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Abstract

This paper discusses the generalized Mellin transforms and their properties with examples and applications to integral and partial differential
equations. Several simple lemmas and theorems dealing with general properties of the generalized Mellin transform are proved. The main
focus of this paper is to develop the method of the generalized Mellin transform to solve partial differential equations and integral equations
in applied mathematics.
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1. Introduction

We derive the generalized Mellin transform and its inverse from the complex Fourier transform and its inverse [1][2][3], which are defined
respectively by

F k) = / e kg (E)dE =Gk 1.1
{g(8):k} = Wit (§)d§ =G (k) (1.1
g1 lké =
Gk / G (k)dk = . 1.2
(@38} = = 8(8) (12
Making the changes of variables x" = % and ik = c— p, where Re (x) > 0 and ¢ is a constant, in (1.1) and (1.2), we get
G(ip—ic) / g (logx" 1.3
(ip - g ) (1.3)
logx" / X"x7"PG (ip—ic)dp. 1.4
g (log = e (ip—ic)dp (1.4)
Writing f (x) = \/’é—ﬂx*”cg (logx™) and f, (p) = G (ip — ic) we define generalized Mellin transform of the function f (x)[4] and the inverse
generalized Mellin transform as follows:
A WPy =T ()= [0 () (15
. no et
M B p)ix) = £ ) =5 [ X Fa(p)dp (1.6
T Je—ioo

where f (x) is a real valued function defined on (0, ) and the generalized Mellin transform variable p is a complex number. Obviously, .,
and ./, ! are linear integral operators.
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1.1. Basic operational properties of Mellin transforms

Lemma 1.1. If #,{f (x);p} = fu (), then the following operational properties hold true;
(i) Shifting Property:  Mp{x*f (x);p} = ﬁ(ﬁ-ﬁ- p),a>0
(ii) Scaling Property: My {f (ax):p} =a " fy (p), a>0
1
(ii)) Mo {f )ip} = — T (2)
. o an”_\an
() 3" () iy =F (G 8
o
) i { (nlogx) f()ip} = LT (p), kEN
Proof. Shifting property given in (i) is seen by directly the definition of the .#,-transform (1.5). The identities given in (ii), (iii) and (iv),
respectively, are obtained by the definition of the generalized Mellin transform (1.5) and substituting ax =, x"* =t and x~ " =1, respectively.
The relation given in (v) can easily be proved by using the result

d

i <x”"*') =n(logx) <x””71) ,Re(x)>0. -

Lemma 1.2. If #,{f (x);p} = fu (), then the following operational properties hold true;
(i)Generalized Mellin transforms of derivatives :

M {f (x):ip}=—(np—1)fu (p—%) (1.7)

where [x"P~1 f (x)] vanishes at x — 0 and x — co.
More generally, forr =0,1,2,..m—1, Re(p) > ",

M1 ()3} = (a0 ih(r=7) (18)

(np—m n

where [x"f'*rflf(r) (x)] vanishes as x — 0 and x — o.
(i) We have
AMp{xf' (x):p} = —npfa(p) (1.9)

where [xX"P f (x)] vanishes at x = 0 and as x — eo.
More generally, we have

ml"(np+m)f—(p) (1.10)

A () = (1) R

where [x”p+1f(’> (x)] vanishes at x = 0 and as x — o, for r =0,1,2,....m—1.

(iii) Generalized Mellin transforms of differential operators

If My {f (x);p} = fu(p), then

My { (x;i)zf(x) ;p} =t {21 @) +xf ():p} = (p) Ta (p) (L.11)

(iv) Generalized Mellin transforms of integrals

x 1 1
///n{/o f(l)dt;p}:f@fn (p+ ;) (1.12)

and more generally,

C(np) ¢  m
M1 py = (—1)m ") ( 7)7 1.13
where Ly, [f (x)) = [§ J§ - Jo [ () dt. Setting F (x) = L, [f (x)], we get F™ (x) = f(x).
Proof. i)The relation (1.7) can be proved by using the definition of the .#,-transform and integration by parts and substituting x"?~! = u.

