Positive Solutions for Systems of Fourth Order Two-Point Boundary Value Problems with Parameter

Noureddine Bouteraa ${ }^{1}$, Slimane Benaicha ${ }^{1}$ and Habib Djourdem ${ }^{1 *}$
${ }^{1}$ Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran1, Ahmed Benbella. Algeria
*Corresponding author

Article Info

Keywords: Fixed-point theorem, Green's function, Positive solutions, System of differential equations, Two-point boundary value problem.
2010 AMS: 34B10,34B18.
Received: 10 June 2018
Accepted: 1 January 2019
Available online: 20 April 2019

Abstract

This paper deals with the existence of positive solutions for a system of nonlinear singular fourth-order differential equations with a parameter λ subject two-point boundary conditions. Our analysis relies on the Krasnoselskii fixed point theorem and under suitable conditions, we derive explicit eigenvalue intervals of λ for the existence of at least one positive solution for the system.

1. Introduction

We are concerned with determining intervals of the parameter λ for which there exist positive solutions for the following boundary value problem of nonlinear differential system BVPs

$$
\begin{cases}u^{(4)}(t)+\lambda a(t) f(v(t))=0, & 0<t<1 \tag{1.1}\\ v^{(4)}(t)+\lambda b(t) g(u(t))=0, & 0<t<1\end{cases}
$$

subject to two-point boundary conditions.

$$
\left\{\begin{array}{c}
u(0)=0, u^{\prime}(0)=0, u^{\prime \prime}(1)=0, u^{\prime \prime \prime}(1)=0 \tag{1.2}\\
v(0)=0, v^{\prime}(0)=0, v^{\prime \prime}(1)=0, v^{\prime \prime \prime}(1)=0
\end{array}\right.
$$

The theory of multi-point boundary value problems for ordinary differential equations arises in different areas of applied mathematics and physics. For example, the vibrations of a guy wire of uniform cross-section and composed of N parts of different densities that can be set up as a multi-point boundary value problem. Many problems in the theory of elastic stability can be handled as multi-point boundary value problems too. Higher-order boundary value problems occur in the study of fluid dynamics, astrophysics, hydrodynamic, hydromagnetic stability and astronomy, be a mandlong wave theory, induction motors, engineering and applied physics. The boundary value problems of higher-order have been examined due to their mathematical importance and applications in different areas of applied sciences. In particular, third-order, fourth-order and nth order were considered, see [1]-[14] and the references therein.
Fourth-order ordinary differential equations are models for bending or deformation of elastic beams, and therefore have important applications in mechanics, engenieering and physical sciences; see [15] - [19]. Many authors have studied the beam equation under various boundary conditions and by different approaches. For example, Bouteraa et al. [20, 21], studied the existence and nonexistence of positive solutions of two types boundary value problem for a nonlinear fourth-order differential equation

$$
\left\{\begin{array}{l}
u^{(4)}(t)=\lambda f(t, u(t)), \quad t \in(0,1) \\
u(0)=u^{\prime}(0)=u^{\prime}(1)=u^{\prime \prime \prime}(1)+\psi(u(1))=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{c}
u^{(4)}(t)-\rho^{4} u(t)=f(t, u(t)), t \in[0, \omega], \\
u^{(i)}(0)=u^{(i)}(\omega), \quad i \in\{0,1,2,3\},
\end{array}\right.
$$

where $\lambda>0, \rho \in \mathbb{R}^{+}, f \in C([0, \omega] \times \mathbb{R}, \mathbb{R})$ and $\psi \in C([0, \infty),[0, \infty))$.
By applying iterative method, Djourdem et al. [22] obtained the existence of monotone positive solution of the following nonlinear BVP

$$
\begin{gathered}
u^{(4)}(t)=f(t, u(t)), \quad t \in[0,1] \\
u^{\prime}(0)=u^{\prime \prime}(0)=u(1)=0, u^{\prime \prime \prime}(\eta)+\alpha u(0)=0
\end{gathered}
$$

where $f \in C([0,1] \times[0,+\infty),[0,+\infty)), \alpha \in[0,6)$ and $\eta \in\left[\frac{2}{3}, 1\right)$.
However, there are few works that deal with multi-point boundary value problem for a coupled systems of nonlinear differential equations, see [23] - [25]. Motivated by the above montioned works and works of coupled systems of nonlinear differential equations, we discuss the existence of positive solutions of BVPs (1.1)-(1.2). Ours analysis relies on the Guo-Krasnoselskii's fixed point theorem for operators leaving a Banach space cone invariant [26]. A Green function play a fundamental role in defining an appropriate operator on a suitable cone. The aim of this paper is to etablish some simple criteria for the existence of single positive solutions of the BVPs (1.1)-(1.2) in explicit intervals for λ. This paper is organized as follows. In section 2 , we present some preliminaries and lemmas that will be used to prove our main results. In section 3, we discuss the existence of single positive solution of BVPs (1.1)-(1.2), and an example explain our conditions are applicable.

