃗m(sm) = (0, −1, 0).
Now, let denote the invariants of cone as γm, δm and ∆m. These invariants can be ob-
tained as follows, respectively:
By using the derivative formulas of the Darboux frame

{
e⃗m, t⃗m, g⃗m

}
, the conical cur-

vature is obtained as γm(sm) =
⟨

t⃗
′
m(sm), g⃗m(sm)

⟩
= 1. Via the derivative of c⃗m(sm),

the other two functions are obtained as δm(sm) =
⟨

c⃗′
m(sm), e⃗m(sm)

⟩
= 0 and ∆m(sm) =

det
(

c⃗′
m(sm), e⃗m(sm), t⃗m(sm)

)
= 0. By using Eqs. (4.17), the moment vectors are obtained
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as follows:

e⃗∗
m(sm) = c⃗m(sm) × e⃗m(sm) = 1√

2

(
−1, 0, cos

√
2sm

)
,

t⃗∗
m(sm) = c⃗m(sm) × t⃗m(sm) =

(
0, 0, − sin

√
2sm

)
,

g⃗∗
m(sm) = c⃗m(sm) × g⃗m(sm) = 1√

2

(
−1, 0, − cos

√
2sm

)
.

(4.18)

From the Eqs. (4.17) and (4.18) the dual unit vectors correspond to cone are obtained as

ẽm(sm) = 1√
2

(
cos

√
2sm, sin

√
2sm, 1

)
+ ε 1√

2

(
−1, 0, cos

√
2sm

)
,

t̃m(sm) =
(
− sin

√
2sm, cos

√
2sm, 0

)
+ ε

(
0, 0, − sin

√
2sm

)
,

g̃m(sm) = 1√
2

(
− cos

√
2sm, − sin

√
2sm, 1

)
+ ε 1√

2

(
−1, 0, − cos

√
2sm

)
,

(4.19)

where (ẽm) is the dual curve on S̃2
m. From (3.3), the dual curvature of cone is obtained as

γ̄m = γm + ε(δm − γm∆m) = 1. (4.20)

We assume that S̃2
m is established in the moving coordinate system (x̃m, ỹm, z̃m) with origin

Õm. Therefore, the real parts of S̃2
m, the dual curve (ẽm) lying on S̃2

m and the coordinate
system of S̃2

m are given by S2
m, (em) and (xm, ym, zm) with origin Om, respectively. For

the real indicatrix of E. Study mapping between cone and (em) on S2
m, see Figure 2.

Figure 2. The real indicatrix of E. Study mapping between cone and (em) on S2
m.

From (4.12), the dual angular velocity of moving sphere S̃2
m rolling on fixed sphere S̃2

f

is obtained as

d̃ = −σ̄ γ̄iẽ = 2εσ̄ẽ,

where σ̄ = ds̄
dt̄

is the magnitude of dual rolling velocity and γ̄i = γ̄m − γ̄ = −2ε is the
induced dual spherical curvature function obtained from (4.16) and (4.20).

Let P denotes the contact point of coincident Frenet frames
{

e⃗, t⃗, g⃗
}

and
{

e⃗m, t⃗m, g⃗m

}
along the striction curves (c) and (cm) of one-sheeted hyperboloid and cone, respectively.
Then one can see the common Frenet frame in Figure 3.
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Figure 3. The common Frenet frame of one-sheeted hyperboloid and cone at P .

By the E. Study mapping, one-sheeted hyperboloid denoted by X and cone denoted by
Y correspond the dual curves (ẽ) on S̃2

f and (ẽm) on S̃2
m, respectively. When we take the

arc-length of X as
√

2s = 3π
2 and arc-length of Y as

√
2sm = 0, the dual values ẽ(3π/2 )

in (4.15) and ẽm(0) in (4.19) become identical and then we obtain the dual contact point
P̃ = P + εP ∗ as P̃ = 1√

2 (1, 0, 1) + ε 1√
2 (1, 0, −1). Figure 4 shows the real parts of S̃2

f and
S̃2

m, dual curves, dual Darboux frame and dual coordinate systems.

Figure 4. The real indicatrix of dual rolling contact motion.

Consequently, Figure 3 and Figure 4 show the relations between the common Frenet
frames and real indicatrix of dual Darboux frames at the contact point P .
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5. Conclusion
In this paper, we study the forward kinematics of dual rolling contact motion between

the moving and fixed dual unit spheres S̃2
f and S̃2

m through their dual curves (ẽ) and (ẽm)
by adopting the dual Darboux frame in dual space. We obtain a new equation of the dual
angular velocity of moving sphere S̃2

m. The new formulation is specified with respect to
three dual unit vectors and dual geometric invariants, which are dual arc lengths of the
dual contact curves and the dual induced curvature of the two spheres.
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