(1.8) can be proven by using the mathematical induction principle.
ii) Using the definition (1.5) and changing the variable of the integration from x to u where x"7 = u, we get

AMn {xf' (x) §P} = _”P/O xnpilf(x)dx = _”P]Tn(P)~
The relation (1.10) can be proved by using mathematical induction principle. We assume that the following holds true

m—1 F(np+m— 1)*

Using the definition of the .#,-transform, the relation (1.14) and substituting X"?T"~! = i, we obtain the relation (1.10).

A {0 )} = (1)
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iii) Using the relation (1.10), we have

Ay { <x%) f(x) ;p} =—npfu(p), (1.15)
-//ln{<x2£)f(x);l’}:”P(”P“‘l)ﬁ(l’)- (1.16)

Using the definition (1.5) and its linearity, we obtain the relation (1.11).
iv) We take F (x) = [j f (t)dt so that F' (x) = f (x) with F (0) = 0. Application of (1.7) with F (x) as defined

//{n{f(x):F/(x);p}:f(npfl)///n{F(x);pf%} (1.17)

which is replacing p by p+ %, we arrive at the relation (1.12).
Now we assume that F (x) = I, [f (x)] and F™ (x) = f (x). Using the relation (1.8) and replacing p by p+ %, we obtain the relation (1.13)
given in (iv). O

1.2. Convolution Type Theorems

Theorem 1.3. If #,{f (x);p} = fu (p) and My {g (x);p} = gn (p) , then the following relations hold:

(1ot =] [“1@s(F) Torf =Fwmo. 118)
(1 0osint =] [“ 0816 @tin} =T 01w (1 -0). (1.19)

Proof. Using the definition of the .#,-transform, we have

M {f (x) * g (x);p}

w{ren(3) %
- e[

substituting % =1, we obtain

A siny = [Tr@ag | [Ter e an a2n
= fu(p)g(p).
Similarly, we have
M Af () og()ip} = //n{/omf(xfé)g(é)dé;p} (1.22)

|| s@d [0y g ax

Making the change of variable x = 1, we get

AT 5 o@ipy = [Tg@dg [T £ () an (1.23)

= g*n(%—p>ﬁ(p)~ O

Note that, in this case, the operation o is not commutative. Clearly, putting x = s, we find

{fn( )gn (p): }:/:g(st)f(t)dt- (1.24)

Substituting g (1) = e " and g(p) ='(p), we get the Laplace transform of f (¢) as

47, (f—p)r(m z} = [(etrwar=2r@)s). (125)
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1.3. Parseval’s Type Property

Theorem 1.4. If #,{f (x);p} = fu (p) and M, {g(x);p} = gn (p) , then the following relation holds,

Cctico
AT @80} = [0 Wewdrs [0 E (-9 ds
Tl Je—ioo
In particular, when p = 1, we obtain the Parseval formula for the generalized Mellin transform,
0o ! n ctico
/ T f(x)g(x)dx = —/ Jn(8)8n (1 —5)ds. (1.26)
0 270 Je—ioo
Proof. Using the definition of the .#,-transform and ./, ' -transform, changing the order of integration, we have
no i ot
MW Wipy = o [ lear [T (s ds
L Jo c—ioo
n ctieo o0 A
= 5o /Ciioo x B (s)ds/o K1 (P9 1g()c) dx
n Cctico
= e [ Rm (s

In particular, when p = 1, the above relation becomes (1.26) as follows,

n

A We @iy = [P W= s [T @ O

270 Je—ioo
2. Examples

We shall illustrate the above results by several examples like in [5].

Example 2.1. We show the followings

1
(i) My{e™;p}= —p L (np),
(ii) My {e*m‘x‘;p} = ﬁr(np) , where Re(np) > 0.

Demonstration: Since the relation given in (ii) is seen similarly, we only give the proof of the relation given in (i). Using the definition of
the ./, -transform and making the change of variable mx =, we get

_ Lo~ 1
My {e™p}=Fu(p /x"”l "dx = ””/0 " le ’dt:WF(np).