2. Preliminaries

Let $B=C([0,1], \mathbb{R})$ be a Banach space endowed with usual supermum norm, and $B^{+}=C\left([0,1], \mathbb{R}^{+}\right)$.
Lemma 2.1. Let $y(\cdot) \in C[0,1]$. If $u \in C^{4}[0,1]$, then the $B V P$

$$
\left\{\begin{array}{lr}
u^{(4)}(t)=y(t), & 0 \leq t \leq 1 \\
u(0)=u^{\prime}(0)=u^{\prime \prime}(1)=u^{\prime \prime \prime}(1)=0
\end{array}\right.
$$

has a unique solution

$$
u(t)=\int_{0}^{1} H(t, s) y(s) d s
$$

where

$$
H(t, s)= \begin{cases}\frac{1}{6} t^{2}(3 s-t), & 0 \leq t \leq s \leq 1 \\ \frac{1}{6} s^{2}(3 t-s), & 0 \leq s \leq t \leq 1\end{cases}
$$

Proof. The derivatives of the function H with respect to t is

$$
\frac{\partial}{\partial t} H(t, s)=\left\{\begin{array}{c}
\frac{1}{2} s^{2}-\frac{1}{2}(s-t)^{2}, 0 \leq t \leq s \leq 1 \\
\frac{1}{2} s^{2}, \quad 0 \leq s \leq t \leq 1
\end{array}\right.
$$

Since the derivative of the function H with respect to t is nonnegative for all $t \in[0,1], H$ is nondecreasing function of t that attaints its maximum when $t=1$. Then

$$
\begin{equation*}
\max _{0 \leq t \leq 1} H(t, s)=H(1, s)=\frac{1}{2} s^{2}-\frac{1}{6} s^{3}=\psi(s) \tag{2.1}
\end{equation*}
$$

Lemma 2.2. Let $y(\cdot) \in B^{+}$. Then, the unique solution $u(t)$ of $B V P s(1.1)-(1.2)$ is nonnegative and satisfies

$$
\min _{t \in[\theta, 1]} u(t) \geq \frac{2 \theta^{3}}{3}\|u\|
$$

where $\theta \in(0,1)$.
Proof. Let $y(\cdot) \in B^{+}$, then from $H(t, s) \geq 0$, we know $u \in B^{+}$. Set $u\left(t_{0}\right)=\|u\|, t_{0} \in(0,1]$. we first prove that

$$
\frac{H(t, s)}{H\left(t_{0}, s\right)} \geq \frac{2}{3} t^{3}, \quad t, t_{0}, s \in(0,1]
$$

In fact, we can consider four cases:
(1) if $0<t, t_{0} \leq s \leq 1$, then

$$
\frac{H(t, s)}{H\left(t_{0}, s\right)}=\frac{t^{2}(3 s-t)}{t_{0}^{2}\left(3 s-t_{0}\right)} \geq \frac{t^{2}(2 s)}{3 t_{0}-t_{0}} \geq \frac{t^{2}(2 s)}{3} \geq \frac{t^{2}(2 t)}{3}=\frac{2 t^{3}}{3}
$$

(2) if $0 \leq t \leq s \leq t_{0} \leq 1$, then

$$
\frac{H(t, s)}{H\left(t_{0}, s\right)}=\frac{t^{2}(3 s-t)}{s^{2}\left(3 t_{0}-s\right)} \geq \frac{t^{2}(3 s-t)}{3 t_{0}-s} \geq \frac{t^{2}(3 s-s)}{3 t_{0}} \geq \frac{t^{2}(2 s)}{3} \geq \frac{t^{2}(2 t)}{3} \geq \frac{2 t^{3}}{3},
$$

(3) if $0<s \leq t, t_{0} \leq 1$, then

$$
\frac{H(t, s)}{H\left(t_{0}, s\right)}=\frac{s^{2}(3 t-s)}{s^{2}\left(3 t_{0}-s\right)}=\frac{3 t-s}{3 t_{0}-s} \geq \frac{3 t-s}{3 t_{0}} \geq \frac{3 t-s}{3} \geq \frac{2 t+t-s}{3} \geq \frac{2 t}{3} \geq \frac{2 t^{3}}{3},
$$

(4) if $0 \leq t_{0} \leq s \leq t \leq 1$, then

$$
\frac{H(t, s)}{H\left(t_{0}, s\right)}=\frac{s^{2}(3 t-s)}{t_{0}^{2}\left(3 s-t_{0}\right)} \geq \frac{t_{0}^{2}(3 t-s)}{t_{0}^{2}\left(3 t-t_{0}\right)} \geq \frac{3 t-s}{3 t} \geq \frac{3 t-t}{3 t} \geq \frac{2 t}{3} \geq \frac{2 t^{3}}{3}
$$

