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Abstract

This study discusses a numerical methods for hybrid fuzzy differential equations by fifth
order RK Nystrom Method for fuzzy differential equations. We prove the convergence
result and give numerical examples to illustrate the theory.

1. Introduction

The topic of fuzzy differential equations(FDEs) has been rapidly growing in recent years. The concept of fuzzy derivative was first introduced
by Chang and Zadeh [1] , it was followed up by Dubois and Prade [2] by using the extension principal in their approach. Other methods
have been discussed by Puri and Ralescu [3] and Goetschel and Voxman [4]. Kandel and Byatt [5] applied the concept of fuzzy differential
equation (FDE) to the analysis of fuzzy dynamical problems. The FDE and the initial value problem(Cauchy problem) were rigorously
treated by Kaleva [6, 7], Seikkala [8], He and Yi [9] , Kloeden [10] and by other researchers [11, 12]. Recently several authors has investigate
hybrid FDEs [13, 14, 15, 16].
Hybrid systems are devoted to modeling, design, and validation of interactive systems of computer programs and continuous systems. These
are, control systems that are capable of controlling complex systems which have discrete dynamics event as well as continuous time dynamics
can be modeled by hybrid system. Hybrid system evolve in continuous time like differential systems but undergo fundamental changes in
their governing equations at a sequence of discrete times. For analytical results on stability properties and comparison theorems we refer to
[3, 8, 17, 18].
In this paper, we develop numerical methods for solving hybrid fuzzy differential equations by Runge-Kutta Nystrom method using the
Seikkala derivative. In Section 2 we list some basic definitions for fuzzy valued functions. In Section 3 we review hybrid fuzzy differential
systems. In Section 4 the Runge-Kutta Nystrom method of order five for solving hybrid fuzzy differential equations and a convergence
theorem are discussed. Section 5 contains a some numerical examples to illustrate the theory.

2. Preliminaries

Denote by E1 the set of all functions u : R→ [0,1] such that (i) v is normal, that is, there exist an x0 ∈ R such that v(x0) = 1, (ii) u is a fuzzy
convex, that is, for x,y ∈ R and 0≤ λ ≤ 1, v(λx+(1−λ )y)≥min{v(x),v(y)}, (iii) v is upper semi continuous, and (iv) [v]0 ≡ the closure
of {x ∈ R : v(x)> 0} is compact. For 0 < r ≤ 1, we define [v]r = {x ∈ R : v(x)≥ r}. An example of a v ∈ E1 is given by

v(x) =


4x−3, if x ∈ (0.75,1],
−2x+3, if x ∈ (1,1.5),
0, if x /∈ (0.75,1.5).

(2.1)
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Figure 3.1: Bouncing ball.

The r-level sets of u in (2.1) are given by

[v]r = [0.75+0.25r, 1.5−0.5r]. (2.2)

For later purpose, we define 0̂ ∈ E1 as 0̂(x) = 1 if x = 0 and 0̂(x) = 0 if x 6= 0.
Next we review the Seikkala derivative [8] of x : I→ E1 where I ⊂ R is an interval. If [x(t)]r = [xr(t),xr(t)] for all t ∈ I and r ∈ [0,1], then
[x′(t)]r = [(xr)′(t),(xr)′(t)] if x′(t) ∈ E1. Next consider the initial value problem(IVP)

x′(t) = g(t,x(t)), x(0) = x0, (2.3)

where f : [0,∞)×R→ R is continuous. We would like to interpret (2.3) using the Seikkala derivative and x0 ∈ E1. Let [x0]
r = [xr

0,x
r
0] and

[x(t)]r = [xr(t),xr(t)]. By the Zadeh extension principle we get g : [0,∞)×E1→ E1 where

[g(t,x)]r = [min{g(t,v) : v ∈ [xr(t),xr(t)]},max{g(t,v) : v ∈ [xr(t),xr(t)]}].

Then x : [0,∞)→ E1 is a solution of (2.3) using the Seikkala derivative and x0 ∈ E1 if

(xr)′(t) = min{g(t,v) : v ∈ [xr(t),xr(t)]}, xr(0) = xr
0,

(xr)′(t) = max{g(t,v) : v ∈ [xr(t),xr(t)]}, xr(0) = xr
0,

for all t ∈ [0,∞) and r ∈ [0,1]. Lastly consider an g : [0,∞)×R×R→ R which is continuous and the IVP{
x′(t) = g(t,x(t),k),
x(0) = x0.

(2.4)

As in [19], to interpret (2.4) using the Seikkala derivative and x0,k ∈ E1, by the Zadeh extension principle we use g : [0,∞)×E1×E1→ E1

where

[g(t,x,k)]r = [min{g(t,v,vk) : v ∈ [xr(t),xr(t)], vk ∈ [kr,kr
]},

max{g(t,v,vk) : v ∈ [xr(t),xr(t)], vk ∈ [kr,kr
]}],

where kr = [kr,kr
]. Then x : [0,∞)→ E1 is a solution of (2.4) using the Seikkala derivative and x0,k ∈ E1 if

(xr)′(t) = min{g(t,v,vk) : v ∈ [xr(t),xr(t)],vk ∈ [kr,kr
]}, xr(0) = xr

0,

(xr)′(t) = max{g(t,v,vk) : v ∈ [xr(t),xr(t)],vk ∈ [kr,kr
]}, xr(0) = xr

0,

for all t ∈ [0,∞) and r ∈ [0,1].