Example 2.2. For the Beta function B(p,q) (see [7]), we obtain

///n{L;p}=B(np,1*np)- (2.1)

x+1
t
Demonstration: Using the definition (1.5) and making the change of variable from x to #, where x = -5 we have

1 _ 1
[ _ — np—1 1 _ \(1=np)—1
///n{x+1,p} fu(p) /O t (1—1) dr

B(np,1 —np) =T (np)T (1 —np).

Example 2.3. We show
1
p{ i} =T o) L) @2)

where Re(np) > 0, € (p) is the Riemann-Zeta function. It is defined by § (p) =Y, np , Re(p) > 0.

Demonstration: By the relation (i) of Example 2.1, the definitions of the Gamma and the Riemann-Zeta functions, and the equality

o

—mx _ _1
m—1€ = 1> We get

)= [ = X [Tertemax= ¥ EE =) ).

m=1 m"P
Example 2.4. We show for Re(np) > 1,

2
J//{ﬁp} = 21T (np) € (np). 23)
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Demonstration: Using the definition (1.5), the relation (i) given in Example 2.1 and the identityﬁ =Y 2™ e have
M, i'l’ = Z/wx"p_l ! dx:Zi/mx”p_le_zmdx
n e2x 1’ 0 e2x 1 =)o
- L) 1
= 2 X Gy = 27T p) L np).
m=1
Example 2.5. We show for Re(np) > 1,
1 _
{ i} = (1-27) T n) C o). )
Demostration: Using the relations (2.2) and (2.3), we have
M, L = M, L M, L
B T L R P R L PR
= (1=2"") T (p) ¢ (np).
Example 2.6. For the Beta function B(p,q), we show
Mu{(1+x)"";p} =B(np,m—np) (2.5)
Demonstration: By definition (1.5) and making the change of variable
t
x=——, we find
1—t
- I'(np)T'(m—n
{14 5p) = Blapm—np) = L),
Hence, we get ., ' {T (np)T (m—np);p} = %
Example 2.7. We show
My 1—M H 1—M P :a"”; (2.6)
a a)’ np(np+1)
where Re(np) > 0,Re(a) > 0 and H(x) denotes the Heaviside Function (see [2]).
Demonstration: Using the definition (1.5) and the definition of Heaviside function we arrive at the relation (2.6).
Example 2.8. We show
L I'(np) T
My {cos (kx);p} = p 08 (npz) , 2.7
. y_T(np) . T
My {sin (kx);p} = i Sin (np§> . (2.8)
Demonstration: Using the relation (i) given in Example 2.1 and the linearity of the generalized Mellin transform, we get
My {eiikx;p} = p{cos(kx);p} — iy, {sin(kx);p}
_ T(np) ny I(np) . T
= i S (np§> —i—qp Sin (npz)
Using this relation, we arrive at the relations (2.7) and (2.8).
These results can be used to calculate the Fourier cosine and Fourier sine transforms of ¥*?~!. Result (2.7) can be written as
oo r
/0 X"~ cos (kx) dx = ]El:lpp) cos (np%) ,
or, equivalently,
E np—1. _ F( p) < 7)
T { 2x ,p} = i cos (np—), 2.9)
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2.1. Applications of the Generalized Mellin Transform

Example 2.9. We solve the following boundary value problem for A=constant

Pty +xuyFuyy = 0,0<x<o0, 0<y<1, (2.10)
u(x,0) = 0, (2.11)
A,0<x<1
ux,1) = { 0 x> 1

Demonstration: Applying the generalized Mellin transform of u(x,y) with respect to x defined by

i(p,y) = /(;wxp’lu(x,y)dx7 2.12)

we reduce the given system into the form

d*ty, (p,

%Hw)zmp?y):m 0<y<l, 2.13)

_ — ~ p—1 A

u(p,0)=0, un(p,l):/ xXPT Adx = —. (2.14)
0 np

The solution of the transformed problem (2.13)-(2.14) is

un (p,y) = ] sin(npy), 0 <Re(np)<1. (2.15)

npsin (np

The inverse generalized Mellin transform gives,

(2.16)

An  [etie x7"P gin (npy
m(ey) = S [T XSmO,
(&

27i Je—iew np sin(np)

where % (p,y) is analytic in the vertical strip 0 < Re (np) = ¢ < m. The integrand of (2.16) has simple poles at p = %”,k € N which as lie
inside a semicircular contour in the right half plane. Evaluating of (2.16) by theory of residues gives the solution for x > 1 as

7kp

>~I\D>

sin (kmy) .