Therefore, for $t \in[\theta, 1]$, we obtain

$$
\begin{aligned}
u(t) & =\int_{0}^{1} H(t, s) y(s) d s \\
& =\int_{0}^{1} \frac{H(t, s)}{H\left(t_{0}, s\right)} H\left(t_{0}, s\right) y(s) d s \\
& \geq \int_{0}^{1} \frac{2 t^{3}}{3} H\left(t_{0}, s\right) y(s) d s=\frac{2 t^{3}}{3} u\left(t_{0}\right) \geq \frac{2 \theta^{3}}{3}\|u\| .
\end{aligned}
$$

The proof is complete.
If we let

$$
K=\left\{u \in B: u(t) \geq 0 \text { on }[0,1] \text { and } \min _{t \in[\theta, 1]} u(t) \geq \frac{2 \theta^{3}}{3}\|u\|\right\}
$$

then it is easy to see that K a cone in B.
We not that the BVPs $(1.1)-(1.2)$ has a solutin $(u(t), v(t))$ if, and only if

$$
u(t)=\lambda \int_{0}^{1} H(t, s) a(s) f\left(\lambda \int_{0}^{1} H(s, v) b(v) g(u(v)) d v\right) d s, \quad t \in[0,1]
$$

and

$$
\begin{equation*}
v(t)=\lambda \int_{0}^{1} H(t, s) b(s) g(u(s)) d s, \quad t \in[0,1] \tag{2.2}
\end{equation*}
$$

Now, we define an integral operator $Q_{\lambda}: B^{+} \rightarrow B$ by

$$
\begin{equation*}
\left(Q_{\lambda} u\right)(t)=\lambda \int_{0}^{1} H(t, s) a(s) f\left(\lambda \int_{0}^{1} H(s, v) b(v) g(u(v)) d v\right) d s, \quad u \in K \tag{2.3}
\end{equation*}
$$

We adopt the following hypothesies:
$\left(H_{1}\right) a, b \in C((0,1),[0, \infty))$ and each does not vanish identically on any subinterval.
$\left(H_{2}\right) f, g \in C([0, \infty),[0, \infty))$.
$\left(H_{3}\right)$ All of $f_{0}=\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}, g_{0}=\lim _{x \rightarrow 0^{+}} \frac{g(x)}{x}, f_{\infty}=\lim _{x \rightarrow \infty} \frac{f(x)}{x}, g_{\infty}=\lim _{x \rightarrow \infty} \frac{g(x)}{x}$ exist as real numbers.
$\left(H_{4}\right) g(0)=0$ and f is increasing function.
Lemma 2.3. Let $\lambda>0$ and K be the cone defined above.
(i) If $u \in B^{+}$and $v:[0,1] \rightarrow[0, \infty)$ is defined by (2.2), then $v \in K$.
(ii) If Q_{λ} is the integral operator defined by (2.3), then $Q_{\lambda}(K) \subset K$.
(iii) Suppose $\left(H_{1}\right)$ and $\left(H_{2}\right)$ hold. Then $Q_{\lambda}: K \rightarrow B$ is completely continuous.

Proof. Let $u \in B^{+}$and v be defined by (2.2).
(i) By the nonnegativity of H, b and g it follows that $v(t) \geq 0, t \in[0,1]$. In view of $\left(H_{1}\right),\left(H_{2}\right)$, we obtain

$$
\int_{0}^{1} H(s, v) b(v) g(u(v)) d v \geq \int_{0}^{1} \min _{s \in[\theta, 1]} H(s, v) b(v) g(u(v)) d v
$$

from which, we take

$$
\min _{s \in[\theta, 1]} \int_{0}^{1} H(s, v) b(v) g(u(v)) d v \geq \int_{0}^{1} \min _{s \in[\theta, 1]} H(s, v) b(v) g(u(v)) d v
$$

Consequently, employing (2.2), we obtain

$$
\begin{aligned}
\int_{0}^{1} H(s, v) b(v) g(u(v)) d v & \geq \int_{0}^{1} \min _{s \in[\theta, 1]} H(s, v) b(v) g(u(v)) d v \\
& \geq \frac{2 \theta^{3}}{3} \int_{0}^{1} H\left(s_{0}, v\right) b(v) g(u(v)) d v \\
& \geq \frac{2 \theta^{3}}{3} v\left(s_{0}\right), s_{0} \in(0,1] \\
& \geq \frac{2 \theta^{3}}{3}\|v\| .
\end{aligned}
$$