3. The hybrid fuzzy differential systems

Hybrid systems have been used to model several cyber-physical systems, including physical systems with impact, logic-dynamic controllers,
and even Internet congestion.
A canonical example of a hybrid system is the bouncing ball, the physical system with impact. Here, the ball (thought of as a point-mass) is
dropped from an initial height and bounces off the ground, dissipating its energy with each bounce. The ball exhibits continuous dynamics
between each bounce; however, as the ball impacts the ground, its velocity undergoes a discrete change modeled after an inelastic collision.
A mathematical description of the bouncing ball follows. Let x1 be the height of the ball and x2 be the velocity of the ball. A hybrid system
describing the ball is as follows:
When x ∈C = {x1 ≥ 0}, flow is governed by ẋ1 = x2, ẋ2 =−g, where g is the acceleration due to gravity. These equations state that when
the ball is above ground, it is being drawn to the ground by gravity.
When x ∈ D = {x1 = 0}, jumps are governed by x+1 = x1, x+2 =−γx2, where 0 < γ < 1 is a dissipation factor. This is saying that when the
height of the ball is zero (it has impacted the ground), its velocity is reversed and decreased by a factor of γ . Effectively, this describes the
nature of the inelastic collision.
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Figure 3.2: A hybrid system modeling a car with four gears.

Figure 3.3: The efficiency functions of the different gears

Car Gear shift:

The gear shift example describes a control design problem where both the continuous and the discrete controls need to be determined. Figure
3.2 shows a model of a car with a gear box having four gears.The longitudinal position of the car along the road is denoted by x1 and its
velocity by x2 (lateral dynamics are ignored). The model has two control signals; the gear denoted gear ∈ {1, ...,4} and the throttle position
denoted u ∈ [umin,umax]. Gear shifting is necessary because little power can be ignored by the engine at very low or very high engine speed.
The function αi represents the efficiency of the gear i. Typical shapes of the function αi are shown in the Figure 3.3.
How many real valued continuous states does this model have? How many discrete states?
Several interesting control problems can be posed for this simple car model. For example, what is the optimal control strategy to drive from
(a,0) to (b,0) in a minimum time? The problem is not trivial if we include the reasonable assumption that each gear shift takes a certain
amount of time. The optimal control of hybrid system, may be derived using the theory of optimal control of hybrid systems.

Consider the hybrid fuzzy differential system{
x′(t) = g(t,x(t),λk(xk)), t ∈ [tk, tk+1],
x(tk) = xk,

(3.1)

where
′

denotes Seikkala differentiation, 0≤ t0 < t1 < · · ·< tk < · · · , tk→ ∞,
g ∈C[R+×E1×E1,E1],λk ∈C[E1,E1]. To be specific the system look like

x′(t) =


x′0(t) = g(t,x0(t),λ0(x0)), x0(t0) = x0, t0 ≤ t ≤ t1,
x′1(t) = g(t,x1(t),λ1(x1)), x1(t1) = x1, t1 ≤ t ≤ t2,
. . .
x′k(t) = g(t,xk(t),λk(xk)), xk(tk) = xk, tk ≤ t ≤ tk+1,
. . .

Discuss the existence and uniqueness of solution of (3.1) hold for each [tk, tk+1], by the solution of (2.3) we mean the following function:

x(t) = x(t, t0,x0) =


x0(t), t0 ≤ t ≤ t1,
x1(t), t1 ≤ t ≤ t2,
. . .
xk(t), tk ≤ t ≤ tk+1,
. . .

We note that the solution of (3.1) are piecewise differentiable in each interval for t ∈ [tk, tk+1] for a fixed xk ∈ E1 and k = 0,1,2, . . .
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Using a representation of fuzzy numbers studied by Goestschel and Voxman [4] and Wu and Ma [18], we may represent x ∈ E1 by
a pair of fuctions (x(r),x(r)),0 ≤ r ≤ 1, such that (i) x(r) is bounded, left continuous, and nondecreasing, (ii) x(r) is bounded, left
continuous, and nonincreasing, and (iii) x(r) ≤ x(r), 0 ≤ r ≤ 1. For example , v ∈ E1 given in ((2.1) is represented by (v(r),v(r)) =
(0.75+0.25r,1.5−0.5r), 0≤ r ≤ 1, which is similar to [v]r given by (2.2).

Therefore we may replace (3.1) by an equivalent system
x′(t) = g(t,x,λk(xk))≡ Fk(t,x,x), x(tk) = xk,

x′(t) = g(t,x,λk(xk))≡ Gk(t,x,x), x(tk) = xk,
(3.2)

which possesses a unique solution (x,x) which is a fuzzy function. That is for each t, the pair [x(t;r),x(t;r)] is a fuzzy number, where
x(t;r),x(t;r) are respectively the solutions of the parametric form given by

x′(t;r) = Fk[t,x(t;r),x(t;r)], x(tk;r) = xk(r),

x′(t;r) = Gk[t,x(t;r),x(t;r)], x(tk;r) = xk(r),
(3.3)

for r ∈ [0,1].

