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Abstract

In this paper we introduce the notion of relative (p,g,t)L-th order, relative (p,q,)L-th type, and relative (p,q,t)L-th weak type of mero-
morphic functions in the unit disc with respect to an entire functions where p,q € Nand s € NU{—1,0} and then investigate some basic
properties of it.
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1. Introduction, Definitions and Notations

Let us consider the functions which are meromorphic or analytic in the unit disc D = {z € C: |z| < 1} and have unbounded growth
according to some specific growth indicator. Also we consider that the reader is familiar with the fundamental results and the standard
notations of the Nevanlinna theory in the unit disc D = {z € C: |z| < 1} which are available in [5, 9, 13, 14]. Before starting the paper we
just summarized the Nevanlinna theory for the reader’s convenience. we denote by ny (r) the number of poles of f in |z| < r < 1 where each
pole is counted according to its multiplicity. Similarly 77 (r) stands for the number of distinct poles of f in |z| < r < 1 disregarding the
multiplicity. The Nevanlinna’s Characteristic function of f is define as Ty (r) = Ny (r) +m (r) where the function Ny (r) and my (r) are
respectively known as counting function and proximity function which are as follows:

]"f (t) —ns(0)
t

N¢(r)= dt+ny(0)logr
0
777 (1) =77 (0)

— 7 —n

Nf(r):/ St (0)logr
0

and

2
1 .
my (r) = E/log+ ’f (re’(’))de, where
0
log™ x = max (logx, 0) for all x > 0.
If £ is an entire function, then the Nevanlinna’s Characteristic function Ty (r) of f is defined as
Ty (r) =my(r).

We define exp[k] X =exp (exp[k*” x) and log[k] x =log (log[’“]] x) for x € [0,00) and k € N where N be the set of all positive integers.

1

We also denote log[o] X =1x, 10g[* X = expx, exp[O]x =x and exp[_'] x =logx.
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Let f be a meromorphic function in D. Then, the order p (f) and lower order A (f) of f [13] are defined by

(f) _ . sup logT(r)
(f) =M ot log (1£)

>0

Further, if f is of order p (f) (0 < p (f) < ), one may introduced the definitions of type o (f) and lower type G (f) of f which are as
follows:

S(f) _ i S0 T ()

— =lim .| | ———.

o(f) ro1 inf (L)P(f)

—r
However the above definition of order does not seem to be feasible if a meromorphic function f in D is of order zero. To over come

this situation and in order to study the growth of meromorphic functions in the unit disc precisely, the concept of logarithmic order was
introduced by increasing log™ once in the denominator. Therefore the logarithmic order Plog (f) and logarithmic lower order Ajoq (f) of a
meromorphic function f in D are define as

Prog () _ pppy Sup _log 7y (1)
hog (f) — r=1 inf g2l (LL)"

Further the concept of (p,g)-th order and lower (p,q)-th order (p and g are any two positive integers with p > g) are not new and
was introduced by Juneja et al. [6]. In the line of Juneja et al. [6], now we shall introduce the definitions of (p,g)-th order and (p,¢)-th
lower order respectively of a meromorphic function f in the unit disc D where p,q € N. In order to keep accordance with the definition of
logarithmic order we will give a minor modification to the definition of (p, g)-order introduced by Juneja et al. [6].

Definition 1.1. Let f be a meromorphic function in the unit disc D and p,q € N. Then (p,q)-th order p\P9 () and (p, q)-th lower order
A(P.) (f) of f are respectively define as:

pPa) () _ . sup log?Ty(r)
APa) ()~ 51 inf logld (1 —r)~"

where p and q € N.

However during the last several years many authors have investigated different properties of meromorphic or analytic function in the
unit disc D and derived so many great results (see e.g. [3, 4, 7, 8, 10, 11]). The field of this investigate may be more influential through

the intensive applications of the theories of slowly changing functions which in fact means that L (7%) ~ L (1) as r — 1 for every

I—r
positive constant a i.e., lim L(1%)
"ro1L()

introduced by Somasundaram and Thamizharasi [12]. Extending the notion of Somasundaram and Thamizharasi [12], one may introduce the
definition of (p,q,t)L-th order and (p, q,¢)L-th lower order of aa meromorphic function f in the unit disc D, where p, ¢ are positive integers
andr € NU{—1,0} in the following way:

=1lwhere L=L (ﬁ) is a positive continuous function increasing slowly. Concepts of L-order was first

pPadt(f) . sup log 7y (1)
APaL(f) T 57 inf 10g[q](%)+eXP[T]L(ﬁ)'

—r

The notion of relative order was first introduced by Bernal [1, 2]. Considering this idea, now we introduce the definition of relative
order and relative lower order of a meromorphic function f in the unit disc D with respect to an entire function in the following way:

Definition 1.2. [f f a meromorphic function f in the unit disc D and g be an entire function, then the relative order and relative lower order
of f with respect to g, denoted by pg (f) and Ay (f) respectively are defined by

Pe(f) _ oy sup 02T (7))

Ag (f) rgr} inf log (ﬁ)

In order to make some progress in the study of relative order, now we introduce the concepts of (p, g)-th relative order pé,p ) (f) and

(p, q)-th relative lower order lép @) (f) of a meromorphic function f in the unit disc D with respect to an entire function g in the following

approach:
" (f) _ i sup g T (7).
)Lépvq) (f) ot inf el (L)

where p and g € N.
In the case of relative order, it therefore seems reasonable to define suitably the relative (p,q,7) L-th order and relative (p,q,t) L-th
lower order of a meromorphic function f in the unit disc D with respect to an entire function g respectively in the following way:

Definition 1.3. Let f be any meromorphic function in the unit disc D and g be any entire function. Then relative (p,q,t)L-th order denoted

as pép"q’l)L (f) and relative (p,q,t)L-th lower order denoted as lép’q’l)L (f) of a meromorphic function f with respect to an entire function g
are define by
PPl () - sup logP 7,717y (r)

)

)Lg(I)’qJ)L (f) r—ot inf logl? (1—r)~! +expllL ((1 - r)fl)

where p,q € Nandt e NU{-1,0}.
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A meromorphic function f in the unit disc D for which relative (p,q,t)L-th order and relative (p,q,¢)L-th lower order with respect to
an entire function g are the same is called a function of regular relative (p,q,t) growth with respect to g. Otherwise, f is said to be irregular
relative (p,q,t) growth with respect to g.

Now in order to refine the above growth scale, we intend to introduce the definitions of an another growth indicators, such as relative
(p,q,t)L-th type and relative (p,q,)L-th lower type of meromorphic function in the unit disc D with respect to another entire function which
are as follows:

Definition 1.4. Let f be meromorphic in the unit disc D and g be an entire function with 0 < pg,p"q’t)L (f) < oo where p,q € N and
t € NU{—1,0}, then the relative (p,q,t) L-th type and relative (p,q,t) L-th lower type denoted respectively by Gép‘q’t)L (f) and G(p a1k 62
of f in the unit disc D with respect to g are respectively defined as follows:

Ggfl’-,qvl)L 7 sup log[l’fl] Tg’ITf (r)

= lim
—=(p.g.t)L r f
o f) —1 in (log[q—l] (1—r)"! .exp[t+1]L((1—r)7

Analogously, to determine the relative growth of two meromorphic functions having same non zero finite relative (p,q,t) L-th lower
order in the unit disc D with respect to another entire function, one can introduced the definition of relative (p,q,¢) L-th weak type of a
(pqt)L (f)

meromorphic f in the unit disc D with respect to an entire g of finite positive relative (p,q,7) L-th lower order Ag
way:

e

in the following

Definition 1.5. Let f be meromorphic in the unit disc D and g be an entire function having finite positive relative (p,q,t) L-th lower order
/lg(‘”‘q’t>L (f) (O < lép"q’l)L () < 00) where p,q € Nandt € NU{—1,0}. Then the relative (p,q,t) L-th weak type of f with respect to g is
defined as :

log[f’*l] Tgfle (r)

A(MJ)L :
(log[‘i—l](l —r)*l~exp[t+1]L((1_r)71>) s ()

=(P.g:t)L (f)

7" (f) = liminf

Also one may define the growth indicator Ty of f with respect to g in the following manner

log[ p—1] Tgfle (r)

<1og[q*1] (1—r)Lexpl+llL ((1 -r)"
where p,q € Nandt € NU{—1,0}.

In this connection we state the following definition which will be needed in the sequel:

7 () = imsup
r—

1) ()

Definition 1.6. For any two positive integers p, g and t € NU{—1,0}, an entire function f is said to have Property (D), if for any 6 > 1,
w>0andforallr, 0 <r <1, sufficiently close to 1

(M_f (exp[”] u <log["] (1—r) " +expl] L( (1—7) ))))

Mf((exp[p] (log[q](l—r) " rexpllL ((]_r) )))6)

where Mg (r) = Hix If (@)1

Here, in this paper, we aim at investigating some basic properties of relative (p,q,t) L-th order, relative (p,g,t) L-th type and relative
(p,q,t) L-th weak type of a meromorphic function in the unit disc D with respect to an entire function where p,q € Nandr € NU{—1,0}
under somewhat different conditions. Throughout this paper, we assume that all the growth indicators are all nonzero finite.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. Let f be an entire function which satisfies the Property (D) then for any positive integer n and for all 6 > 1,

(Mf (CXP[p]/*‘ <log[q] (1-r)"" +CXP[t]L((1 _r)_1)>>)” <

M ((expm  (1og? (1= )" expll L (1 fr)’l)))s)

holds for all r, 0 < r < 1, sufficiently close to 1, where p,q € N, t € NU{—1,0} and u > 0.
Lemma 2.1 follows from a result of Bernal [2].

Lemma 2.2. Let f be an entire function. Then
o1 o (0-7)
wust (o o -0 o (1)

3T <(2 (exp[”]u <log[‘1] (1—r)7" +exme<(1 7},)—1)))))

forallr, 0 <r <1, sufficiently close to 1, where p,q €N, t e NU{—1,0} and u > 0.

Lemma 2.2 follows from Theorem 1.6 of [5].
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3. Main Results

In this section we present some results which will be needed in the sequel.

Theorem 3.1. Let fi, f> be meromorphic functions in the unit disc D and g\ be any entire function such that at least f or f, is of regular
relative (p,q,t) growth with respect to g1 where p,q € N andt € NU{—1,0}. Also let g| has the Property (D). Then

KPR (i ) < max {440 (1) 200 ()}

The equality holds when any one oflélp’q’t)L (i) > l}g]p’q’Z)L (fj) hold with at least f; is of regular relative (p,q,t) growth with respect to g
where i, j=1,2andi# j.

Proof. The result is obvious when lgp 4L (fi£f2)=0. Sowe suppose that lgp 4L (f1 £ f2) > 0. We can clearly assume that 7Lgp a0k (fr)
is finite for k = 1,2. Now let us consider that max {/’Lé]p 4L (f1),4 p a1k ( fz)} = A and f3 is of regular relative (p,q,t) growth with respect

to g1. Now for any arbitrary € > 0 from the definition of lg" 4L (f1), we have for a sequence {r, } values of r tending to 1 that

Tf1 (n<
o oo (0050 -0 )
5 T (r (n<
Ty (exol”) (a+2) (10g (1 =)~ expL ((1-7") ) ) ). G

Also for any arbitrary € > 0 from the definition of pé,p a0k (f2) (=2A; p ek (f2)), we obtain for all r, 0 < r < 1, sufficiently close to 1
that

Ty (r) <

B (o (197 ) (e 1) e (0 -17)

ie., Tp, (r) <

5 oo (14 (g 117w (1-17)) o

Since Tf, -5, (r) < Tf, (r) + Ty, (r) 4+ O(1), therefore there exists a sequence {r, } values of r tending to 1 for which we obtain in view
of (3.1), (3.2) and Lemma 2.2 that

Tflifz (n<

2logM,, (exp[p] ((A+£) <10g[‘1] (1—r)7" +expllL ((1 fr)_1>>)> +0(1)

ie, Tr+p, (r) <

3logM,, <exp[p] ((A+ €) <10g[‘1] (1—r) " expllL ((1 — r)71>>)> . (3.3)
Therefore in view of Lemma 2.1 and Lemma 2.2, we obtain from (3.3) for a sequence {r,} values of r tending to 1 and & > 1 that

Tf+f, (n<

1 9

- [p] lal (1 — [ _n!