Therefore

$$
\min _{0<s<1} v(s) \geq \frac{2 \theta^{3}}{3}\|v\| .
$$

Which give that $v \in K$.
(ii) Obviously, for $v \in K, Q_{\lambda}(u) \in B^{+}$. For $t \in[0,1]$, we have

$$
\begin{aligned}
\left\|Q_{\lambda} u(t)\right\| & =\max _{0 \leq t \leq 1} \lambda \int_{0}^{1} H(t, s) a(s) f(v(s)) d s \\
& \leq \lambda \int_{0}^{1} H(1, s) a(s) f(v(s)) d s
\end{aligned}
$$

and

$$
\begin{aligned}
Q_{\lambda} u(t) & =\lambda \int_{0}^{1} H(t, s) a(s) f(v(s)) d s \\
& =\lambda \int_{0}^{1} \frac{H(t, s)}{H(1, s)} H(1, s) a(s) f(v(s)) d s \\
& \geq \frac{2 \theta^{3}}{3} \lambda \int_{0}^{1} H(1, s) a(s) f(v(s)) d s \\
& \geq \frac{2}{3} \theta^{3}\left\|Q_{\lambda} u(t)\right\| .
\end{aligned}
$$

Which give that $Q_{\lambda} u \in K$. Therefore $Q_{\lambda}: K \rightarrow K$.
(iii) It is not difficult to show that the operator $Q_{\lambda}: K \rightarrow B$ is completely continuous.

Our analysis relies on the following Krasnoselskii's fixed point theorem of cone expansion-compression type.
Theorem 2.4. (See [26]) Let E be a Banach space and $K \subset E$ be a cone in E. Assume Ω_{1} and Ω_{2} are open subset of E with $0 \in \Omega_{1}$ and $\overline{\Omega_{1}} \subset \Omega_{2}, Q: K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow K$ be a completely continuous operator such that
(i) $\|Q u\| \leq\|u\|$, for all $u \in K \cap \partial \Omega_{1}$ and $\|Q u\| \geq\|u\|, \forall u \in K \cap \partial \Omega_{2}$, or
(ii) $\|Q u\| \geq\|u\|, \forall u \in K \cap \partial \Omega_{1}$ and $\|Q u\| \leq\|u\|, \forall u \in K \cap \partial \Omega_{2}$

Then Q has a fixed point in $K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.

Throughout this paper, we shall use the following notations:

$$
\begin{gathered}
L_{1}=\max \left\{\left[\left(\frac{2 \theta^{3}}{3}\right)^{2} \int_{\theta}^{1} \psi(v) a(v) f_{\infty} d v\right]^{-1},\left[\left(\frac{2 \theta^{3}}{3}\right)^{2} \int_{\theta}^{1} \psi(v) a(v) g_{\infty} d v\right]^{-1}\right\} \\
L_{2}=\min \left\{\left[\int_{0}^{1} \psi(v) a(v) f_{0} d v\right]^{-1},\left[\int_{0}^{1} \psi(v) b(v) g_{0} d v\right]^{-1}\right\} \\
L_{3}=\max \left\{\left[\left(\frac{2 \theta^{3}}{3}\right)^{2} \int_{\theta}^{1} \psi(v) a(v) f_{0} d v\right]^{-1},\left[\left(\frac{2 \theta^{3}}{3}\right)^{2} \int_{\theta}^{1} \psi(v) a(v) g_{0} d v\right]^{-1}\right\}
\end{gathered}
$$

and

$$
L_{4}=\min \left\{\left[\int_{0}^{1} \psi(v) a(v) f_{\infty} d v\right]^{-1},\left[\int_{0}^{1} \psi(v) b(v) g_{\infty} d v\right]^{-1}\right\}
$$

3. Main results

This section deals with the existence of at least one positive solution for BVPs (1.1)-(1.2). Our analysis relies on the Krasnoselskii fixed point theorem Theorem 2.4.

Theorem 3.1. Under assumptions $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$, the BVPs (1.1)-(1.2) has a non-negative solution (u, v) for any λ satisfying $L_{1}<\lambda<L_{2}$.

Proof. Let $L_{1}<\lambda<L_{2}$ and choose $\varepsilon>0$ such that

$$
\max \left\{\left[\left(\frac{2 \theta^{3}}{3}\right)^{2} \int_{\theta}^{1} \psi(v) a(v)\left(f_{\infty}-\varepsilon\right) d v\right]^{-1},\left[\left(\frac{2 \theta^{3}}{3}\right)^{2} \int_{\theta}^{1} \psi(v) a(v)\left(g_{\infty}-\varepsilon\right) d v\right]^{-1}\right\} \leq \lambda
$$

and

$$
\lambda \leq \min \left\{\left[\int_{0}^{1} \psi(v) a(v)\left(f_{0}+\varepsilon\right) d v\right]^{-1},\left[\int_{0}^{1} \psi(v) b(v)\left(g_{0}+\varepsilon\right) d v\right]^{-1}\right\}
$$