4. The Runge-Kutta Nystrom method

In this section, for a hybrid fuzzy differential equation (3.1) we develop the fifth order Runge-Kutta Nystrom method when f and λk in (2.3)
can be obtained via the Zadeh extension principle from f ∈C[R+×R×R,R] and λk ∈C[R,R](since we are using the Seikkala derivative).
We assume that the existence and uniqueness of solutions of (3.1) hold for each [tk, tk+1].
For a fixed r, to integrate the system in (3.3) in [t0, t1], [t1, t2], . . .,[tk, tk+1], . . ., we replace each interval by a set of Nk +1 discrete equally
spaced grid points (including the end points) at which exact solution x(t;r) = (x(t;r),x(t;r)) is approximated by some (yk(t;r),yk(t;r)). For
each the chosen grid points on [tk, tk+1] at tk,n = tk +nhk,hk =

tk+1−tk
Nk

, 0≤ n≤Nk, Let (Y k(t;r),Y k(t;r))≡ (x(t;r),x(t;r)),(Y k(t;r),Y k(t;r))
and (yk(t;r),yk(t;r)) may be denoted respectively by (Y k,n(r),Y k,n(r)) and (yk,n(r),yk,n(r)). We allow the Nk’s to vary over the [tk, tk+1]’s
so that the hk’s may be comparable.
The Runge-Kutta Nystrom method is a fifth order approximation of Y ′k(t;r) and Y ′k(t;r). To develop the Runge-Kutta Nystrom method for
(2.3), and define

yk,n+1(r)− yk,n(r) =
6

∑
i=1

wiki(tk,n;yk,n(r)),

yk,n+1(r)− yk,n(r) =
6

∑
i=1

wiki(tk,n;yk,n(r)),

where w1,w2,w3,w4,w5 and w6 are constants and

k1(tk,n;yk,n(r)) = min
{

hkg
(

tk,n,v,λk(vk)

)∣∣∣∣
v ∈ [yk,n(r),yk,n(r)],vk ∈ [yk,0(r),yk,0(r)]

}
,

k1(tk,n;yk,n(r)) = max
{

hkg
(

tk,n,v,λk(vk)

)∣∣∣∣
v ∈ [yk,n(r),yk,n(r)],vk ∈ [yk,0(r),yk,0(r)]

}
,

k2(tk,n;yk,n(r)) = min
{

hkg
(

tk,n +
1
3

hk,v,λk(vk)

)∣∣∣∣
v ∈ [zk1

(tk,n,yk,n(r)),zk1(tk,n,yk,n(r))],vk ∈ [yk,0(r),yk,0(r)]
}
,

k2(tk,n;yk,n(r)) = max
{

hkg
(

tk,n +
1
3

hk,v,λk(vk)

)∣∣∣∣
v ∈ [zk1

(tk,n,yk,n(r)),zk1(tk,n,yk,n(r))],vk ∈ [yk,0(r),yk,0(r)]
}
,

k3(tk,n;yk,n(r)) = min
{

hkg
(

tk,n +
2
5

hk,v,λk(vk)

)∣∣∣∣
v ∈ [zk2

(tk,n,yk,n(r)),zk2(tk,n,yk,n(r))],vk ∈ [yk,0(r),yk,0(r)]
}
,
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k3(tk,n;yk,n(r)) = max
{

hkg
(

tk,n +
2
5

hk,v,λk(vk)

)∣∣∣∣
v ∈ [zk2

(tk,n,yk,n(r)),zk2(tk,n,yk,n(r))],vk ∈ [yk,0(r),yk,0(r)]
}
,

k4(tk,n;yk,n(r)) = min
{

hkg
(

tk,n +hk,v,λk(vk)

)∣∣∣∣
v ∈ [zk3

(tk,n,yk,n(r)),zk3(tk,n,yk,n(r))],vk ∈ [yk,0(r),yk,0(r)]
}
,

k4(tk,n;yk,n(r)) = max
{

hkg
(

tk,n +hk,v,λk(vk)

)∣∣∣∣
v ∈ [zk3

(tk,n,yk,n(r)),zk3(tk,n,yk,n(r))],vk ∈ [yk,0(r),yk,0(r)]
}
,

k5(tk,n;yk,n(r)) = min
{

hkg
(

tk,n +
2
3

hk,v,λk(vk)

)∣∣∣∣
v ∈ [zk4

(tk,n,yk,n(r)),zk4(tk,n,yk,n(r))],vk ∈ [yk,0(r),yk,0(r)]
}
,

k5(tk,n;yk,n(r)) = max
{

hkg
(

tk,n +
2
3

hk,v,λk(vk)

)∣∣∣∣
v ∈ [zk4

(tk,n,yk,n(r)),zk4(tk,n,yk,n(r))],vk ∈ [yk,0(r),yk,0(r)]
}
,

k6(tk,n;yk,n(r)) = min
{

hkg
(

tk,n +
4
5

hk,v,λk(vk)

)∣∣∣∣
v ∈ [zk5

(tk,n,yk,n(r)),zk5(tk,n,yk,n(r))],vk ∈ [yk,0(r),yk,0(r)]
}
,

k6(tk,n;yk,n(r)) = max
{

hkg
(

tk,n +
4
5

hk,v,λk(vk)

)∣∣∣∣
v ∈ [zk5

(tk,n,yk,n(r)),zk5(tk,n,yk,n(r))],vk ∈ [yk,0(r),yk,0(r)]
}
,

zk1
(tk,n,yk,n(r)) = yk,n(r)+

1
3

k1(tk,n,yk,n(r)),

zk1(tk,n,yk,n(r)) = yk,n(r)+
1
3

k1(tk,n,yk,n(r)),

zk2
(tk,n,yk,n(r)) = yk,n(r)+

4
25

k1(tk,n,yk,n(r))+
6
25

k2(tk,n,yk,n(r)),

zk2(tk,n,yk,n(r)) = yk,n(r)+
4
25

k1(tk,n,yk,n(r))+
6
25

k2(tk,n,yk,n(r)),

zk3
(tk,n,yk,n(r)) = yk,n(r)+

1
4

k1(tk,n,yk,n(r))