3log( o (exp <(A—|—£) [log (1—r) " fexp L((l r) )D))

i.e., Tf]ifg (r) <

1 -~ B )
glogMg] <(exp[p] ((A—i—s) [10g[q] (1—r)" +expllL ((1 —r) 1>D ))
i,€.7 Tf]ifz (r) S
)
T (2 (e (8 ) (10 (1) el 2 (1-071))))° )
Now we get from above by letting § — 17

i.e., liminf log? Ty ' (Typ, (r))
r—1 log[‘]](]_r)_l+exp[t]L<(1_r)—l>

<(A+e).
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Since € > 0 is arbitrary,
A{ P,% (f :th) <A max {A‘;quf)l‘ (fl);a‘élm%t)l‘ (fz)}

Similarly, if we consider that f} is of regular relative (p,q,¢) growth with respect to g1 or both f; and f> are of regular relative (p,q,r)
growth with respect to g, then one can easily verify that

AP (R Ly <A= max{ﬂq’ (fl),zgf’q"”(fz)}, (3.4)

Further without loss of any generality, let lg<,p a0k (f1) < lg<lp 4L (f2) and f = fi £ f>. Then in view of (3.4) we get that lg(lp L 62
< lélp"q’t)l‘ (f2). As, f2 = £ (f — f1) and in this case we obtain that lg(f”q't)l‘ (f2) <max { lg(lp’q’t)l‘ N, lg(p 4L (f1) }- As we assume that
ALPEDE (1) < AP9OE (1) | therefore we have AP 4OE (£5) < APV (£) and hence AL4DE (£) = AP4DE () = max { APOE (1),
)Lé,p ’q’l)L (f2) }. Thus the theorem is established. O

Theorem 3.2. Let f| and f, be any two meromorphic functions in the unit disc D and g be an entire function such that such that p(p )L (f1)
and pg(,p 4L (f1) exists where p,q € Nandt € NU{—1,0}. Also let g1 has the Property (D). Then

P (fi £ 1) < max {pg (1) ol ()}

The equality holds when pgp 4L (f1) # pgp )L (f2)-

We omit the proof of Theorem 3.2 as it can easily be carried out in the line of Theorem 3.1.

Theorem 3.3. Let fi be a meromorphic function in the unit disc D and gy, gy be any two entire functions such that l;lp 4k (f1) and

l(p @)L (f1) exists where p,q € N andt € NU{—1,0}. Also let g + g> has the Property (D). Then
2D () = min {AP9E () 2040 (1) )
The equality holds when lglp a4 ( 1) # Ag (pg.) ( 1)-

Proof. The result is obvious when l({’fgtz) (f1) = 0. So we suppose that /'Lélpfé’,?L (f1) < oo. We can clearly assume that Ag(p 4L (f1) is

finite for £ = 1,2. Further let ¥ = min {lg<lp a0k (f1), lg(,f"'q’l)L (f1)}- Now for any arbitrary £ > 0 from the definition of )Lé,{’ a0k (f1) where
k=1,2, we have for all , 0 < r < 1, sufficiently close to 1 that

Ty, (exp[p] <( (pa.1)L (f1) — > (log[q] (1= " +expllL ((1 fr)_l>))>

< Ty (r)
i.e, Ty (exp[”] ((‘P—s) (log[q] (1—r)" +expllL ((1 —r)_1)>)) <Ty ()

Now we obtain from above and Lemma 2.2 for all r, 0 < r < 1, sufficiently close to 1 that
Tg\+er (exp[p] ((‘P—e) (log[q] (1—r)""expllL ((1 —r)7'>)>>
<273, (1) +0(1)
ie., Tgtg (exp[”] ((‘P— €) (log[q] (1—r) " expllL ((1 - r)fl))>>
< 3Ty, (r).

Therefore in view of Lemma 2.1 and Lemma 2.2, we obtain from above for all r, 0 < r < 1, sufficiently close to 1 and any ¢ > 1 that

expl?) (¥ —e) (logld (1 =)~ +expllz (1-1)71)))
2

1
9 logMy, +¢,

<Tf| (r)

1

expl [ &) [log (1 - )~ +expl L (1= 07|\ °
2

i.e., logMg 1,

<Ty, (r)

exp) (% €) (1ogl (1 -1~ expll L ((1-17")) ) ) 7
2

ie., logMg +g,

<Ty (r)
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1

expl?! ((\p_g) (IOg[q] (1—r)7" +exp[l]L((l —r)—l>)> -

ie., Tg tg, )
< Tfl (r)
As € > 0 is arbitrary, we get from above by letting ¢ — 17
)L . )L )L
WP () 2w = min {2090 (1), AL ()} (3.5

Now without loss of any generality, we may consider that lg(lp L (f1) < lg(f 4L (f1) and g = g1 +g». Then in view of (3.5) we get

that lép’q’t)l‘ (f1) > lélp’q’t)l‘ (f1) - Further, gy = (g+g») and in this case we obtain that léf)’q’t)l‘ (f1) > min {/lép’q’tﬂ (f1), /léf’qJ)L (Mt

As we assume that )L(p'q”t)L (f1) < Aézp"mL (f1), therefore we have léf’q’t)L (f1) > &ép’q’l)L (f1) and hence lép’q’r)L (fi)= léf’q’r)L (fi) =
min {l;f”qﬁt)L (f1), A p @)k (f1)}- Thus the theorem follows. O

Theorem 3.4. Let f| be a meromorphic function in the unit disc D and gy, g, be any two entire functions such that f| is of regular relative
(p,q,t) growth with respect to at least any one of g1 or g» where p,q € Nandt € NU{—1,0}. If g| £ go has the Property (D), then

Pl (1) = min {p % (1) .ol (1) }

The equality holds when any one ofpgp a0k (f1) < P a)L (f1) hold with at least fi is of regular relative (p,q,t) growth with respect to g
wherei,j=1,2andi+# j.
‘We omit the proof of Theorem 3.4 as it can easily be carried out in the line of Theorem 3.3.

Theorem 3.5. Let f1, f> be any two meromorphic functions in the unit disc D and g1, g» be any two entire functions. Also let g1 £ g has
the Property (D). Then for p,q € Nandt € NU{—1,0},

s (i 1)
< max [min { ol (1), p 4" (1) min { o0 (o). o (1)}

when the following two conditions holds:

(@) pé?’q’ ) (fi) < péf”” (f1) with at least fi is of regular relative (p,q,t) growth with respect to g fori = 1,2, j = 1,2 and i # j; and

(i) pg{)qt () < pgf 4L (fz) with at least f2 is ()fregular relative (p,q,t) gmwth with respectto g fori=1,2, j=1,2and i # j.
The equality holds when pgp’q’ (fi) < pgf’q’ (fj) and pg2 a0k (fi) < pgzp’q’ (fj) holds simultaneously fori=1,2; j=1,2 and i # j.

Proof. Let the conditions (i) and (i) of the theorem hold. Therefore in view of Theorem 3.2 and Theorem 3.4 we get that

max [min { i (1), p 4 (1)} .min {p " (£3), p2 4" (1) }]

= max [pP 0" (1) o ()]

> pPet (fi £ 1) (3.6)
Since pg, ()L (fi) < pgf)qt (fj) and pgpqt (i) < pgfqt (f7) hold simultaneously for i =1,2; j = 1,2 and i # j, we obtain that

either min { pi " (f1),p 4 (1)} > min{ o (1), o ()} or

min{ g (1), (1)} > min { pfP 4 (1), p 4 (1)} holas.
Now in view of the conditions (i) and (i) of the theorem, it follows from above that

either pg('ligz>L (f1) > pg{)iqg"z (f2) or pgf)iqgtz (f2) > pg?ﬂ?gtz (/1)

which is the condition for holding equality in (3.6).
Hence the theorem follows. O

Theorem 3.6. Let fi, f> be any two meromorphic functions in the unit disc D and g1, g» be any two entire functions. Also let g1, g» and
g1 g satisfy the Property (D). Then for p,q € Nandt € NU{—1,0},

4:t)L
g]p:gglz) (fl ifZ)
L ) q.1)L q.)L
> min {max {lépqt) (f1).2 pqt (f2)} ,nax {/’qut) (f1) Jqul) (fz)}]
when the following two conditions holds:
@) lé]p"q’t)L (fi) > )Lélp,q-,t)L (fj) with at least f; is of regular relative (p,q,t) growth with respect to g\ fori=1,2, j=1,2and i # j: and
(i) lg(f’q"t)l‘ i) > /’Lg"q’t)L (fj) with at least fj is ofregular relative (p,q,t) growth with respect to go fori=1,2, j=1,2 and i # j.
The equality holds when l(p 4k (f1) < Ag; p at) (fl) nd Ag: (gL (f2) < l,g(f’q’t)L (f2) hold simultaneously for i =1,2; j=1,2 and i # j.
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Proof. Suppose that the conditions (i) and (i) of the theorem holds. Therefore in view of Theorem 3.1 and Theorem 3.3, we obtain that

min [max {24740 (1) A4 (1) max {424 () A4 (1) ]
—mln{ (PaL (£ 1 5, pqt (flif2)]
> AP (i 1), 3D

Since /léip’q’[)L (f1) < /léf’qJ)L (f1) and /léf”qJ)L (fr) < lé/p,q,t)L (f2) holds simultaneously for i = 1,2; j = 1,2 and i # j, we get that

either max { 24" (1) A1 (1) < max (A4 (1) 2 ()} or

max {204 (1), 404 () } < max {24 (1) 44 (1)} holas.

Since condition () and (ii) of the theorem holds, so it follows from above that either A, p @0k (it fr) <Ag (pa.L (fixfr) or

p’q’ (f +H)< lgp a0k (f1 £ f2), which is the condition for holding equality in (3.7).
Hence the theorem follows. O

Theorem 3.7. Let fi, f> be any two meromorphic functions in the unit disc D and g| be any entire function such that at least f or f> is of
regular relative (p,q,t) growth with respect to g1 where p,q € Nandt € NU{—1,0}. Also let g satisfy the Property (D). Then

AL (f - fo) < max (AP () AP (1)}

The equality holds when any one of Ag, ()L ;) > lé]p"q’l)L (fj) hold with at least f; is of regular relative (p,q,t) growth with respect to g
wherei,j=1,2andi# j.

Proof. Since Ty,.p, (r) < Ty, (r) + Ty, (r) , therefore applying the same procedure as adopted in Theorem 3.1 we get that
a:t)L q:t)L )L
AR (fr- o) < max { PO (1) 20 (1)

Now without loss of any generality, let 7L<p’q’t)L (f1) < ).(éf”q"t)l‘ (f») and f = fi - f>. Then l§f’q HL (f) < Ag p’qt (f2) - Further, f, = f and
and Ty, (r) = T1 (r) 4+ O(1). Therefore T, (r) < Ty (r) + Tf, (r) + O(1) and in this case we obtain that lé]pqt (f2) < max {/’Lglpq NL N,

)Lé]p’q’l)L( D} As we assume that l“’ql (fi) < Ag p @0 (£,), therefore we have léf”qﬁt)L () < /lg(lp’q’t)L (f) and hence }Lg(lp’q")L (f) =
2P (f2) = max (AP0 () AP0 ()

Hence the theorem follows. O

Next we prove the result for the quotient %, provided % is meromorphic in the unit disc D.