From the definitions of f_{0} and g_{0} there exists an $R_{1}>0$ such that

$$
f(u) \leq\left(f_{0}+\varepsilon\right) u, 0<u \leq R_{1}
$$

and

$$
g(u) \leq\left(g_{0}+\varepsilon\right) u, 0<u \leq R_{1} .
$$

Let $u \in K$ with $\|u\|=R_{1}$. From (2.1) and choice of ε, we have

$$
\begin{aligned}
\lambda \int_{0}^{1} H(t, s) b(v) g(u(v)) \leq & \lambda \int_{0}^{1} \psi(v) b(v) g(u(v)) d v \\
& \leq \lambda \int_{0}^{1} \psi(v) b(v)\left(g_{0}+\varepsilon\right) u(v) d v \\
& \leq\|u\| \lambda \int_{0}^{1} \psi(v) b(v)\left(g_{0}+\varepsilon\right) d v \\
& \leq R_{1}=\|u\|
\end{aligned}
$$

Consequently, from (2.1) and choice of ε, we obtain

$$
\begin{aligned}
Q_{\lambda} u(t) & =\lambda \int_{0}^{1} H(t, s) a(s) f\left(\lambda \int_{0}^{1} H(s, v) b(v) g(u(v)) d v\right) d s \\
& \leq \lambda \int_{0}^{1} \psi(s) a(s) f\left(\lambda \int_{0}^{1} H(s, v) b(v) g(u(v)) d v\right) d s \\
& \leq \lambda \int_{0}^{1} \psi(s) a(s)\left(f_{0}+\varepsilon\right)\left[\lambda \int_{0}^{1} H(s, v) b(v) g(u(v)) d v\right] d s \\
& \leq \lambda \int_{0}^{1} \psi(s) a(s)\left(f_{0}+\varepsilon\right) R_{1} d s \\
& \leq R_{1}=\|u\| .
\end{aligned}
$$

So, $\|T u\| \leq\|u\|$. If we set $\Omega_{1}=\left\{u \in B:\|u\|<R_{1}\right\}$, then

$$
\left\|Q_{\lambda} u\right\| \leq\|u\|, \text { for } u \in K \cap \partial \Omega_{1} .
$$

Considering the definitions of f_{∞} and g_{∞} there exists an $\bar{R}_{2}>0$ such that

$$
f(u) \geq\left(f_{\infty}-\varepsilon\right) u, \quad u \geq \bar{R}_{2},
$$

and

$$
g(u) \geq\left(g_{\infty}-\varepsilon\right) u, \quad u \geq \bar{R}_{2} .
$$

Let $u \in K$ and $R_{2}=\max \left\{2 R_{1}, \frac{3 \bar{R}_{2}}{2 \theta^{3}}\right\}$ with $\|u\|=R_{2}$, then

$$
\min _{s \in[\theta, 1]} u(s) \geq \frac{2}{3} \theta^{3}\|u\| \geq \bar{R}_{2}
$$

Therefore, from (2.2) and choice of ε, we have

$$
\begin{aligned}
\lambda \int_{0}^{1} H(t, s) b(v) g(u(v)) d & \geq \frac{2 \theta^{3}}{3} \lambda \int_{0}^{1} H(1, v) b(v) g(u(v)) d v \\
& \geq \frac{2 \theta^{3}}{3} \lambda \int_{\theta}^{1} \psi(v) b(v)\left(g_{\infty}-\varepsilon\right) u(v) d v \\
& \geq\|u\|\left(\frac{2 \theta^{3}}{3}\right)^{2} \lambda \int_{\theta}^{1} \psi(v) b(v)\left(g_{\infty}-\varepsilon\right) d v \\
& \geq R_{2}=\|u\| .
\end{aligned}
$$

Consequently, from (2.2), we obtain

$$
\begin{aligned}
Q_{\lambda} u(t) & \geq \frac{2 \theta}{3} \lambda \int_{\theta}^{1} \psi(s) a(s) f\left(\lambda \int_{\theta}^{1} H(s, v) b(v) g(u(v)) d v\right) d s \\
& \geq \frac{2 \theta^{3}}{3} \lambda \int_{\theta}^{1} \psi(s) a(s)\left(f_{\infty}-\varepsilon\right)\left[\lambda \int_{\theta}^{1} H(s, v) b(v) g(u(v)) d v\right] d s \\
& \geq \lambda \gamma \int_{\theta}^{1} \psi(s) a(s)\left(f_{\infty}-\varepsilon\right) R_{2} d s
\end{aligned}
$$

$$
\begin{aligned}
& \geq \lambda \gamma^{2} \int_{\theta}^{1} \psi(s) a(s)\left(f_{\infty}-\varepsilon\right) R_{2} d s \\
& \geq R_{2}=\|u\| .
\end{aligned}
$$

So, $\left\|Q_{\lambda} u\right\| \geq\|u\|$. If we set $\Omega_{2}=\left\{u \in B:\|u\|<R_{2}\right\}$, then

$$
\left\|Q_{\lambda} u\right\| \geq\|u\|, \text { for } u \in K \cap \partial \Omega_{2} .
$$