−12
4

k2(tk,n,yk,n(r))+
15
4

k3(tk,n,yk,n(r)),

zk3(tk,n,yk,n(r)) = yk,n(r)+
1
4

k1(tk,n,yk,n(r))

−12
4

k2(tk,n,yk,n(r))+
15
4

k3(tk,n,yk,n(r)),

zk4
(tk,n,yk,n(r)) = yk,n(r)+

6
81

k1(tk,n,yk,n(r))

+
90
81

k2(tk,n,yk,n(r))−
50
81

k3(tk,n,yk,n(r))+
8
81

k4(tk,n;yk,n(r)),

zk4(tk,n,yk,n(r)) = yk,n(r)+
6
81

k1(tk,n,yk,n(r))

+
90
81

k2(tk,n,yk,n(r))−
50
81

k3(tk,n,yk,n(r))+
8
81

k4(tk,n;yk,n(r)),

zk5
(tk,n,yk,n(r)) = yk,n(r)+

6
75

k1(tk,n,yk,n(r))

+
36
75

k2(tk,n,yk,n(r))+
10
75

k3(tk,n,yk,n(r))+
8
75

k4(tk,n;yk,n(r)),

zk5(tk,n,yk,n(r)) = yk,n(r)+
6
75

k1(tk,n,yk,n(r))

+
36
75

k2(tk,n,yk,n(r))+
10
75

k3(tk,n,yk,n(r))+
8
75

k4(tk,n;yk,n(r)),
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Next we define

Sk[tk,n,yk,n(r),yk,n(r)] = 23k1(tk,n,yk,n(r)+125k3(tk,n,yk,n(r))

−81k5(tk,n,yk,n(r))+125k6(tk,n,yk,n(r)),

Tk[tk,n,yk,n(r),yk,n(r)] = 23k1(tk,n,yk,n(r)+125k3(tk,n,yk,n(r))

−81k5(tk,n,yk,n(r))+125k6(tk,n,yk,n(r))

.

The exact solution at tk,n+1 is given by
Y k,n+1(r)≈ Y k,n(r)+

1
192

Sk[tk,n,Y k,n(r),Y k,n(r)],

Y k,n+1(r)≈ Y k,n(r)+
1

192
Tk[tk,n,Y k,n(r),Y k,n(r)].

The approximate solution is given by 
yk,n+1(r)≈ yk,n(r)+

1
192

Sk[tk,n,yk,n(r),yk,n(r)],

yk,n+1(r)≈ yk,n(r)+
1

192
Tk[tk,n,yk,n(r),yk,n(r)].

(4.1)

Lemma 4.1. Suppose k∈ Z+, εk > 0, r ∈ [0,1], and hk < 1 are fixed. Let {Zk,n(r)}Nk
n=0 be the fifth order R-K Nystrom method approximation

with N = Nk to the fuzzy IVP: {
x′(t) = f (t,x(t),λk(xk)), t ∈ [tk, tk+1],
x(tk) = xk,

(4.2)

If {yk,n(r)}Nk
n=0 denotes the result of (3.3) from some yk,0(r), then there exists δk > 0 such that |zk,0(r)−yk,0(r)|< δk, |zk,0(r)−yk,0(r)|< δk

imply |zk,0(r)− yk,0(r)|< εk, |zk,0(r)− yk,0(r)|< εk.

Theorem 4.2. Consider the systems (3.2) and (4.1). For a fixed k ∈ Z+ and r ∈ [0,1],

lim
h0,...,hk→0

yk,Nk
(r) = x(tk+1;r), (4.3)

lim
h0,...,hk→0

yk,Nk
(r) = x(tk+1;r). (4.4)

5. Numerical examples

Consider the fuzzy differential equation

x′(t) = x(t), x(0;r) = [0.75+0.25r, 1.125−0.125r], 0≤ r ≤ 1. (5.1)

By the fifth order Runge Kutta Nystorm method with N=10

y(1.0;r) = (0.75+0.25r)(c0,1)
10, (1.125−0.125r)(c0,1)

10, (5.2)

where y(t;r) denotes an approximate solution of (5.1). Since the exact solution of (5.1) is x(t;r) = [(0.75+0.25r)et , (1.125−0.125r)et ], 0≤
r ≤ 1, we see that
x(1;r) = [(0.75+0.25r)e, (1.125−0.125r)e], 0≤ r ≤ 1, which compares well with (5.2). By the fifth order Runge Kutta Nystorm method
with N = 10,

y(1.0;r) = [(0.75+0.25r)(c0,1)
10
, (1.125−0.125r)(c0,1)

10], 0≤ r ≤ 1, (5.3)

where c0,1 = 1+h+
(h)2

2
+

(h)3

6
+

(h)4

24
+

(h)5

120
.

Example 5.1. Next consider the following hybrid fuzzy IVP,{
x
′
(t) = x(t)+m(t)λkx(tk), t ∈ [tk, tk+1], tk = k, k = 0,1,2,3, ...,

x(t;r) = [(0.75+0.25r)et , (1.125−0.125r)et ], 0≤ r ≤ 1,
(5.4)

where

m(t) =
{

2(t(mod1)) if t(mod1)≤ 0.5,
2(1− t(mod1) if t(mod1)> 0.5,
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λk(µ) =

{
0̂, if k = 0
µ, if k ∈ {1,2, . . .}.