Theorem 3.8. Let fi, f» be any two meromorphic functions in the unit disc D and g1 be any entire function such that at least f| or f> is of
regular relative (p,q,t) growth with respect to g1 where p,q € Nandt € NU{—1,0}. Also let g| satisfy the Property (D). Then

20 (?) < max { AP (), AP0 (1)}

provzded f‘ is meromorphic in the unit disc D. The equality holds when at least f, is of regular relative (p,q,t) growth with respect to g
an d}((!’q: ) (fl) ;élg({]qt) (fz)

Proof. Since T, (r) =T, (r)+ O(1)and T, (r) <T, (r)+ T, (r), we getin view of Theorem 3.1 that
- i) h )

At (?)<ma><{ PO A (1)} (3.8)

Now in order to prove the equality conditions, we discuss the following two cases:

Case L. Suppose ;‘ (= h) satisfies the following condition léf )L (fi) < lg(lp ik

respect to g1. Now if possible, let lg(]p"q’l)L (%) < )L(p’q’t)l‘ (f»). Therefore from f| = h- f> we get that )Lg(;”‘q’t)L (fi)=2Ag ‘” a1k (f2) which
is a contradiction. Therefore /lg’q’t)L (%) > léf”qt (f>) and in view of (3.8), we get that /lg(”’% ) (%) = )Léf”q‘nL (f).

(f2), and f> is of regular relative (p,q,t) growth with

Case II. Suppose ;‘ (= h) satisfies the following condition lg(p )L (f1) > lgp 4k (f2), and f5 is of regular relative (p,q,t) growth with

respect to g;. Now from f; = h- f, we get that either l(pqt () < l“”’l <§‘) or lg(f”q"t)L (f1) < Ag pqt (f2). But according to

our assumption /lé]p’%t (fi) £ lg]p’qt (f2). Therefore Agf )L ( ) > Ag pq’ L(f1) and in view of (3.8), we get that ).éf”qJ)L (%) =
)L

2 ().

Hence the theorem follows. O
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Now we state the following theorem which can easily be carried out in the line of Theorem 3.7 and Theorem 3.8 and therefore its proof
is omitted.

Theorem 3.9. Let f1 and fy be any two meromorphic functions in the unit disc D and g| be any entire function such that such that
p<f7 a4k (f1) and pgp 0L (f1) exists where p,q € Nandt € NU{—1,0}. Also let g1 satisfy the Property (D). Then

P (i ) < max {pg 0 (1) ol ()}

The equality holds when pé(,p a0k (f1 ) #* pgp 4L (f2)-
Similar results hold for the quotient - f , provided ; is meromorphic in the unit disc D.

Theorem 3.10. Let f| be a meromorphic function in the unit disc D and g1, g» be any two entire functions such that 2, ( f1) and
lg a0k (f1) exists where p,q € Nandt € NU{—1,0}. Also let g| - g> satisfy the Property (D). Then

M (1) 2 min {200 (1), AL ()

The equality holds when any one of Ag, (pa.n)L (f1) < lg’q’t)l‘ (f1) hold where i, j = 1,2 and i # j and g; satisfy the Property (D).
Similar results hold for the quotient %’ provided g—; is entire and satisfy the Property (D). The equality holds when ﬁ.g(f]"q’l)L (f1) #
lg‘qJ)L (f1) and gy satisfy the Property (D).

Proof. Since Ty,.q, (r) < T, (r) + Ty, (r), therefore applying the same procedure as adopted in Theorem 3.3 we get that
M () 2 min {42908 (), A9 ()

Now without loss of any generality, we may consider that A, pq’ L(fl) < Ag pqt (f1) and g = g1 - g2. Then 7L<pqt) (1) =
pq’ (fl) Further, g| = g—z and Ty, (r) = Té (r) +0(1). Therefore Ty, (r) < Ty (r ) + T, (r) + O(1) and in this case we obtain that

rgw (f1) > min QP95 (A1), 48795 (7)) As we assume that A (1) < 4295 (£) , so we have A4 (1) > 2790 ()
and hence l(p'q”m (A1) = Aéf‘qJ)L (f1) = min {Ag (pa.n)L (f1), QLAEZP 4L (f1)}- Hence the first part of the theorem follows.

Now we prove our results for the quotient ¢ g‘ , provided g; is entire and l(p a0k (f1) # l(p L (f1)-
Since 7, (r) =T, (r) + O(1) and T, (r ) <T, (r)+T, (r), we getin view of Theorem 3.3 that
82 H E

AL () = min (AP0 (1) AL ()} (3.9)

82

Now in order to prove the equality conditions, we discuss the following two cases:

Case L Suppose £. (= h) satisfies the following condition ?Lélp’q’t)L (f1) > A p’qt (f1) . Now if possible, let A(p’q’ L (f1) > Aq p’qt (f1)-

82

Therefore from g; = h- g, we get that l(g(]p’q’l)L (fi)= lg(f’q’l)L (f1), which is a contradiction. Therefore 7L(p a1k (f1) < Ag (Pa.nL (f1) and in

8

view of (3.9), we get that l<pq L (f1) = lg"q’t)L (f1)-

2

Case II. Suppose that % (= h) satisfies the following condition lép 4L (f1) < lgf a0k (f1) - Therefore from g1 ="h-g, we get that either
/léglp’q’t)L (fi) > lmq’l)L (f1) or /l(p L () > l<pqt>L (f1). But according to our assumption Ag pq’ f) # lgpql . Therefore
)Lﬁj’"*’)L (f1) < )L( 0L (f1) and in view of (3.9), we get that Alpant (fi) = lg(f"'q"t)L (f1)-

& I

’ Hence the theorem follows. ’ O
Theorem 3.11. Let f| be any meromorphic function in the unit disc D and g1, g> be any two entire functions such that pg ( f1) and

p<f L (f1) exists where p,q € Nandt € NU{—1,0}. Further let fi is of regular relative (p,q,t) growth with respect to at least any one

of g1 or g». Also let g1 - gy satisfy the Property (D). Then
P& (1) = min{ o (1) ol (1) ).

The equality holds when any one ofpgp a0k (f1) < Pép 24) (f]) hold with at least i is of regular relative (p,q,t) growth with respect to g
where i, j = 1,2 and i # j and g; satisfy the Property (D).

t

Theorem 3.12. Let fi be any meromorphic function in the unit disc D and g1, g» be any two entire functions such that pg, (P.g: (f1) and
(p.g:t)

Pg> (fl) exists where p,q € Nandt € NU{—1,0}. Further let f) is of regular relative (p,q,t) growth with respect to at least any one
of g1 or g». Then

P (1) = min {pg % (1)l (1)}
82

provided g L is entire and satisfy the Property (D). The equality holds when at least f| is of regular relative (p,q,t) growth with respect to g,
pg a0) ( ) # pgp 4L (f1) and g1 satisfy the Property (D).
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We omit the proof of Theorem 3.11 and Theorem 3.12 as those can easily be carried out in the line of Theorem 3.10.
Now we state the following four theorems without their proofs as those can easily be carried out in the line of Theorem 3.5 and Theorem
3.6 respectively.

Theorem 3.13. Let f1, f> be any two meromorphic functions in the unit disc D and g1, g» be any two entire functions. Also let g1 - g> be
satisfy the Property (D). Then for p,q € Nandt € NU{-1,0},

nggzt (f f2)
< max [min { p{ " (1), p 4 (1)} min { o4 (12), 024 ()]

when the following two conditions holds:

(i) P(gg,p )L (fi) < Pg a0k (f1) with at least fi is of regular relative (p,q,t) growth with respect to g; and g; satisfy the Property (D) for i =
1,2, j=1,2andi# j; and

(i) p;p a0k (fr) < p(p’qt (f2) with at least f> is of regular relative (p,q,t) growth with respect to g and g; satisfy the Property (D) for i
=1,2, ]—12and17é]

The equality holds when pgpqt (fi) < pgf’qt (fj) and pgpqt (fi) < pgfqt (fj) holds simultaneously fori=1,2; j=1,2 and i # j.
Theorem 3.14. Let f1, fo be any two meromorphic functions in the unit disc D and g\, g, be any two entire functions. Also let g\ - g2, g1
and g be satisfy the Property (D). Then for p,q € Nandt € NU{-1,0},

p.q:t)L

g1 ‘82 (f f)
> min [max { A4 (1), 280" (1) omax {4240 (1), 2890 ()]

when the following two conditions holds:

(@) lép'q L (fi) > l}glp'q't L (fj) with at least f; is of regular relative (p,q,t) growth with respect to gy fori=1,2, j = 1,2 and i # j; and
(i) Ag p a1k (fi) > Ag ()L (fj) with at least fJ is of regular relative (p,q, ) growth with respect to gy fori=1,2, j = 1,2 and i # j.
The equallty holds when l(pqt)L (f1) < Ag; (gL (f1) and /'Lglp )L (f2) < Ag, p @)L (f2) holds simultaneously fori=1,2; j=1,2and i # j.

Theorem 3.15. Let f1, f> be any two meromorphic functions in the unit disc D and gy, g» be any two entire functions such that g

meromorphic in the unit disc D and 2% is entire. Also let % satisfy the Property (D). Then for p,q € Nandt € NU{-1,0},

P q: fl )
pg; (fz
< max [min {p{ " (7)o" (1)} min { o4 (1), 0" (£2)}]

when the following two conditions holds:

(i) At least fi is of regular relative (p,q,t) growth with respect to g and pép a4k ( 1) # Pe (pa)L (fl) and

(ii) At least f> is ofregular relative (p,q,t) growth with respect to g, and p(p’q’ (f2) # p(p 4L (f2)-

The equality holds when pg (f,) < pg{’qt (fj) an dpgpqt (fi) < pg‘;qt (fj) holds simultaneously fori=1,2; j=1,2 and i # j.
fl

f

meromorphic in the unit disc D and g‘ is entire. Also let g‘ , 81 and g be satisfy the Property (D). Then for p,q € Nandt € NU{—1 0}

)Lgp g:t)L (fl )
g; f2
> min [max {2470 (1), A4 (o)} max { A48 (1), 200 (1) ]

when the following two conditions hold:

(i) At least f» is of regular relative (p,q,t) growth with respect to g and /l(p‘q't L( f1) #Ag p‘q"t ) (fz); and

(ii) At least f is of regular relative (p, q, ) growth with respect to g, and l<p 4L (f1) # l(p 4L (f2)-

The equality holds when l(pqt (1) < Ag pqt (f1) a d/'Lglpqt> (fr) < lg(ﬁ”qt (f2) holds simultaneously fori=1,2; j=1,2and i # j.

Theorem 3.16. Let f1, f> be any two meromorphic functions in the unit disc D and g1, g be any two entire functions such that

Next we intend to find out the sum and product theorems of relative (p, g,¢)L-th type ( respectively relative (p,q,¢)L-th lower type) and
relative (p,q,t)L-th weak type of meromorphic function in the unit disc with respect to an entire function taking into consideration of the
above theorems.