From of part (ii) of Theorem 2.4 to (3.1)and (3.1), the operator Q_{λ} has a fixed point $u^{*} \in K \cap\left(\bar{\Omega}_{2} / \Omega_{1}\right)$. As such and with v defined by

$$
v(t)=\lambda \int_{0}^{1} H(t, s) b(s) g(u(s)) d s
$$

This means that the BVPs (1.1)-(1.2) has a nonnegative solution (u, v) for the given λ. The proof is complete.
Theorem 3.2. Under assumptions $\left(H_{1}\right),\left(H_{2}\right),\left(H_{3}\right)$ and $\left(H_{4}\right)$, the BVPs (1.1)-(1.2) has a non-negative solution (u, v) for any λ satisfying $L_{3}<\lambda<L_{4}$.

Proof. Let $L_{3}<\lambda<L_{4}$ and choose $\varepsilon>0$ such that

$$
\max \left\{\left[\left(\frac{2 \theta^{3}}{3}\right)^{2} \int_{\theta}^{1} \psi(v) a(v)\left(f_{0}-\varepsilon\right) d v\right]^{-1},\left[\left(\frac{2 \theta^{3}}{3}\right)^{2} \int_{\theta}^{1} \psi(v) a(v)\left(g_{0}-\varepsilon\right) d v\right]^{-1}\right\} \leq \lambda
$$

and

$$
\lambda \leq \min \left\{\left[\int_{0}^{1} \psi(v) a(v)\left(f_{\infty}+\varepsilon\right) d v\right]^{-1},\left[\int_{0}^{1} \psi(v) b(v)\left(g_{\infty}+\varepsilon\right) d v\right]^{-1}\right\} .
$$

From the definitions of f_{0} and g_{0} there exists an $R_{1}>0$ such that

$$
f(u) \geq\left(f_{0}-\varepsilon\right) u, \quad 0<u \leq R_{1},
$$

and

$$
g(u) \geq\left(g_{0}-\varepsilon\right) u, \quad 0<u \leq R_{1} .
$$

Now $g(0)=0$ and so there exists $0<R_{2}<R_{1}$ such that

$$
\lambda g(u) \leq \frac{R_{1}}{\int_{0}^{1} \psi(v) b(v) d v}, \quad 0 \leq u \leq R_{2}
$$

Let $u \in K$ with $\|u\|=R_{2}$. Then

$$
\begin{aligned}
\lambda \int_{0}^{1} H(t, s) b(v) g(u(v)) \leq & \lambda \int_{0}^{1} \psi(v) b(v) g(u(v)) d v \\
& \leq \frac{\int_{0}^{1} \psi(v) b(v) R_{1} d v}{\int_{0}^{1} \psi(v) b(v) d v} \\
& \leq R_{1}=\|u\|
\end{aligned}
$$

Therefore, by (2.2), we obtain

$$
\begin{aligned}
& Q_{\lambda} u(t)=\lambda \int_{0}^{1} H(t, s) a(s) f\left(\lambda \int_{0}^{1} H(s, v) b(v) g(u(v)) d v\right) d s \\
& \quad \geq \frac{2 \theta^{3}}{3} \lambda \int_{\theta}^{1} \psi(s) a(s) f\left(\frac{2 \theta^{3}}{3} \lambda \int_{\theta}^{1} \psi(v) b(v) g(u(v)) d v\right) d s \\
& \geq \frac{2 \theta^{3}}{3} \lambda \int_{\theta}^{1} \psi(s) a(s)\left(f_{0}-\varepsilon\right)\left[\left(\frac{2 \theta^{3}}{3}\right)^{2} \lambda \int_{\theta}^{1} \psi(v) b(v)\left(g_{0}-\varepsilon\right)\|u\| d v\right] d s
\end{aligned}
$$

$$
\begin{aligned}
& \geq\|u\| \frac{2 \theta^{3}}{3} \lambda \int_{\theta}^{1} \psi(v) a(v)\left(f_{0}-\varepsilon\right) d v \\
& \geq\|u\|\left(\frac{2 \theta^{3}}{3}\right)^{2} \lambda \int_{\theta}^{1} \psi(v) a(v)\left(f_{0}-\varepsilon\right) d v \\
& \geq\|u\|
\end{aligned}
$$

So, $\left\|Q_{\lambda} u\right\| \geq\|u\|$. If we set $\Omega_{1}=\left\{u \in B:\|u\|<R_{2}\right\}$, then

$$
\left\|Q_{\lambda} u\right\| \geq\|u\|, \quad u \in K \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) .
$$