The hybrid fuzzy IVP (5.4) is equivalent to the following systems of fuzzy IVPs: x
′

0(t) = x0(t), t ∈ [0,1],
x0(0;r) = [(0.75+0.25r)e,(1.125−0.125r)e], 0≤ r ≤ 1,
xi
′(t) = xi(t)+m(t)xi−1(t), t ∈ [ti, ti+1],xi(t) = xi−1(ti), i = 1,2, ...,

In (5.4), x(t)+m(t)λk(x(tk) is continous function of t,x and λk(x(tk). Therefore by Example 6.1 of Kaleva [6], for each k = 0,1,2, . . ., the
fuzzy IVP {

x
′
(t) = x(t)+m(t)λk(x(tk)), t ∈ [tk, tk+1], tk = k,

x(tk) = xtk ,
(5.5)

has a unique solution on [tk, tk+1]. To numerically solve the hybrid fuzzy IVP (5.4) we will apply the Runge-Kutta method of order five for
hybrid fuzzy differential equation with N = 10 to obtain y1,2(r) approximating x(2.0;r). Let f : [0,∞)×R×R→ R be given by

f (t,x,λk(x(tk))) = x(t)+m(t)λk(x(tk)), tk = k, k = 0,1,2, . . . , (5.6)

where λk : R→ R is given by

λk(x) =
{

0, if k = 0
x, if k ∈ {1,2, . . .}.

By Example 1 of [19], (5.1) gives

y1,0(r) = [(0.75+0.25r)(c0,1)
10,(1.125−0.125r)(c0,1)

10].

Next suppose k = 1 and n = 0. Then

y1,1(r) = y1,0(r)+
1

192
S1[1.0,y1,0(r),y1,0(r)],

y1,1(r) = y1,0(r)+
1

192
T1[1.0,y1,0(r),y1,0(r)].

To obtain y1,1(r), i = 1,2,3,4,5

y
(

1+
i

10
;r
)
= y
(

1+
i−1
10

;r
)

c0,1 +

[
2i−1
100

+
3i−2
3000

+
4i−3

120000
+

5i−4
6000000

+
i−1

60000000

]
y(1.0;r),

y
(

1+
i

10
;r
)
= y
(

1+
i−1
10

;r
)

c0,1 +

[
2i−1
100

+
3i−2
3000

+
4i−3

120000
+

5i−4
6000000

+
i−1

60000000

]
y(1.0;r),

Then for i = 6,7,8,9,10

y
(

1+
i

10
;r
)
= y
(

1+
i−1
10

;r
)

c0,1 +

[
1
5
−
(

2i−2
100

+
i−1
1000

+
i−1

30000
+

i−1
1200000

+
i−1

60000000

)]
y(1.0;r),

y
(

1+
i

10
;r
)
= y
(

1+
i−1
10

;r
)

c0,1 +

[
1
5
−
(

2i−2
100

+
i−1
1000

+
i−1

30000
+

i−1
1200000

+
i−1

60000000

)]
y(1.0;r).

Let

c2,0 = (c0,1)
10 +

5

∑
k=1

(c0,1)
10−k

[
2k−1

100
+

3k−2
3000

+
4k−3
120000

+
5k−4

6000000
+

k−1
60000000

]

+
10

∑
k=6

(c0,1)
10−k

[
1
5
−
(

2k−2
100

+
k−1
1000

+
k−1
30000

+
k−1

1200000
+

k−1
60000000

)]
.



46 Journal of Mathematical Sciences and Modelling

t r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.1 2.274208 2.350015 2.425822 2.501629 2.577436 2.653243 2.729050 2.804857 2.880664 2.956471 3.032277
1.2 2.577355 2.663267 2.749179 2.835091 2.921003 3.006915 3.092826 3.178738 3.264650 3.350562 3.436474
1.3 2.955267 3.053776 3.152285 3.250794 3.349303 3.447812 3.546321 3.644830 3.743339 3.841848 3.940357
1.4 3.415807 3.529668 3.643528 3.757388 3.871249 3.985109 4.098969 4.212829 4.326690 4.440550 4.554410
1.5 3.967666 4.099921 4.232177 4.364432 4.496688 4.628943 4.761199 4.893454 5.025710 5.157966 5.290221
1.6 4.578278 4.730887 4.883496 5.036106 5.188715 5.341324 5.493934 5.646543 5.799152 5.951761 6.104371
1.7 5.210226 5.383900 5.557575 5.731249 5.904923 6.078597 6.252271 6.425946 6.599620 6.773294 6.946968
1.8 5.865754 6.061279 6.256805 6.452330 6.647855 6.843380 7.038905 7.234430 7.429956 7.625481 7.821006
1.9 6.547342 6.765587 6.983832 7.202077 7.420321 7.638566 7.856811 8.075056 8.293300 8.511545 8.729790
2.0 7.257731 7.499655 7.741580 7.983504 8.225429 8.467353 8.709277 8.951202 9.193126 9.435050 9.676975