Theorem 3.17. Let fi, f> be any two meromorphic functions in the unit disc D and g1, g> be any two entire functions. Also let pé(.p 4L (f1),

pg’qt) (f2), pé(,fqt) (f)andpépqt (f2) are all non zero and finite where p,q € N andt € NU{-1,0}.
(A) If any one ofpgpqt L(f,) > pg{)qt (fj) hold fori, j=1,2; i j, and g\ has the Property (D), then
ol (fi£ o) = ol () and TE(fi £ 1) =T () =12

(B) If any one ofpg,.p’q’t > (f1) < pé(,p 4L (f1) hold with at least f is of regular relative (p,q,t) growth with respect to g; fori, j = 1,2;
i # jand g| £ g, has the Property (D), then

o 5 () = ol U (1) and SRENE(R) =5 () =12
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(C) Assume the functions f1, f»,g1 and g» satisfy the following conditions:

(i) Any one 0fp<p L (f1) < pg(f’q’m‘ (f1) hold with at least fi is of regular relative (p,q.t) growth with respect to g fori=1,2, j=1,2
and i # j;

(i) Any one ofpgp 4k (fa) < pg’q’t)L (f2) hold with at least f> is of regular relative (p,q,t) growth with respect to g fori = 1,2, j =1,2
and i # j;

(iii) Any one ofpg’qt (fi) > pgf)q’ (fj) and any one of pg" (gL (fi) > pé’qz) (f) holds simultaneously for i =1,2; j=1,2 and i # j;
() pg ™" () =

max [mm{pé(,lpqt) (f1), pgfqt (fl)} mm{pglpqt (f2), pgfqt (fz)H where [,m = 1,2, and g + g, has the Property (D);
then

O (it f2) = ol () and SEE (£ f2) = 5L (i) [ Lom = 1.2.

Proof. From the definition of relative (p,q,t) L-th type and relative (p,q,t) L-th lower type of meromorphic function with respect to an
entire function, we have for all r, 0 < r < 1, sufficiently close to 1 that

(p.q.t)L
_ Py ()
) < T (exp“ V(a0 (fy+e)™

(p.q.)L A
(10g[q—11(1—r)*1.exp[f“lL(a—r) ))pg’ m), (3.10)

(P, lif)L(f )

_ Pg
([ 1 (o9 () —e)

Y

Tfk (r)

(togs 1 (1= ) eexp L (1= 1) ))" m) (3.11)

and for a sequence {r,} values of r tending to 1, we obtain that

(p.q:t)L

P (fie)
Tp(r) > Ty (exp[ 1 (G,élpqt) (fi) _8) ! :

(p.q:t)
(1o 1 (1= 1)~ expl I (1 =) 1)) m) (3.12)
and

(pgt)L )
Ip () < Ty (exp[”_'] (Eg"q’f)L (fk)+e>pgl ()

(p.a.t)
(loglr 1 (1= )~ expl I (1 =) 1)) W) (3.13)

where € > 0 is any arbitrary positive number k = 1,2 and [ = 1,2.

Case L. Suppose that pép a0k (f1) > pg; (poa) (fz) hold. Also let € (> 0) be arbitrary. Since Ty, +¢, (r) < Ty, (r) + T, (r) +O(1), so in view
of (3.10), we get forall r,0 < r < 1, %ufﬁmently close to 1 that

_ Pt (f1)
Thip(r) < (1+A)T, (exp[p 1 (Gg('fqt)L(fl)*- 1 :

(p.q.t)L

(10g[q_l](1*r) ~expl 1L ((lfr)”))pg' (f])>

(pa:t)
Ty (eXP[pil] ((O'z,glpqr (f2)+8) (log[qfl](lfr)fl-exp[’+']L((17r)7]))pgll)q ") +0(1)

T , and in view ofpg<l’<1f) (1) > pgqu OL (1), and for

7, exp[pfl](( (pat) (f])+g)(log[q’l](l—r)"~eXp’+1]L((l—r)"))pgl

all r, 0 < r < 1, sufficiently close to 1, we can make the term A sufficiently small.
Hence for any a = 1 4 &; where A = & > 0, it follows from the above inequality for all r, 0 < r < 1, sufficiently close to 1 that

where A =

(p.g:)L
Pz (f1)
Trap() < (+e)T (expw (ot () +e)™

<1°g["_'](17r)71'eXP[’+‘]L((17r) ))Pg’]”" (f1)>
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(p.q.)L
. _ P (f1)
e Thap(r) < oy <exp“’ U (ol sy +e)™

(IOg[tFl] (1—r)""! cexpl L ((1 ) ))Pﬁf“ (fl)) .

Hence making o« — 1+, we get in view of Theorem 3.2, pé(,p 2L (fi)> p(f) @) ( f2) and above for all r, 0 < r < 1, sufficiently close
to 1 that

=171 (T, .,
T g Ty (s 1) PaOL(fi4 1) <Gg(pql)L(f1)
1 (togle (1= e (1= 1))
e, ol (fi4 ) < ol (). (3.14)

Now we may consider that f = fj £ f5. Smcepg(,pqt) (f1) >p<pql) (f2) hold. Then G(pq't>L(f) pql (itfh) <o pqr)L(fl).Fur-
ther, let f; = (f £ f2). Therefore in view of Theorem 3.2 and p(pql) (f1) > pgf’qt (f2), we obtain thatp(pqt) (f) > p( Pl (f2) holds.

Hence in view of (3.14) qépqt (f1) <6§‘”qt>L(f) Gg{)q[ (fixfr). Thereforecg(pq[)L(f)70'g({7qt)L(f):>G panL (f tf)=
(pa:t)L
Og, (fl)

[ pql

(fl) < Pg, (f2), then one can easily verify that Gg (f1 tHh)= O'gf7 0L (f2).

Similarly, if we consider pg, (p.g:

Case II. Let us consider that pg’q’t)L (f1) > pg(f’ ank (f2) hold. Also let £ (> 0) are arbitrary. Since Ty,+y, (r) < T, (r) + Ty, (r) + O(1),
from (3.10) and (3.13), we get for a sequence {r, } values of r tending to 1 that

(p.g:t)L
s fi
T+p (m) < (14+B)Ty, <exp[p1] <3g>,q,t)L (f)+€ >P1 ( 1).
(p.q.1)L
(10g[q71] (1 *r)71 -exp[Hl]L ((1 7r)—1>>9g1 (fl))

(pg.)L
Ty, (eXP['H]<( e (1‘7)+8)(log["*'](l—rn)*l'WP'+1 L((1=r)” ))pgl]q = +o() (p.g.t)L
, and in view of pgp’q (fi) > Pg| (fz)

where B = L
Ty, <e*p . <(5é‘,’”"”<f1>+8) (1log# ! (1=r,) " expl s L((1-r,) )P (1)

can make the term B sufficiently small for a sequence {r, } values of r tending to 1 and therefore using the similar technique for as executed
in the proof of Case I we get from the above 1nequahty that Gy p a0k (fixh)= Eg’(m (f1) when pép ik (f1) > pél Ptk (f2) hold.
Likewise, if we consider pé,p e (f1) < pg (Pf) (f2) then one can easily verify that Gg]’qt (fixth)= p’q Ok (f2)-
Thus combining Case I and Case II, we obtam the first part of the theorem.

Case III. Let us consider that pg(p 4L (f1) < p(f 4L (f1) with at least fj is of regular relative (p,q,t) growth with respect to go. We can
(p.g.t)L
T, <exp[” 1) (( (pgt)L (fi)—e )(log[q—l](lfr”)—l_exp[r+1]L((17r”)—1))le]]’l (n) +o(1)

(p.g.t)L
7, (expvp—l] <(5(/2>.q.1)L(f1>7£) (lOg[‘Fl](lfr,l)fl expl+1] L((lfr,,)fl))pﬁiz 4 (f|)>>

large, since pépqt) (fi) < p(pqt> (f1)- Hence C < &.
Since Ty, 44, (r) < Ty, (r) + T, (r) 4+ O(1), so for any ot = 1 + &, we obtain in view of C < €, (3.11) and (3.12) for a sequence {r,}
values of r tending to 1 that

make the term C =

sufficiently small by taking n sufficiently

_ X Pqpq[ “(f1)
Tgligz <exp[p 1 (o_g({),q,f)L (fl) _8) 1 :

(p.q.t)

<10g[‘1*1] (1 fr)_l ~exp[’+1]L ((1 —-r)" ))pgl (ﬁ)) <aTy, (rn)

Now making @ — 1+, we obtain from above for a sequence {r, } values of r tending to 1 that

("g(lpqt)L (f1) —8) (log[q’” (1—ry)~" .exp[rH]L((l ) ))ngiéz (1)

< 10g[pil] Tgle[gg (Tf1 (”n))

Since € > 0 is arbitrary, we find that

o (h) = ol (). G139
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Now we may consider that g = g +g;. Also pgp a0k (f1) < pgzp 4L (f1) and at least f) is of regular relative (p,q,t) growth with
respect to g. Then Gép 4L (A1) = g<f’ :é]gtz)L (f1) > Gg 1)L ( 1). Further let gy = (g+g2). Therefore in view of Theorem 3.4 and
l

pg L (f1) < pgfqt (f1), we obtain that pé,p 4L (fi) < P(zp (f1) as at least f is of regular relative (p,q,t) growth with respect
to go. Hence in view of (3.15), og" " (f1) > o """ (f1) = ol %" (f1). Therefore 6" (1) = ol " (1) = ol )" (1) =
DL
o " ().
Similarly if we consider pép 4L (f1) > pg 4L
o ) () = ol (£1).

g1t8

(f1) with at least fj is of regular relative (p,q,r) growth with respect to g, then

Case IV. In this case suppose that pép L (f1) < p<f a0k (f1) with at least fj is of regular relative (p,q,t) growth with respect to g». we can

(p.a.t)L
T, (exp[”’ ] <(E§’f“’“>"(fl)fs> (log 1 (1-r)exp 1 L((1-n 1)) D) ) poq)

also make the term D = 7 )>> sufficiently small by taking r sufficiently

(p.g)L )

T, <exp[ﬁ"](( (ol (f)— )(k’g[qil](l—r)il‘eXP[H]]L((l_’)A))%

close to 1 as pép’q’ L (fi) < pg )k (f1)- SoD < & forall r, 0 < r < 1, sufficiently close to 1. As Ty, +g, (r) < T, (r) + Ty, (r) + O(1),

therefore from (3.11), we get for all r, 0 < r < 1, sufficiently close to 1 that

P (1)

(]Og[‘]*” (] — r)71 .exp[’+l]L ((] —}") ))pgl (f )> < (] +€3)Tfl (r) .

and therefore using the similar technique for as executed in the proof of Case III we get from above that 5V ’f’t)L (fi)= Eé’f 4L (f1) where

81182
pg a0k (fi) < pg a4) (fl) and at least fj is of regular relative (p,q,t) growth with respect to g;.

Likewise if we consider pg”qt) (f1) > pg )L

—(pat)L —(p.git)L
St (1) =08 ().
Thus combining Case III and Case IV, we obtain the second part of the theorem.
The third part of the theorem is a natural consequence of Theorem 3.5 and the first part and second part of the theorem. Hence its proof

is omitted. O

(f1) with at least f; is of regular relative (p,q,t) growth with respect to g, then

Theorem 3.18. Let fi, f> be any two meromorphic functions in the unit disc D and g1, g5 be any two entire functions. Also let lé]p 0L (f1)
/'Léf"q’tﬂ (f2), /'Léf‘qJ)L (f1) and /'Lg‘q’t>L (f2) are all non zero and finite where p,q € Nandt € NU{—1,0}.