Considering the definitions of f_{∞} and g_{∞} there exists $\bar{R}_{1}>0$ such that

$$
f(u) \leq\left(f_{\infty}+\varepsilon\right) u, \quad u \geq \bar{R}_{1},
$$

and

$$
g(u) \leq\left(g_{\infty}+\varepsilon\right) u, \quad u \geq \bar{R}_{1} .
$$

We consider two cases: g is bounded or g is unbounded.
Case (i). Assume that g is bounded, say $g(x) \leq N, \quad N>0$ for all $0<x<\infty$. Then, for $u \in K$

$$
\lambda \int_{0}^{1} H(t, s) b(v) g(u(v)) \leq \lambda \int_{0}^{1} \psi(v) b(v) g(u(v)) d v .
$$

Let

$$
M=\max \left\{f(u): 0 \leq u \leq N \lambda \int_{0}^{1} \psi(v) b(v) d v\right\},
$$

and let

$$
R_{3}>\max \left\{2 R_{2}, M \lambda \int_{0}^{1} \psi(s) a(s) d s\right\} .
$$

Then, for $u \in K$ with $\|u\|=R_{3}$, we obtain

$$
\begin{aligned}
Q_{\lambda} u(t) & \leq \lambda \int_{0}^{1} \psi(s) a(s) M d s \\
& \leq R_{3}=\|u\|
\end{aligned}
$$

so that $\left\|Q_{\lambda} u\right\| \leq\|u\|$. If we set $\Omega_{2}=\left\{u \in B:\|u\| \leq R_{3}\right\}$, then, for $u \in K \cap \partial \Omega_{2}$,

$$
\left\|Q_{\lambda} u\right\| \leq\|u\|, \quad u \in K \cap \partial \Omega_{2}
$$

Case (ii). g is unbounded, there exists $R_{3}>\max \left\{2 R_{2}, \bar{R}_{1}\right\}$ such that $g(u) \leq g\left(R_{3}\right)$, for $0<u \leq R_{3}$ Similarly, there exists $R_{4}>$ $\max \left\{R_{3}, \lambda \int_{0}^{1} \psi(v) b(v) g\left(R_{3}\right) d v\right\}$ such that $f(u) \leq f\left(R_{4}\right)$, for $0<u \leq R_{4}$.
Let $u \in K$ with $\|u\|=R_{4}$, from $\left(H_{4}\right)$, we have

$$
\begin{aligned}
Q_{\lambda} u(t) & \leq \lambda \int_{0}^{1} \psi(s) a(s) f\left(\lambda \int_{0}^{1} \psi(v) b(v) g\left(R_{3}\right) d v\right) d s \\
& \leq \lambda \int_{0}^{1} \psi(v) a(v) f\left(R_{4}\right) d v \\
& \leq \lambda \int_{0}^{1} \psi(v) a(v)\left(f_{\infty}+\varepsilon\right) R_{4} d v \\
& \leq R_{4}=\|u\|
\end{aligned}
$$

So, $\left\|Q_{\lambda} u\right\| \leq\|u\|$. If we set $\Omega_{2}=\left\{u \in C[0,1] \mid\|u\|<R_{4}\right\}$, then

$$
\left\|Q_{\lambda} u\right\| \leq\|u\|, \quad \text { for } \quad u \in K \cap \partial \Omega_{2}
$$

Thus, in either of cases, From of part (ii) of Theorem 2.4, the operator Q_{λ} has a fixed point $u^{*} \in K \cap\left(\bar{\Omega}_{2} / \Omega_{1}\right)$. This means that the BVPs (1.1)-(1.2) has a nonnegative solution (u, v) for the chosen value of λ. The proof is complete.

4. Examples

Consider the nonlinear differential equations with parameter λ,

$$
\left\{\begin{array}{cl}
\left.u^{(4)}(t)\right)=\lambda t v(t)\left(v(t) e^{-v(t)}+\frac{v(t)+K}{1+\eta v(t)}\right), & 0<t<1, \tag{4.1}\\
v^{(4)}(t)=\lambda t u(t)\left(u(t) e^{-u(t)}+\frac{u(t)+K}{1+\eta u(t)}\right), & 0<t<1,
\end{array}\right.
$$

subject to two-point boundary conditions

$$
\left\{\begin{array}{c}
u(0)=0, u^{\prime}(0)=0, u^{\prime \prime}(1)=0, u^{\prime \prime \prime}(1)=0, \tag{4.2}\\
v(0)=0, v^{\prime}(0)=0, v^{\prime \prime}(1)=0, v^{\prime \prime \prime}(1)=0 .
\end{array}\right.
$$

Where $a(t)=b(t)=t, f(v)=v\left(v e^{-v}+\frac{v+K}{1+\eta v}\right)=, g(u)=u\left(1+\frac{u+K}{1+\eta u}\right)$. By simple calculations, we have $g(0)=0, f_{\infty}=g_{\infty}=\frac{1}{\eta}, f_{0}=$ $g_{0}=K$. Choosing $\theta=\frac{1}{3}, \eta=100$, and $K=10^{4}$, we obtain $L_{3} \cong 1,1817237, L_{4} \cong 9,1666667$.
By Theorem 3.2 it follow that for every λ such that $1,1817237<\lambda<9,1666667$, the BVPs (4.1)-(4.2) has a nonnegative solution (u, v) for given λ.