Table 1: The approximation solution by RK Nystrom method to the IVP(15) - x(t;r)

t r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.1 3.411312 3.373409 3.335505 3.297602 3.259698 3.221795 3.183891 3.145988 3.108084 3.070181 3.032277
1.2 3.866033 3.823077 3.780121 3.737165 3.694209 3.651253 3.608298 3.565342 3.522386 3.479430 3.436474
1.3 4.432901 4.383647 4.334392 4.285138 4.235883 4.186629 4.137375 4.088120 4.038866 3.989611 3.940357
1.4 5.123711 5.066781 5.009851 4.952921 4.895991 4.839061 4.782131 4.725201 4.668270 4.611340 4.554410
1.5 5.951499 5.885371 5.819243 5.753115 5.686988 5.620860 5.554732 5.488604 5.422477 5.356349 5.290221
1.6 6.867417 6.791112 6.714808 6.638503 6.562199 6.485894 6.409589 6.333285 6.256980 6.180675 6.104371
1.7 7.815339 7.728502 7.641665 7.554828 7.467991 7.381154 7.294317 7.207480 7.120643 7.033805 6.946968
1.8 8.798632 8.700869 8.603107 8.505344 8.407581 8.309819 8.212056 8.114294 8.016531 7.918768 7.821006
1.9 9.821014 9.711891 9.602769 9.493647 9.384524 9.275402 9.166280 9.057157 8.948035 8.838912 8.729790
2.0 10.88659 10.76563 10.64467 10.52371 10.40274 10.28178 10.16082 10.03986 9.918899 9.797937 9.676975

Table 2: The approximation solution by RK Nystrom method to the IVP(15) - x(t;r)

Then
y2.0;r = c2.0y1(1.0;r),

= [c2,0(0.75+0.25r)(c1.0)
10,c2,0(1.125−0.125r)(c1.0)

10], 0≤ r ≤ 1.

Since the exact solution of (5.4) for t ∈ [1,1.5] is x(t;r) = x(1;r)(3et−1− 2t),0 ≤ r ≤ 1, x(1.5;r) = x(1;r)(3
√

e− 3), 0 ≤ r ≤ 1. Then
x(1.5;r) is approximately 5.29022058 and y1,1 is approximately 5.29022158. Since the exact solution of (5.4) for t ∈ [1.5,2] is x(t;r) =
x(1;r)(2t−2+ et−1.5(3

√
e−4)), 0≤ r ≤ 1.

Therefore x(2.0;r) = x(1;r)(2+ 3e− 4
√

e). Then x(2.0;r) is approximately 9.676975672 and y1(2.0;1) is approximately 9.676975795.
The approximate solution by fifth order Runge Kutta Nystrom method is plotted at t ∈ [0,2](see Table 1-4 and Figure 3.1). The exact and
approximate solution by fifth order Runge Kutta Nystrom method is plotted at t = 2. (see Table 1-4 and Figure 3.2).

Example 5.2. Next consider the following hybrid fuzzy IVP, x
′
(t) = x(t)+m(t)λkx(tk), t ∈ [tk, tk+1], tk = k, k = 0,1,2,3, ...,

x(t;r) = [(0.75+0.25r)et ,(1.125−0.125r)et ], 0≤ r ≤ 1,
(5.7)

where

m(t) = |sin(πt)|, k = 0,1,2, . . . ,

t r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.1 2.274208 2.350015 2.425822 2.501629 2.577436 2.653243 2.729050 2.804857 2.880664 2.956471 3.032278
1.2 2.577355 2.663267 2.749179 2.835091 2.921003 3.006915 3.092826 3.178738 3.264650 3.350562 3.436474
1.3 2.955267 3.053776 3.152285 3.250794 3.349303 3.447812 3.546321 3.644830 3.743339 3.841848 3.940357
1.4 3.415808 3.529668 3.643528 3.757388 3.871249 3.985109 4.098969 4.212829 4.326690 4.440550 4.554410
1.5 3.967666 4.099921 4.232177 4.364432 4.496688 4.628944 4.761199 4.893455 5.025710 5.157966 5.290221
1.6 4.578278 4.730887 4.883497 5.036106 5.188715 5.341324 5.493934 5.646543 5.799152 5.951762 6.104371
1.7 5.210226 5.383901 5.557575 5.731249 5.904923 6.078597 6.252272 6.425946 6.599620 6.773294 6.946969
1.8 5.865754 6.061280 6.256805 6.452330 6.647855 6.843380 7.038905 7.234431 7.429956 7.625481 7.821006
1.9 6.547343 6.765587 6.983832 7.202077 7.420322 7.638566 7.856811 8.075056 8.293301 8.511545 8.729790
2.0 7.257731 7.499656 7.741580 7.983504 8.225429 8.467353 8.709278 8.951202 9.193126 9.435051 9.676975

Table 3: The Exact solution to the IVP(15) - x(t;r)
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t r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.1 3.411312 3.373409 3.335505 3.297602 3.259698 3.221795 3.183891 3.145988 3.108084 3.070181 3.032278
1.2 3.866033 3.823077 3.780121 3.737165 3.694209 3.651254 3.608298 3.565342 3.522386 3.479430 3.436474
1.3 4.432901 4.383647 4.334392 4.285138 4.235884 4.186629 4.137375 4.088120 4.038866 3.989611 3.940357
1.4 5.123712 5.066781 5.009851 4.952921 4.895991 4.839061 4.782131 4.725201 4.668271 4.611340 4.554410
1.5 5.951499 5.885371 5.819243 5.753116 5.686988 5.620860 5.554732 5.488605 5.422477 5.356349 5.290221
1.6 6.867417 6.791113 6.714808 6.638503 6.562199 6.485894 6.409589 6.333285 6.256980 6.180676 6.104371
1.7 7.815340 7.728503 7.641665 7.554828 7.467991 7.381154 7.294317 7.207480 7.120643 7.033806 6.946969
1.8 8.798632 8.700869 8.603107 8.505344 8.407582 8.309819 8.212056 8.114294 8.016531 7.918769 7.821006
1.9 9.821014 9.711892 9.602769 9.493647 9.384525 9.275402 9.166280 9.057157 8.948035 8.838913 8.729790
2.0 10.88659 10.76563 10.64467 10.52371 10.40274 10.28178 10.16082 10.03986 9.918900 9.797937 9.676975

Table 4: The Exact solution to the IVP(15) - x(t;r)
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Figure 5.1: (for h=0.1)

λk(µ) =

{
0̂, if k = 0
µ, if k ∈ {1,2, . . .}.