(A) If any one oflg(,lp’q’t)l‘ (fi) > /lé]p’q”)L (fj) hold with at least fj is of regular relative (p,q,t) growth with respect to g fori, j =1,2;
i # J, and gy has the Property (D), then

(i ) = o () and TR (fi ) =7 () [ =12
(B) If any one ofl(ip’q"t)L (fi) < l;/.p’q‘”L (f1) hold for i, j = 1,2; i # j and g1 £ g» has the Property (D), then

dPEO () = 2P (f) and TPEDE (1) =70 (R i =

(C) Assume the funcnons f1, /2,81 and g satisfy the following conditions:

(i) Any one ofpgl Pl (fi) > p(é] L (fj) hold with at least fj is of regular relative (p,q,t) growth with respect to gy fori = j = 1,2 and
i J;

(ii) Any one ofpg(2 44) (f,) > pgf L

i#j;

(iii) Any one ofpg(,f’q't)l‘ (fi) < pgl (fl) and any one ofpg (fz) < pg; ()L (f2) holds simultaneously fori = j=1,2 and i # j;
() g0 " () =

min [max {/lé,”*q*’)L (f1), APk (fz)} ,max {xg»q‘fﬂ (f1), APk (ﬁ)}] where I,m = 1,2 and g, + g, has the Property (D)

then we have

(fj) hold with at least f; is of regular relative (p,q,t) growth with respect to g fori = j = 1,2 and

dPEOE(f+ o) = o (1) and TP (f £ ) =T () | Lm = 1,2,

Proof. For any arbitrary positive number £(> 0), we have for all r, 0 < r < 1, sufficiently close to 1 that

L M)

Tfk (r) < Ty <exp[p1] (1’-81 (fk)

A;p.q.r]L
(mg[q—l] (1—n) " expltllL ((1 — r)*l)) ! (f”) 7 (3.16)



158 Konuralp Journal of Mathematics

Agt (fi)
Tfk(”) > Ty <6Xp[p 11( pqu(fk)_ ‘

lép,q.I)L .
(tog 1 (1 =) eexpt UL (1)) (m) (3.17)

and a sequence {r, } values of r tending to 1 we obtain that

Typ(r) = T <exp[l’ l]( Py A (i)
(togs=1 (1)t eexpl L (1 - r)l)ywl)[‘(fk)) (3.18)
and
Tp (r) < Ty <exp[ﬂ—l] (rgf’q’ (F) + ) gy
(tog~! (1= )" eexp L (1 —r)l))lé,”"’”"(fm) | .

where k =1,2and [/ =1,2.

Case I. Let Mg]p )k (f1) > ?Lélp a0k (f2) with at least f5 is of regular relative (p,q,t) growth with respect to g;. Also let £ (> 0) be arbitrary.
Since Tf,+ 5, (r) < Tp, (r) + T, (r) + O(1), we get from (3.16) and (3.19), for a sequence {r,} values of r tending to 1 that

Alpant (fi)
g () < (I4+E) Ty (e"P[ (e (hyve)™

Ag(”"”)L -
(IOg[qil](l—rn)_l'eXp[Hl]L((l—rn)_l)) i (ﬁ))

yere )

T, (exp”’” ((?é’i“’*”%fzw) (loglt= 1 (1—r,) " expl I L((1=r,) ! +o(1)

where E =

Gk and in view of lélp’qt (f1) > lgf) )L (f2), we can
Ty, (exp[pfl] <(‘Ee(f'q’t)L(f1)+8) (log[q’l](lfrn)’l-CXP[’“]L((l—rn)’l))lg‘ (f1)

make the term E sufficiently small for a sequence {r, } values of r tending to 1. Now with the help of Theorem 3.1 and using the similar
technique of Case I of Theorem 3.17, we get from above inequality that

a9 (£ o) <P, (3.20)

Further, we may consider that f = fj + f>. Also suppose that lgp )L (f1) > lg(lp anL (f2) and at least f; is of regular relative (p,q,t)
growth with respect to g;. Then ‘L'g(,lp a0k (f) = Tg']y a0k (it < ‘L'gp a0k (f1). Now let fi = (f £ f2). Therefore in view of Theorem
3.1, léf’qJ)L (f1) > l;f”q"t)L (f2) and at least f> is of regular relative (p,q,1) growth with respect to g;, we obtain that léf”q’t)L (f) >
AP4DE (£, holds. Hence in view of (3.20), 7745 (1) < P (£) = P4V (£ & f,) . Therefore 77" (f) = 27495 (£) =

”’ (fiEh) =7l ().

Similarly, if we consider l(p a0k (fi) < l( pai)L (f2) with at least fj is of regular relative (p,q,t) growth with respect to g; then one

can easily verify that fg"qt (ith) = Tg{”ml‘ (f2)-

Case II. Let us consider that lg 4L (f1) > )Lé,” 4L (f2) with at least f, is of regular relative (p,q,) growth with respect to g;. Also let
£(> 0) be arbitrary. As Ty, 14, (r) < Ty, (r)+ Ty, (r) + O(1), we obtain from (3.16) for all sufficiently large values of r that

, ML)
Thep () < (14F)T, <exp“’ Uty +e) ™

(10g[q—l] (1—ry)" cexpl 1L <(1 r,,)1>)lg(f"’"”(fl)>

7, (exp[pfl]<( (pat)L (f2)+e>(log[""](lfr)"-exp[’“]L((lfr)"))l"sfp'q")L(&)) +o(1)

where F =

it , and in view of )Lg(]p’q’l)L (f1) > lgp L (f2), we can
T,, (exP[p—u (( Pa) (f1)+e) (log 1 (1—r) expl=tl L((1—r) 1)) (1)
make the term F sufﬁciently small for all », 0 < r < 1, sufficiently close to 1 and therefore for similar reasoning of Case I we get from above

inequality that T pq’ (f1 +hH)= Tg’]’ 4L (f1) when lg(lp’q"t)L (f1) > lg(lp’q"t)L (f2) and at least f is of regular relative (p,q,r) growth with
respect to g1.
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Likewise, if we consider l(p )L (fi) < ),(p 4L (f2) with at least fj is of regular relative (p,q,t) growth with respect to g; then one

can easily verify that Ty pq’ (f tHh)= TgquL (2)
Thus combining Case I and Case II, we obtain the first part of the theorem.

Case III. Let lélp’q’t)l“ (1) < lg’q"t)l‘ (f1). Therefore we can make the term G =

ng<exp»”*”(< S (f)— )(log“’”(lfr) expl™L((1-r)" . >> +

sufficiently small for all , 0 < r < 1, sufficiently close to 1 since /lg(,f”q”ﬂ‘ (f1) < /lg(,f"q”)l‘ (f1)- So G < &4. Since Ty, 44, (r) < Ty, (r) +
Ty, (r) + O(1), we get from (3.17) for all sufficiently large values of r that

)
Tgl:tgz <exp[p1] <Tg,]'7qt (fl) ) 1 v

A;Ip.cl.t)L :
(log[q_]] (1—r" ~exp[’+']L<(1 fr)71)> <f)> <(I+&) Ty (r).

Therefore in view of Theorem 3.3 and using the similar technique of Case III of Theorem 3.17, we get from above that

T(qu,f)L(f])z (p,q;t)L (f1). (3.21)

8148
Further, we may consider that g = g1 £ g2. As l(pql) (f1) < lg"qt (f1),s0 Tgp’q"t)L (A1) = gfgz)L (f1) > Tgl )L (f1). Further let

g1 = (g g»). Therefore in view of Theorem 3.3 and A(p’q’ L (fi) < lgf'q'l (f1) we obtain that ﬂL(p’q’t>L (fi) < l(f'q’ i (f1) holds. Hence
in view of (3.21) 7P (f1) > ¢ (1) = g{’fg’)L (f1)- Therefore 7y "" (1) = o *" (f1) = P80 (1) = 20" (7).

o DL . L
Likewise, if we consider that lg(f”q't) (f1) > lg(fqt (f1), then one can easily verify that T ffgtz) (f1) = g‘” (f1)-

CaselIV. Let lg L (fi) <Ag) ()L (f1)- Therefore we can make the term H =

T (exp“’*”<( P9 ()~ ) (log ”(H,,)*‘~exp['+”L((l—m”))W')L‘f‘>))

(p. I)L
T,y (exp["*‘] ((rﬁg"q"ﬂ(fl)fs) (log[””]](lfr)fl-exp[’“] ((1 r)” ))A 2 ))

sufficiently small for a sequence {r,} values of r tending to 1, since ;Lé]p 4L (fi) < Ag (pa.nL (f1) - Therefore H < &5 for a sequence {r, }
values of r tending to 1. As Ty, +g, (r) < Ty, (r) + Ty, (r) + O(1), we obtain from (3. 17) and (3.18), we obtain for a sequence {r, } values
of r tending to 1 that

. M)
Ty i (exp[PI] (rg”‘mL ) _£> | 08

lép.q.x)L
(log 1 (1= expt L (1)) ™ “”) <(1+e5) T (1),

and therefore using the similar technique for as executed in the proof of Case IV of Theorem 3.17, we get from above that Té’: fglz) (fi)=

(1) when AP0 (1) < 284 (1),

Similarly, if we consider that lg(lp’q‘t)L (f1) > lg’q’t)L (f1), then one can easily verify that Té’fﬁézL (f1)= Tg[; 4L (f1)-
Thus combining Case III and Case IV, we obtain the second part of the theorem.
The proof of the third part of the Theorem is omitted as it can be carried out in view of Theorem 3.6 and the above cases. O

In the next two theorems we reconsider the equalities in Theorem 3.1 to Theorem 3.4 under somewhat different conditions.

Theorem 3.19. Let fi, f» be any two meromorphic functions in the unit disc D and g1, g» be any two entire functions. Also let p,q € N and
re NU{-1,0}.

(A) The following condition is assumed to be satisﬁed

(i) Either Gép L (f1) # Ggp a0k (f2) 0 Ggl; a4k (fi) #0y p )L (f2) holds and g\ has the Property (D), then

pPIE (£ o) = o OE (f1) = o E ().

(B) The following conditions are assumed to be satisfied:

(i) Either Gépqt (f1) # Ggpqt (f1) or Gé,pqt (fi) #0g pqt (f1) holds and g1 + g, has the Property (D);
(if) f1 is of regular relative (p,q,t) growth with respect to at least any one of g or g, then

t t L b Bl
pgfiqu (f1)= ngq ) (fi)= P(zq - (f1)-
Proof. Let f1, f2, g1 and g, be any four entire functions satisfying the conditions of the theorem.

Case I. Suppose that pép e (fi)= p(f7 )k (f2) (0< pg(p )k (f1), pé()f"q’ ) (f2) < e°). Now in view of Theorem 3.2 it is easy to see that
Pg{)qt (it h) < Pg(pqt> (f1) = pqt (f2) - If possible let

p O (f1 £ 1) < o (1) = pSP O (). (3.22)

(p.a.t)
T,, (exp“’*” ((‘E(’”’")L(fl)fs) (log["’]](lfi’nY1 -exp[’+']L((17rn)71))lg2 ")

)
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Let O'g(p L (f1)# O'gp 4L (f2) - Then in view of the first part of Theorem 3.17 and (3 22) we obtain that 0'g<p 4L (f1)= O'gf) 4L (it faFr)
= Gélp )L (f2) which is a contradiction. Hence pgp @) ( fth) = pglp )L (A1) = p a) ( f2) . Similarly with the help of the first part

of Theorem 3.17, one can obtain the same conclusion under the hypothesis O'g L ( f ) # G<p 4L (f2) - This proves the first part of the

theorem.
Case II. Let us consider that pé,pqt)L (f1) = pgqt) (f1) (0< pgpqt (f1), pgfqt (f1) <o), f1 is of regular relative (p,q,t) growth
with respect to at least any one of g; or g» and (g1 £g2) and g + g satisfy the Property (D). Therefore in view of Theorem 3.4, it follows

that pg(lpfg? (f1) > pgf)qt (1) = pgzpqt (f1) and if possible let

piPEOE (f) > pP (i) = p T (). (3.23)

Let us consider that G(p @)L (f1) # 0'g<p 4L (f1) - Then. in view of the proof of the second part of Theorem 3.17 and (3 23) we obtain
that Gép a4k ()= gfgtz)égz (A1) = Géf’ @) (f]) which is a contradiction. Hence péf’f{s’,?L ()= p,’(,pqt) (fi) = pqt (f1)- Also in
view of the proof of second part of Theorem 3.17 one can derive the same conclusion for the condition Ggp 4L (f ) ;é Gy, p a1 (f1) and
therefore the second part of the theorem is established. O

Theorem 3.20. Let f1, f> be any two meromorphic functions in the unit disc D and g1, g be any two entire functions. Also let p,q € N and
re NU{-1,0}.