References

[1] R. B. Agarwal, D. O'Regan, P. J. Wang, Positive solutions of differential, Difference, and integral equations, Kluwer Academic, Boston, Ma, 1999.
[2] D. R. Anderson, R. I. Avery, A fourth-order four-point right focal boundary value problem, Rocky Mountain J. Math., 36 (2006), 367-380.
[3] N. Bouteraa, S. Benaicha, Triple positive solutions of higher-order nonlinear boundary value problems, J. Comput. Sci. Comput. Math., 7 (2017), 25-31.
[4] N. Bouteraa, S. Benaicha, Nonlinear boundary value problems for higher-order ordinary differential equation at resonance, Romanian J. Math. Comput. Sci., 2 (2018), 83-91
[5] N. Bouteraa, S. Benaicha, Existence of solutions for third-order three-point boundary value problem, Mathematica, 60(83) (2018), 12-22.
[6] A. Cabada, S. Heikkila, Uniqueness, comparison and existence results for third-order functional initial-boundary value problems, Comput. Math. Appl., 41 (2001), 607-618.
[7] A. Cabada, S. Tersian, Existence and multiplicity of solutions to boundary value problems for fourth-order impulsive differential equations, Bound. Value Probl., 2014, 2014:105.
[8] J. Davis, J. Henderson, Uniqueness implies existence for fourth-order Lidstone boundary value problems, Panamer. Math. J., 8 (1998), 23-35.
[9] H. Djourdem, S. Benaicha, Existence of positive solutions for a nonlinear three-point boundary value problem with integral boundary conditions, Acta Math. Univ. Comenianae, 87 (2018), 167-177.
[10] L. H. Erbe, H. Wang, On -the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994) $743-748$.
[11] C. P. Gupta, Existence and uniqueness theorem for the bending of an elastics beam equation, Appl. Anal., 26 (1988), 289-304.
[12] G. Infante, P. Pientramala, A cantilever equation witht nonlinear boundary conditions, Electron. J. Qual. Theory Differe. Equ., Spec. Ed. I., 15 (2009), 1-14.
[13] R. Ma, L. Xu, Existence of positive solutions for a nonlinear fourth-order boundary value problem, Appl. Math. Lett. 23 (2010), 537-543.
[14] Y. Sun, C. Zhu, Existence of positive solutions for singular fourth-order three-point boundary value problems, Adv. Differ. Equ., 2013, $2013: 51$. doi:10.1186-1847-2013-51.
[15] A. R. Aftabizadeh, Existence and uniqueness theorems for fourth-order boundary value problems, J. Math. Anal. Appl. 116 (1986), 415-426.
[16] E. Alves, T.F.Ma., M.L. Policer, Monotone positive solutions for a fourth order equation with nonlinear boundary conditions value, Nonlinear Anal. 71 (2009), 3834-3841.
[17] C. P. Gupta, Existence and uniqueness theorem for the bending of an elastics beam equation at resonance, J. Math. Anal Appl. 135 (1988), $208-225$.
[18] R. Ma, B. Thompson, Nodal solutions for a nonlinear fourth-order eigenvalue problem, Acta Math. Sin. Engl. Ser. 24 (2008), $27-34$.
[19] Q. Yao, Local existence of multiple positive solutions to a singular cantiliver beam equation, J. Math. Anal. Appl. 363 (2010), 138-154.
[20] N. Bouteraa, S. Benaicha, Positive periodic solutions for a class of fourth-order nonlinear differential equations, Numerical Analysis and Applications., 22(1) (2019), 1-14.
[21] N. Bouteraa, S. Benaicha, H. Djourdem, M.E. Benattia, Positive solutions for fourth-order two-point boundary value problem with a parameter, Romanian J. Math. Comput. Sci., 8 (2018), 17-30.
[22] H. Djourdem, S. Benaicha, N. Bouteraa, Existence and iteration of monotone positive solution for a fourth-order nonlinear boundary value problem, Fundam. J. Math. Appl., 1 (2018), 205-211.
[23] L. Hu, L. L. Wang, Multiple positive solutions of boundary value problems for systems of nonlinear second order differential equation, J. Math. Anal. Appl., 355 (2007), 1052-1060.
[24] B. Liu, L. Liu, Y. Wu, Positive solutions for singular systems of three-point boundary value problems, Computers Math. Appl., 53 (2007), $1429-1438$.
[25] Y. Zhou, Y. Xu, Positive solutions of three boundary value problems for systems of nonlinear second order ordinary differential equation, J. Math. Anal Appl., 320 (2006), 578-590.
[26] M. A. Krasnosel'skii, Positive solutions of operator equations, Noordhoff, Groningen, 1964.