Then x(t)+m(t)λk(x(tk) is continuous function of t,x and λk(x(tk). Therefore by Example 6.1 of Kaleva [6], for each k = 0,1,2, ..., the fuzzy
IVP {

x
′
(t) = x(t)+m(t)λk(x(tk), t ∈ [tk, tk+1], tk = k,

x(tk) = xtk ,
(5.8)

has a unique solution on [tk, tk+1]. To numerically solve the hybrid fuzzy IVP (36) we will apply the Runge-Kutta Method of order five for
hybrid fuzzy differential equations with N = 10.
To obtain y1,1(r),

C1 = 125h+
200
3

h2 +20h3,

C2 = 23h+24h2 +12h3 +
16
5

h4 +
8
5

h5,

y(1.1;r) = y(1.0;r)c0,1 +
1

192

[
C1 sin

π

25
+125hsin

2π

25

−81hsin
π

15
+

16
3

h2 sin
π

10
+

24
5

h4 sin
π

30

]
y(1.0;r),

y(1.1;r) = y(1.0;r)c0,1 +
1

192

[
C1 sin

π

25
+125hsin

2π

25

−81hsin
π

15
+

16
3

h2 sin
π

10
+

24
5

h4 sin
π

30

]
y(1.0;r),

Then for i=1,2,3,. . . ,10.
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Figure 5.2: (for h=0.1)

y
(

1+
i

10
;r
)
= y
(

1+
i−1
10

;r
)
+

1
192

[
C1 sin

(5i−3)π
50

+C2 sin
(i−1)π

10

−81hsin
(3i−1)π

30
+125hsin

(5i−1)π
50

+
16
3

h2 sin
πi
10

+
24
5

h4 sin
(3i−2))π

30

]
y(1.0;r),

y
(

1+
i

10
;r
)
= y
(

1+
i−1
10

;r
)
+

1
192

[
C1 sin

(5i−3)π
50

+C2 sin
(i−1)π

10

−81hsin
(3i−1)π

30
+125hsin

(5i−1)π
50

+
16
3

h2 sin
πi
10

+
24
5

h4 sin
(3i−2))π

30

]
y(1.0;r).

Let

c2,0 = (c0,1)
10 +

10

∑
k=1

(c0,1)
10−k 1

192

[
C1 sin

(5k−3)π
50

+C2 sin
(k−1)π

10
−81hsin

(3k−1)π
30

+125hsin
(5k−1)π

50
+

16
3

h2 sin
πk
10

+
24
5

h4 sin
(3k−2))π

30

]
,

Then
y2.0;r = c2.0y1(1.0;r),

= [c2,0(0.75+0.25r)(c1.0)
10,c2,0(1.125−0.125r)(c1.0)

10], 0≤ r ≤ 1.

for t ∈ [1,2], the exact solution of (5.7) satisfies

x(t;r) = x(1;r)
π cos(πt)+ sin(πt)

π2 +1
+

et

e
x(1;r)

(
1+

π

π2 +1

)
,

x̄(t;r) = x̄(1;r)
π cos(πt)+ sin(πt)

π2 +1
+

et

e
x̄(1;r)

(
1+

π

π2 +1

)
.

Therefore

x(1;r) =
[
(0.75+0.25r)e,(1.125−0.125r)e

]
,

x(2;r) =
(

π

π2 +1
+ e
(
1+

π

π2 +1

))
x(1;r).

Then x(2.0;1) is approximately 10.31033432 where as y1(2.0;1) is approximately 10.31033708. The approximate solution by fifth order
Runge Kutta Nystrom method is plotted at t ∈ [0,2](see Table 5-8 and Figure 3.3). The exact and approximate solution by fifth order Runge
Kutta Nystrom method is plotted at t = 2. (see Table 5-8 and Figure 5.4).

6. Conclusion

In this paper we have discussed hybrid fuzzy differential systems and applied fifth order Runge-Kutta Nystorm method. In the proposed
method is convergent to order O(h6).
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t r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.1 2.285975 2.362174 2.438373 2.514572 2.590772 2.666971 2.743170 2.819369 2.895568 2.971767 3.047967
1.2 2.622836 2.710264 2.797691 2.885119 2.972547 3.059975 3.147403 3.234831 3.322259 3.409687 3.497114
1.3 3.049276 3.150919 3.252561 3.354204 3.455846 3.557489 3.659131 3.760774 3.862416 3.964059 4.065701
1.4 3.559976 3.678642 3.797307 3.915973 4.034639 4.153305 4.271971 4.390637 4.509303 4.627968 4.746634
1.5 4.145197 4.283371 4.421544 4.559717 4.697890 4.836064 4.974237 5.112410 5.250583 5.388757 5.526930
1.6 4.792142 4.951881 5.111619 5.271357 5.431095 5.590833 5.750571 5.910309 6.070047 6.229785 6.389523
1.7 5.486649 5.669538 5.852426 6.035314 6.218203 6.401091 6.583979 6.766868 6.949756 7.132644 7.315533
1.8 6.215071 6.422240 6.629409 6.836578 7.043747 7.250916 7.458086 7.665255 7.872424 8.079593 8.286762
1.9 6.966156 7.198362 7.430567 7.662772 7.894977 8.127183 8.359388 8.591593 8.823798 9.056004 9.288209
2.0 7.732750 7.990509 8.248267 8.506025 8.763784 9.021542 9.279300 9.53705 9.794817 10.05257 10.31033