(A) The following conditions are assumed to be satisfied:

@) (itfr)is ofregular relative (p, q, t) growth with respect to at least any one 0fg1 or gy, and g1, g» , g1 * &> have the Property (D);

(if) Either ol (f; if)#ffg”l (fi if)orog”‘” (i ifz)#ﬁp‘” (fi £ f2);
(iii) Either oy " (1) # oy " (fz)orc(pq’ () #T8" (f):
(z)Enheroé”’ (1) # o (f2) or L (1) £ G () then

p\PEOE (£ £ f2) = p " (1) = PSP () = o (1) = P4 ().

(B) The following conditions are assumed to be satisfied:

(i) f1 and fp are of regular relative (p,q,1) growth with respect to at least any one of g1 or g, and g1 = g> has the Property (D);
(if) Either o\ %) (f1) # 0" %0" (f2) or gfﬁ,;z ( 1) # Gg'f L8 ()

(i) Either aé”‘“ (1) # og”’ (fi) or ag':‘f* () £ oL (1)

(i) Either 6% (1) % 6P (1) or WUV (1) £ T4 (1) dhen

. L e
Part (fi£ 12) = Pl 0 (1) = Pl ™ (72) = P (1) = Pl ().
‘We omit the proof of Theorem 3.20 as it is a natural consequence of Theorem 3.19.

Theorem 3.21. Let f|, f> be ant two meromorphic functions in the unit disc D and g1,g, be any two entire functions.
(A) The following conditions are assumed to be satisfied:
(i) At least any one of fi or f» is of regular relative (p,q, ) growth with respect to g1 where p,q € Nandt € NU{—1,0};

(ii) Either Tg(p 4k (f1) # Téf)ql (f2) or Tgll) a0k (f1) # 7y p a1k (f2) holds and g\ has the Property (D), then

L 1)L

KPR (i ) = 208 () = AP ().

(B) The following conditions are assumed to be satisfied:

(i) f1, g1 and g, be any three entire functions such that l(p‘q‘t)L (fl) and /lg’q’t)L (f1) exists where p,q € Nandt € NU{-1,0};
(ii) Either Tgp L (f1) # Tgpqt (f1) or ‘Egp )L (f1) # 7y p a1k (f1) holds and g| & g5 has the Property (D), then

APEOE £y = 2 P9 () = AP (),

g1tg 81

Proof. Let f1, f2, g1 and g, be any four entire functions satisfying the conditions of the theorem.

Case L. Let /'L(‘”’q’t>L (f1) = ‘” @)L (f2) (0< lgp L (f1), A pqt (f2) < =) and at least f] or f» and (f; =+ f>) are of regular relative
(p,q,t) growth with respect to g;. Now, in view of Theorem 3. 1 it is easy to see that lép 4k (fixf) < l{éf”q’tﬂ (f1) = l{éf”q’tﬂ (fr). If

possible let
A(p q:t)L (f if ) < Agp q:t)L (fl) _ Ag(.lpv%t)l/ (fz) . (324)

Let ré" a0k (f1) # ‘L'gp’qt (f2) - Then in view of the proof of the first part of Theorem 3.18 and (3.24) we obtain that 7:;" )L (f1) =
’Cgf)qt (ixfhFr)= Tgf 4L (f2) which is a contradiction. Hence A, pqt (itfh)= pq’)l‘ (f1)= pq’ (f2) . Similarly in view
of the proof of the first part of Theorem 3.18 , one can establish the same conclusmn under the hypothes1s Té’l’ € Z)L (fr) # Té, )k (f2). This
proves the first part of the theorem.

Case II. Let us consider that léf”q’t)l‘ (fi) = A p @)k (f1) (0< k[g]pqt) (f1), lg’q't)l‘ (f1) < oo. Therefore in view of Theorem 3.3, it

follows that 740 (£1) = AP0 (f) = A0 L (f1) and if possible let

APEOE () > AP (1) = A4 (). (3.25)
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Suppose ‘L'( ( 1) # ‘L'gp 0L (f1). Then in view of the second part of Theorem 3.18 and (3 25), we obtain that ’L'ép 4L (f1) =

Tgféz)igz (fi) = Tgf 4L (£) which is a contradiction. Hence A<f’jfglz)L (fi) = AQ””)L (fi) = pq’ (f1) - Analogously with the help of

the second part of Theorem 3.18, the same conclusion can also be derived under the condition 1,'<p 0L (fi) # 74 p a1k (f1) and therefore the
second part of the theorem is established. O

Theorem 3.22. Let f|, f>be any two meromorphic functions in the unit disc D and g, g, be any two entire functions.

(A) The following conditions are assumed to be satisfied:

(i) At least any one of fi or f» is of regular relative (p,q,t) growth with respect to g and g, where p,q € N, t e NU{—1,0}, and g1, g2,
g1t8 have sattsfy the Property (D),

(ii) Either TP " (f1 + f2) # 188 (f1 + o) or TEIE (f1 4 fo) £ TS (f1 4 f);
(uz)Enherré””% 1) # 1P () or T (f)#r”“(m
(iv) Either TP (£1) £ 1095 () or T9E (1) £ TLP9DE () then

APEDE (£ 2+ o) = AP () = AP (1) = AL (7)) = AL ().

(B) The following conditions are assumed to be satisfied:
(i) At least any one of f or f5 are of regular relative (p,q,t) growth with respect to g1 + g> where p,q € N, t e NU{—1,0}, and g, £ g»
has satisfy the Property (D )

(i) Either 14" (1) # 7 f’ﬁg’z (f2) or rgf’ﬁg’z (i) # r;;‘é;,,z (f2) holds;
(zn)Ellher‘Cé,pql)L( 1)7&11“” (fl)or‘l:pqt (fl);équ’ (f1) holds;
(iv) Either Tél Pk (fr) # ’ngt (f2) or Tgl Pk (fr) # quz (f2) holds, then

APEDE (£ = o) = AP () = AP (1) = AL (7)) = AL ().

We omit the proof of Theorem 3.22 as it is a natural consequence of Theorem 3.21.

Theorem 3.23. Let f1, f> be any two meromorphic functions in the unit disc D and gy, g be any two entire functions. Also let pg‘” a0k

pgqt) (f2), p quz (f1) andp(pqt (f2) are all non zero and finite where p,q € Nandt € NU{—1,0}.
(A) Assume the funcnons f1, /> and g1 satisfy the following conditions:

(i) Any one of p\P T (£) > pP - (£,) hold for i, j = 1,2 and i # j;
ii) g1 satisfies the Property (D), then
(ii) g1 satisfi perty

(f1),

ol (fi ) = ol (f) and S (- o) =S (f) =12
Similarly,

(pat)L [ J1 (pqt)L (pq, ﬁ) (Mt _
o4 (1) = oft 4 (1) an (2 (f)i=1,2

holds provided (i) f; is meromorphic in the unit disc D, (ii) pg(f’ql (fi) > pgf)qt (fj) |i=1,2;j=1,2;i+# jand (iii) g1 satisfy the
Property (D).
(B) Assume the functions g1,8> and f1 satisfy the following conditions:

i)Aany one of p ()L f1) < p(pqt f1) hold with at least fi is of regular relative (p,q,t) growth with respect to g; for i, j = 1,2 and
3i g J

i # j, and g; satisfy the Property (D);

(ii) g1 - g2 satisfy the Property (D), then

P a () = ot (f1) and LI () =S () i =

Similarly,

o (1) = o U (1) and S (f) =S HE () [i=1,2

gi
82 82
holds provided (i ) g‘ is entire and satisfy the Property (D), (ii) At least fi is of regular relative (p,q,t) growth with respect to g, (iii)

pqt (f1) < Pg‘,)qt (f1) |i=1,2; j=1,2;i+# jand (iv) g1 satisfy the Property (D).
(C ) Assume the functions f1, fp, g1 and g, satisfy the following conditions:
(i) g1 - g2 satisfy the Property (D);
(ii) Any one OfP<p 4L (f1) < péf’q"t)L (f1) hold with at least f is of regular relative (p,q,t) growth with respect to gj fori =1,2, j=1,2
and i # j;

(iii) Any one ofpgp’q’ (fa) < pg’qt (f2) hold with at least f> is of regular relative (p,q,t) growth with respect to g; fori=1,2, j =
1,2 and i # j;

(iv) Any one ofpgpql (fi) > pglpqt (fj) and any one ofpgpqt (fi) > pgfq” (f) holds simultaneously fori=1,2; j=1,2 and i # j;
) P (1) =
max [min { i (£1),p 0 (1)} min {40 (£2),p 4% (£2) }] where 1 = m = 1,2; then

ol (11 f2) = 0P (1) and SEE (fi- ) =L (fi) [ Lm = 1,2,
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Similarly,

ot (f‘) P (1) and 704 (?):6§’;7"”>L(ﬁ)|1,m:1,2.

8 f 2 8

holds provided ;‘ is meromorphic in the unit disc D and is entire function which satisfy the following conditions:
) s L satisfy the Property (D);

if) At least fi is of regular relative (p,q,t) growth with respect to gy and pé(,p’ ( 1) # Pg> (pa:1)L (f1);

iv) Any one ofpgp’q’ (fi) < pgf a0k (fj) and any one ofpgpql (fi) < pgzp’q’ (fj) holds simultaneously fori=1,2; j=1,2 and i # j;

) pr (1) =
max [min { p{ " (1) ol " (fl)},min{p(f"’” ()P4 (1) ] where 1 =m=1,2

(i
(
(iii) At least f> is ofregular relative (p q,t) growth with respect to g, and ngp a0k (f2) # pgp a4k (f2)s
(
(v

Proof. Let us suppose that pé,p 4L (f1), pg1 (fz) NL (f1) and pé(,zp’q"”L (f2) are all non zero and finite.

Case 1. Suppose that pg(p 4L (f1) > pgf’ 4L (f2). Also let g satisfy the Property (D). Since Ty,., (r) < Ty, (r) + T, (r) for all large r,
therefore applying the same procedure as adopted in Case I of Theorem 3.17 we get that

P (- o) < o (). (3.26)

Further without loss of any generality, let f = f; - f> and pgp a0k () < pglp L )= pg‘f7 L (f) - Then in view of (3.26) , we obtain

(f
that G(pqt)L (N = p"” (fi-fr) < Géf’q’l)L (f1). Also f1 = T’z and T, (r) = ( ) O(1). Therefore Ty, (r) < Ty (r) + Ty, (r)+O0(1)
P qi

and in this case also we obtain from (3.26) that G(p L (fi) < Gg'q’[)l‘ (f) = (f - f2) . Hence o:ép L (f) = o:élp’q’t)l‘ (f1) =

o (£ ) = P (fr).

Similarly, if we consider pépqt)L (f1) < pgpqt (f2), then one can verify that Ggpqt (fi-f)= Gglpqt (f2)-

Next we may suppose that f = }% with f1, f and f are all meromorphic functions in the unit disc D.

Sub Case I,. Let pé,lp’q’tﬂ‘ (fr) < p<f) )L (f1)- Therefore in view of Theorem 3.9, pé(,p )L () < pg)qt)l‘ (f1) = pg(,f 4L (f). We have
fi =1+ f. 80,0 (1) = oL (1) = o0 ().

Sub Case Ig. Let pg(,pqt) (f2) > p(f”mL (f1). Therefore in view of Theorem 3.9, pgpqt (f1) < pglpqt)l“ (fa) = p(f’ L (f). Since Ty (r)
=T, +0(1) =Ty (1) + 01), So o 4" (1) = o (1)

Case IL Let pgp a0k

same procedure as explored in Case II of Theorem 3.17, one can easily verify that & 7<p a1k (fi-fh)= O'gf 4k (f1) and G<p a1k (%) =

(f1) > pgf’ L (f2). Also let gy satisfy the Property (D). As Ty,.p, (r) < Tf, (r) 4 T, (r), therefore applying the

p @)L (f;) | i = 1,2 under the conditions specified in the theorem.

Similarly, if we consider pgp i)l (f1) < pg )L (f2), then one can verify that Gy p )L (fi-f)= c)'gl (fz) and O'(p )k (%) =
—(p.g.t)L
st (f).

Therefore the first part of theorem follows from Case I and Case II.

Case III. Let g - g5 satisfy the Property (D) and pgp a0k (f1) < pg’qt (f1) with at least f; is of regular relative (p,q,t) growth with

respect to g;. Since T, ¢, (1) < Ty, (r) 4 Ty, (), therefore applying the same procedure as adopted in Case IIT of Theorem 3.17 we get that

ol (1) = ol (). (3.27)

Further without loss of any generality, let ¢ = g1 - g2 and p(p’q L (f1) = pé{)qt) (f1) < pgf’qt (f1)- Then in view of (3.27), we
obtain that o """ (f1) = o7& (fi) > ol (f1). Also g1 = £ and Ty, (r) = T (r) + O(1). Therefore Ty, (r) < Ty (r) + Ty, (1)

+ O(1) and in this case we obtain from (3.27) that Gg’q"t)L (A1) > crép'q’ L (1) = Géf]gzl (f1). Hence cép’q’t)L ()= Gg(f”m (f1) =
L L
ol & (1) = o ().
Similarly, if we consider p<p a0k (f1)> pi,f a0k (f1) with at least fj is of regular relative (p,q,t) growth with respect to g;, then one

can verify that Gg(fgzl)L (fi) = O‘éf L (f1)-

Next we may suppose that g = g—‘ with g1, g2, g are all entire functions satisfying the conditions specified in the theorem.

Sub Case III,. Let pé,pqt)l‘ (f1) < pg f’qt (f1)- Therefore in view of Theorem 3.12, peép"q”)l‘ (f1) = pé,qut) (f1) < p(fqt)l‘ (f1)- We
have g1 = g-g2. So oy " (f1) = 0" (1) = 01" ().

82

Sub Case IIIg. Let péf”q’t)L (f1) > pgp’qt (f1). Therefore in view of Theorem 3.12, pé(71>,q,t)L (f1) = pqt (f1) < pg{? )L (f1). Since
T (r) = Ty () + O(1) = Taa (1) + O(1), S0 ol " (f1) = o " (1),
&1

82
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Case IV. Suppose g - g satisfy the Property (D). Also let pép )L (fi) < pg 0L (f1) with at least f] is of regular relative (p,q,t) growth
with respect to go. As Ty, .g, (r) < Ty, (r) + Ty, (), the same procedure as explored in Case IV of Theorem 3.17, one can easily verify that

Gg’ gzt)l‘ (1) = Eg’q’t)[‘ (f1) and 0'(p 4L (1) = G[E,,p )L (f1) | i = 1,2 under the conditions specified in the theorem.

Likewise, if we consider pgp qt (f1) > pgf L

can verify that Gg g;) (f1) = Eg ot L( 1) and Gy p )L (f1) = ng’qt (f1)- Therefore the second part of theorem follows from Case III

2

and Case IV. :
Proof of the third part of the Theorem is omitted as it can be carried out in view of Theorem 3.13 and Theorem 3.15 and the above
cases. O

(f1) with at least f; is of regular relative (p,q,t) growth with respect to g1, then one

Theorem 3.24. Let f1 , f2 be any two meromorphic functions in the unit disc D and g1, g> be any two entire functions. Also let lép 4L (f1i),

lg(f’q’ ) (f2), Ag) (pat) (fl) and )Lg(f’q’ (f2) are all non zero and finite where p,q € N and t € NU{—1,0}.
(A) Assume the funcnons f1, f2 and g satisfy the following conditions:

(i) Any one of),g’q‘t)l‘ (fi) > lé,]p"q’t)l‘ (fj) hold with at least f; is of regular relative (p,q.t) growth with respect to g\ fori, j = 1,2 and
L7 J;
(ii) g1 satisfy the Property (D), then

o (fi- fo) = PR (f) and TR (fr- o) =T () [i= 1,2
Similarly,

et <2):r§{”q’ (f;) and TS (?) L (g i=1,2

holds provided % is meromorphic in the unit disc D, at least f is of regular relative (p,q,t) growth with respect to g| where g satisfy the

Property(D)and/lélp’qt (fi) > lgf’q’ (fJ) li=1,2;j=1,2,i#].

(B) Assume the functlons 81,82 and f1 satisfy the following condltlons

(i) Any one of Ag (pa.L (f1) < Xéf’q’t)L (f1) hold for i, j = 1,2, i # j; and g; satisfy the Property (D)
(ii) g1 - g satisfy the Property (D), then

e () =2l () and ZGEE (F) =70 () L= 1,2,

Similarly,

e (1) = 1P () and TR (fr) =78 () i=

82 82
holds provided % is entire and satisfy the Property (D), g1 satisfy the Property (D) and l(f”q"m‘ (f1) < lgp )L () i=1,2,j=1,2;i#

J-
(C) Assume the functions f1, f», g1 and g, satisfy the following conditions:
(i) g1- 82, g1 and g are satisfy the Property (D);
ii) Any one o ),(p’q'm‘ i >/l(p’q’t>l‘ i) hold with at least f; is of regular relative (p,q,t) growth with respectto g| fori=1,2, j=1,2
y g1 81 J J 8 p,q,t) & 4 8 J
and i # j;

(iii) Any one of Ag, (gL (fi) > Ag, ()L (fj) hold with at least f; is of regular relative (p,q,t) growth with respect to g fori=1,2, j =
1,2 andi# j;

(lv) Any one of Ag; ()L (fi) < lg(f’qr (f1) and any one of A, (Pat) (fz) < lg(jp’q’l)L (f2) holds simultaneously for i =1,2; j = 1,2 and

() A () =
min[max{/léf”q’t)L(fl) APt (fz)} max{ ALPIOE £y A fpad) (f2)}] where | =m = 1,2; then

w8 (fi- o) = 2PN () and T (f- ) =T () [ Lm = 1,2,

Similarly,

i) (fl)_réi’q’>L(f)andrpq’ <§1):?é’:ﬂ’q"t)L(ﬁ)\l,m:LZ.

& f 2 2

holds provzded f L is meromorphic in the unit disc D and g L is entire functions which satisfy the following conditions:

(@) g', g1 and g2 satzsfy the Property (D);

(ii) At least f» is of regular relative (p,q,t) growth with respect to g| and lép 4k (f ) # Ag p‘q‘l ) (f2);

(iii) At least f is of regular relative (p,q,t) growth with respect to g, and lg(f a0k (f ) # lgp 4L (f2)s

(iv) Any one of lés,.p’q't)L (f1) < ).g(f’q"t)l‘ (f1) and any one ()f/'L{gip'q’[)L () < léj’.’ 4L (f2) holds simultaneously for i =1,2; j = 1,2 and
i j,

( ) p q.t)L (

min [max {Adre 2O () b max {4 (1) A4 () }] where 1 =m=1,2.
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Proof. Let us consider that /l(p gL (fl) p a1 (f2), A p a1 (f1) and Ag p 1)L (f2) are all non zero and finite.
Case I. Suppose lé, el (f1) > lél ! ( f2) with at least f> is of regular relative (p,q,t) growth with respect to g, and g; satisfy the
Property (D). Since T7,.1, (r) < Ty, (r) + T, (r) , therefore applying the same procedure as adopted in Case I of Theorem 3.18 we get that

WPOE (1. ) < Pt

(f1)- (3.28)

Further without loss of any generality, let f = f] - f> and /’L(é]p"q’t)L () < lg(lp’q"t)]‘ (f1) = Ké]’”q’t)L (f)- Then in view of (3.28), we
obtain that ‘L'é(,pqt)l‘ (f) = pqt (i) < ’Cgpqt (f1)- Also f1 = fi and Ty, (r) = T% (r) + O(1). Therefore Ty, (r) < Tr (r) + Ty, ()
2

+ O(1) and in this case we obtain from the above arguments that Tg("”mL (f1) < ré{"’q’t)L (f) = ‘Eg{’qt (f1-f2). Hence Tg(‘”qt)l‘ (f) =
e () = P (i) = 7l ().

Similarly, if we consider }L(p a0k (fi) < }L(P a0k (f2) with at least f; is of regular relative (p,q,t) growth with respect to g1, then one
can easily verify that Tgpqt (fi )= fg(f’ql) (f2).

Next we may suppose that f = 5.2 with f1, f> and f are all meromorphic functions in the unit disc D satisfying the conditions specified
in the theorem.

Sub Case I. Let 277 (f5) < A 495 (£,). Therefore in view of Theorem 3.8, A745 (£,) < AP49E (£) = A4 (£). We have
fi= - So P () = Pt ) lpast (%)

Sub Case Tg. Let A"" (£,) > 4745 (). Therefore in view of Theorem 3.8, A7 (f;) < AP 4VE (£) = 47405 (). Since Ty (r)
=T, (1) +0(1) =T, (1) + 0(1), So 7 " (4] = " ().
fi

Case IL. Let lg a4k (f1) > l;f' a0k (f2) with at least f; is of regular relative (p, q,¢) growth with respect to g; where g satisfy the Property
(D) As Tp,.p, (r) < Ty, (r) + T, (1), so applying the same procedure as adopted in Case II of Theorem 3.18 we can easily verify that

P a1 (fi-f)= 7(17 gL (f1) and ’l,'(P 4L (f1)= Tg’q’t)l‘ (f1) | i = 1,2 under the conditions specified in the theorem.
3

Similarly, if we consider }L(P a0k (fi) < }L;f' a0k (f2) with at least f; is of regular relative (p,q,t) growth with respect to g1, then one

can easily verify that T, p a1 (fi )= ?Eg’l’ a0k (f2).
Therefore the ﬁrst pan of theorem follows Case I and Case II.

Case IIL. Let lg(lp @)L (fi) < Ag ()L (f1) and g - g satisfy the Property (D).Since Ty, .q, (r) < Ty, (r) + Ty, (1), therefore applying the
same procedure as adopted in Case IIT of Theorem 3.18 we get that

wlEOt () < Pt (). (3.29)

Further without loss of any generahty, let g g1-g> and l<pq’) (1) = lélp’q"t)l‘ (1) < /lgzp )L (f1). Then in view of (3.29), we
obtain that Tgpql (f1) = Téf)g; (f1) > Tgp @) (fl) Also g| = and Ty, (r) = TL (r) + O(1). Therefore Ty, (r) < T, (r) + T, (r) +

O(1) and in this case we obtain from above arguments that Tép 4L (f]) > ‘Cgp'q’t)l‘ (fl) Tgfgzt (f1)- Hence ngp’q’t)l‘ (fi) = ‘L'g’q"t)l‘ (f1)
L L
= 7l () =4 ().