Table 5: The approximation solution by RK Nystrom method to the IVP(18) - x(t;r)

t r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.1 3.428962 3.390863 3.352763 3.314664 3.276564 3.238465 3.200365 3.162265 3.124166 3.086066 3.047967
1.2 3.934254 3.890540 3.846826 3.803112 3.759398 3.715684 3.671970 3.628256 3.584542 3.540828 3.497114
1.3 4.573914 4.523093 4.472272 4.421450 4.370629 4.319808 4.268987 4.218165 4.167344 4.116523 4.065701
1.4 5.339964 5.280631 5.221298 5.161965 5.102632 5.043299 4.983966 4.924633 4.865300 4.805967 4.746634
1.5 6.217796 6.148710 6.079623 6.010536 5.941450 5.872363 5.803276 5.734190 5.665103 5.596017 5.526930
1.6 7.188214 7.108345 7.028476 6.948607 6.868738 6.788869 6.709000 6.629131 6.549261 6.469392 6.389523
1.7 8.229974 8.138530 8.047086 7.955642 7.864197 7.772753 7.681309 7.589865 7.498421 7.406977 7.315533
1.8 9.322607 9.219023 9.115438 9.011853 8.908269 8.804684 8.701100 8.597515 8.493931 8.390346 8.286762
1.9 10.44923 10.33313 10.21703 10.10092 9.984824 9.868722 9.752619 9.636517 9.520414 9.404311 9.288209
2.0 11.59912 11.47024 11.34136 11.21248 11.08360 10.95473 10.82585 10.69697 10.56809 10.43921 10.31033

Table 6: The approximation solution by RK Nystrom method to the IVP(18)- x(t;r) for

t r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.1 2.285975 2.362174 2.438373 2.514572 2.590772 2.666971 2.743170 2.819369 2.895568 2.971767 3.047967
1.2 2.622836 2.710264 2.797691 2.885119 2.972547 3.059975 3.147403 3.234831 3.322259 3.409687 3.497114
1.3 3.049276 3.150919 3.252561 3.354204 3.455846 3.557489 3.659131 3.760774 3.862416 3.964059 4.065702
1.4 3.559976 3.678642 3.797307 3.915973 4.034639 4.153305 4.271971 4.390637 4.509303 4.627968 4.746634
1.5 4.145197 4.283371 4.421544 4.559717 4.697890 4.836064 4.974237 5.112410 5.250583 5.388757 5.526930
1.6 4.792142 4.951880 5.111619 5.271357 5.431095 5.590833 5.750571 5.910309 6.070047 6.229785 6.389523
1.7 5.486649 5.669538 5.852426 6.035314 6.218203 6.401091 6.583979 6.766867 6.949756 7.132644 7.315532
1.8 6.215071 6.422240 6.629409 6.836578 7.043747 7.250916 7.458085 7.665255 7.872424 8.079593 8.286762
1.9 6.966156 7.198362 7.430567 7.662772 7.894977 8.127183 8.359388 8.591593 8.823798 9.056003 9.288209
2.0 7.732750 7.990509 8.248267 8.506025 8.763784 9.021542 9.279300 9.537059 9.794817 10.05257 10.31033

Table 7: The exact solution to the IVP(18) - x(t;r)

t r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.1 3.428963 3.390863 3.352763 3.314664 3.276564 3.238465 3.200365 3.162265 3.124166 3.086066 3.047967
1.2 3.934254 3.890540 3.846826 3.803112 3.759398 3.715684 3.671970 3.628256 3.584542 3.540828 3.497114
1.3 4.573914 4.523093 4.472272 4.421450 4.370629 4.319808 4.268987 4.218165 4.167344 4.116523 4.065702
1.4 5.339964 5.280631 5.221298 5.161965 5.102632 5.043299 4.983966 4.924633 4.865300 4.805967 4.746634
1.5 6.217796 6.148710 6.079623 6.010536 5.941450 5.872363 5.803276 5.734190 5.665103 5.596017 5.526930
1.6 7.188214 7.108345 7.028476 6.948607 6.868738 6.788869 6.709000 6.629131 6.549261 6.469392 6.389523
1.7 8.229974 8.138530 8.047086 7.955642 7.864197 7.772753 7.681309 7.589865 7.498421 7.406977 7.315532
1.8 9.322607 9.219022 9.115438 9.011853 8.908269 8.804684 8.701100 8.597515 8.493931 8.390346 8.286762
1.9 10.44923 10.33313 10.21703 10.10092 9.984824 9.868722 9.752619 9.636516 9.520414 9.404311 9.288209
2.0 11.59912 11.47024 11.34136 11.21248 11.08360 10.95473 10.82585 10.69697 10.56809 10.43921 10.31033

Table 8: The exact solution to the IVP(18) - x(t;r)
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