If léf’q’t)L (f1) > Ag, (Pl (f1), then one can easily verify that Té%’z’r)L (fi)= Tg a0k (f1)-
Next we may suppose that g = % with g1, g2, g are all entire functions satisfying the conditions specified in the theorem.

Sub Case III5. Let ?L(p'q‘t)L (f1) < l(p'q”m (f1). Therefore in view of Theorem 3.10, lép”q’t)L (f1) = léf’q’[)L (f1) < léflq’t)L (f1). We
have g1 = . S0 67 (1) = 40 (1) = P4 (1),

82

Sub Case IIIp. Let A, pqt (f1) > pqt (f1)- Therefore in view of Theorem 3.10, /'Lé‘”’q’”L (f1) = /'Lg’q’t>L (f1) < /'Lg;” )L (f1)- Since
L L

T (1) =70 (1) + 0(1 - Ta (1) + 0(1). S0 1749 (1) = 41 (1),

B3

Case IV. Suppose lé,p"q’l)L (f1) < lép @0L (£1) and g1 - g» satisfy the Property (D). Since Ty, (r) < T, (r) + ng (r), then adopting the

same procedure as of Case IV of Theorem 3.18, we obtain that rglf g,t (f1) = Tg"f )L (f1) and f(p’q’t)L (fi) =Ty p a0k (fi)li=1,2.

Similarly if we consider that kéf”q’t)l‘ (f1) > g, (gL (f1), then one can easily verify that ‘L'gll7 g; (f1) = p a1 (f1)-

Therefore the second part of the theorem follows from Case III and Case IV.

Proof of the third part of the Theorem is omitted as it can be carried out in view of Theorem 3.14 , Theorem 3.16 and the above
cases. O

Theorem 3.25. Let f1, f» be any two meromorphic functions in the unit disc D and g1, g, be any two entire functions. Also let p,q € N and
te NU{-1,0}.

(A) The following condition is assumed to be satisﬁed

(i) Either "4 (f1) # o{P 1 (1) or 545 (1) £ G (1) holds;

(ii) g1 satisfies the Property (D), then

psPADE (£ ) = pSPADE (1) = piPaDE ().
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(B) The following conditions are assumed to be satisfied:

(i) Either ol ™" (1) # o " (1) or 57 (1) £ G (1) holds;
(ii) f1 is of regular relative (p,q,t) growth with respect to at least any one of g1 or g». Also g1 - g» satisfy the Property (D). Then we have

,q.t)L q,t)L t

Pt (1) = o () = P ().
Proof. Let fi, f» be any two meromorphic functions in the unit disc D and gy, g2 be any two entire functions satisfying the conditions of the
theorem.

Case L. Suppose that pé,” GOl (f) = pé{’ GOL (£

0 < [”]J)L(f) pépqt)
1
Theorem 3.9, it is easy to see that pg) (pa.1)L (fi-f)<p pqt)[‘ (1) = pqt (f2) . If possible let

(f2) < o) and g satisfy the Property (D). Now in view of

P (f1- o) < PSP (1) = o (). (3.30)

Let Ggp L (f1) # Gg(f 40) (fz) Now in view of the first part of Theorem 3.23 and (3.30) we obtain that G&Sp 4L (f1)= Géf”q’[)L (%)

= Gg a4k (f2) which is a contradiction. Hence pg ( fi-fh)= pglp 0L (fi) = p ) ( ). Similarly with the help of the first part

of Theorem 3.23, one can obtain the same conclusion under the hypothesis Gé’; 4L ( fl) #* Eg 4L (f2) - This prove the first part of the
theorem.

Case IL. Let us consider that p(p 40) (fl) pgf 4L (f1)(0< pgpqt (f1), pgi7 @k (f1) <o), f1 is of regular relative (p, q,t) growth with
respect to at least any one of g or g5. Also g1 - g» satisfy the Property (D). Therefore in view of Theorem 3.11, it follows that pé(,f’gz't)L (f1)

> pépq’ﬂ“ (1) = pgqt) (f1) and if possible let

P& (1) > psP It (f1) = pE I (). (3.31)

Further suppose that G(p a1k (f1) # O'(f a0k (f1) - Therefore in view of the proof of the second part of Theorem 3.23 and (3.31),

we obtain that O'g(pqt)L (f1) = o,E{’gi’)L (f1) = O'g(fqt (f1) which is a contradiction. Hence pé,f.ﬁ;ﬂ (f1) = pg’q ML (f1) = pg )L (f1) -
8

Likewise in view of the proof of second part of Theorem 3.23, one can obtain the same conclusion under the hypothesis O'g 4L (f1) #

61(,,'; 4L (f1) - This proves the second part of the theorem. O

Theorem 3.26. Let f1, f> be any two meromorphic functions in the unit disc D and g1, g, be any two entire functions. Also let p,q € N and
re NU{-1,0}.
(A) The following conditions are assumed to be satisfied:
(0) (f1- f2) is of regular relative (p,q,t) growth with respect to at least any one g1 or g»;
i) (g1-82), &1 and g all satisfy the Property (D);

(i
(iii) Either """ (f; - f)?éog”"’”(fl f)orog’f"’ (fi-f2) 5L (f - o)
(zv)Enheroé"‘m (fi) # agrant <f2)orog'”“ (f) Ao (1)

(v) Either o " (1) # 45 (£) or 5 L9E (1) £ GLTE (), then

p\PEO (£ fo) = pPAIE (£) = piP IOt (1) = pSP 4Ok (£) = I ().

(B) The following conditions are assumed to be satisfied:

(7) (g1-g2) satisfy the Property (D);
ii) f1 and f, are of regular relative (p,q,t) growth with respect to at least any one gy or g»;

(

(iii) Either ol " (f)#cgf’ﬁz’ (f2) or LA (1) £ LR (o)
(iv) Either oy 4" (f)#cg'“” (f1)0r6§’fq’L(f1)7éG”t (f1);
(v) Either """ (f5) # 645 (1) or 5L (£) £ GLTE (), then

. ) )L
Pl (1 12) = Pl (1) = Pl 0 (12) = Pl (1) = Pl T (1),
‘We omit the proof of Theorem 3.26 as it is a natural consequence of Theorem 3.25.

Theorem 3.27. Let fi, f> be any two meromorphic functions in the unit disc D and g\, g» be any two entire functions.
(A) The following conditions are assumed to be satisfied:
(i) At least any one of fi or f» are of regular relative (p,q,t) growth with respect to g1 where p,q € Nandt € NU{—1,0},

(ii) Either T (£1) # 1 () or TLTOE (1) £ TN (£3) holds.
(iii) g1 satisfy the Property (D), then

MPAE (£ ) = AL (1) = AL ().

(B) The following conditions are assumed to be satisfied:

(i) f1 be any meromorphic function and g1, g» be any two entire functions such that l;lp’q’t)L (f1) and lg’q’t)L (f1) exist where p,q € N,
te NU{-1,0}, and g - g2 satisfy the Pmperty (D);

(ii) Either Tg(p )L (f1) # Tgp 1) (fl) Tg] a0k (f1) # f((g‘;‘q’t)L (f1) holds, then

ALEOE (f) = 24P (1) = AP0E ().



166 Konuralp Journal of Mathematics

Proof. Let f1, f> be any two meromorphic functions in the unit disc D and g1, g» be any two entire functions satisfy the conditions of the
theorem.
Case L. Let lg(f”q’t)L () = p @il (f2) (0< Ag p @ik (f1), lg(lp’q’t)L (f2) < =), g1 satisfy the Property (D) and at least f; or f> is of regular

relative (p,q,t) growth with respect to g1. Now in view of Theorem 3.7 it is easy to see that A, p @)L (fi-f) <A p s (f1)= /’Lé,p'q’[)L (f2).
If possible let

APIE (i o) < APTOE (f1) = 2P (). (3.32)

Also let r(p a4k (fi) # Tél a0k (f2) - Then in view of the proof of first part of Theorem 3.24 and (3 32) we obtain that T(p’q HL (fi)=
Tg(f’ )k (%) T(pql (f2) which is a contradiction. Hence lg(f"’q’l)L (fi-fo) = lg(f”q’t)L (fi)= pqt (f2) - Analogously, in view of

the proof of first part of Theorem 3.24, one can derived the same conclusion under the hypothesis T<p a4k (fi) # 74 p a1l (f2). Hence the
first part of the theorem is established.

Case II. Let us consider that l(p 4L (f1)= lg(f’q‘t)L (f1) (0< lélp‘q"t)L (f1 ) l“"’ql L (f1) <o and g1 - g satisfy the Property (D). Therefore
in view of Theorem 3.10, it follows that lé]png[) (f1) > lélp'q’[)L (fi) = Ag (1)L (f1) and if possible let

APEE (fr) > AL (f) = 24 (). (3.33)

Further let Tg 4L (f1) # Téf 4L (f1)- Then in view of second part of Theorem 3.24 and (3.33), we obtain that ‘L'g(,p )L (f1) =
T{(’Ep&qt)L) (fi) = Tg(f"q’l)L (f1) which is a contradiction. Hence lg(]p.gz’ L (fi) = p )L (fi) = p’q"[>L (f1) - Similarly by second part of

82
Theorem 3.24, we get the same conclusion when ’L'(p 0L (fi) # 7y p s (f1) and therefore the second part of the theorem follows. O

Theorem 3.28. Let f1, f» be any two meromorphic functions in the unit disc D and g1, g» be any two entire functions.
(A) The following conditions are assumed to be satisfied:

(i) g1 - 82, g1 and g satisfy the Property (D);
ii) At least any one of f1 or f» are of regular relative (p q,t) growth with respect to g1 and g, where p,q € Nandr € NU{—1,0};

(
(i) Either 7" (1, f)yérg”q’ (fi-f2) or T4 (11 fz)#?éfql (fi- f2);
(W)Enhem“’q”( 1) # Tip et (fg)orr(p’qt (f1) 2T ()

(

v) Either 7l " (1) # 10" (1) or 7 (1) # T8 (£2): then

APEE(f1 - ) = 27 (f1) = AT (o) = AP () = AP ().

(B) The following conditions are assumed to be satisfied:

i) g1 - g2 satisfy the Property (D);
ii) At least any one of f| or fp are of regular relative (p, q, f) growth with respect to g1 - g» where p,q € Nandt € NU{—1,0};

(i

(

(iii) Either Tg(f’gzl (f1) # Tgf’g,’t)L (f2) 0 ngzl (fi)#7 T ’qt (f2) holds;
(iv) Either rg(”‘” (1) # rg”‘” (i) or ré’“” L () £ 2090 (1) holds

(v) Either Tgpqt (f2) # ‘L'gpqt (f2) or ‘L'g[:qt (fo) # 74 pqt (f2) holds, then

APEOE (f1- 1) = AP (f) = AP () = AP (1) = 2408 ().

We omit the proof of Theorem 3.28 as it is a natural consequence of Theorem 3.27.

Remark 3.29. If we take f L instead of f1 - f> and g' instead of g1 - g» where ? is meromorphic in the unit disc D and g; is entire function,
and the other conditions of Theorem 3.25, Theorem 3.26, Theorem 3.27 and Theorem 3.28 remain the same, then conclusion of Theorem
3.25, Theorem 3.26, Theorem 3.27 and Theorem 3.28 remains valid.
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