Example 2.10. We solve the following integral equation

/ FE)K(xE)dE = g(x),x>0 2.17)
Demogstration: : Application of the generalized Mellin transform with respect to x to given equation combined with the relation (1.19)
gives £ (£ = p) ku (p) = Zu (p)- Replacing p by L — p, we get fy (p)kn (£ — p) =2u (£ — p) - Thus the solution f; (p) = 2x (+ — p) hu (p)
is obtained, where hy, (p) = ——.
kn (=)

The inverse generalized Mellin transform combined with the relation (1.19) leads

r =ty g (5 -0 )iu)inf = [Th02)e()a8

provided & (x ~1 {h x} exists. Thus, the problem is formally solved. If, in particular, &, (p) = k, (p), then the solution becomes
f&)=Jo 8l ) (X§)d§ where &, (p)kn (3 = p) = 1 and hy (p)kn (;; —p) = 1.

Example 2.11. We solve the following integral equation

/f <>d§ h(x) (2.18)

where f (x) is unknown, g (x) and h(x) are given functions.

() -
by the

Demonstration: Applying the generalized Mellin Transform to given integral equation with respect to x, we obtain f,, ( (p)

D)8n
Then, applying the inverse generalized Mellin Transform to this equality, we obtain the formal solution as f (x) )K (%)

convolution property (1.18).

Example 2.12. (Potential in an Infinite Wedge) Find the potential ¢ (r,0) that satisfies the Laplace equation r* ¢y, + r¢, + ¢gg = 0 in an
infinite wedge 0 < r < oo, —a < 0 < o with the boundary conditions

o(na)=¢(n—a)=H(a~—r) 0<r<eoe

¢(r,0) =0asr—ooforall Oin —a <6 <. 219
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Demonstration: We apply the generalized Mellin transform of the potential ¢ (r,8) defined by .2, {¢ (r,0):p} = ¢, (p,0) = [P (r,0)dr
0

of the given differential system, then we have

d*¢, (p,0)

e =0 (2.20)

(np) (np+1) ¢ (p,0) + (—np) 9u (p,0) +

27" _
4 ¢dné€9) + (np)Z On (p7 9) ;po (2.21)

The general solution of the transformed problem (2.21) as follows

a’p

0 (p,0) cos (np#). (2.22)

T pcos (npa)
Applying the inverse generalized Mellin transform to (2.22), we have

CHico

o 6)—i/ 9T (np8)d (2.23)
P 0mi )T upcos(npa) SO VP AP: '

c—ioo

T
The integrand of the (2.23) has the simple poles at np =0 and np = (2k+1) 70’ k=0,1,2,... Evaluating (2.23) by theory of residues
gives the solution, we get

o (_1)(k+1)
¢(r,6)—n{1+1 (-1) (a>(2k+])ﬁ

B k_()m cos ((2k+ I)BO)} (2.24)

P
i1
where f§ = 0

Example 2.13. (Potential in an Infinite Wedge) Find the potential ¢ (r,0) that satisfies the Laplace equation r* ¢, + r¢, + ¢gg = 0 in an
infinite wedge 0 < r < oo, 0 < 0 < o with the boundary conditions

¢!(}’70):O ¢!(V7(Z):f(r)
¢(r,0) >0asr—ooforallin0< 6 <. (2.25)

Demonstration: We apply the generalized Mellin transform of the potential ¢ (r,8) defined by .2, {¢ (r,0):p} = ¢, (p,0) = [P ¢ (r,0)dr
0

of the given diferential system, then we obtain

d*, (p,0)

or () 6n(p,0) =0, (2.26)

@(p,()) =0, %(p,a) = Jfn (p)

The general solution of the transformed problem (2.26) is

— — fa(p) i (n
O (p,0) = sin (npe) sin (np#).

The inverse generalized Mellin transform leads to the solution

CHioo _
_n —np_Jn (p) .
¢'(r,9)—% / r ”Wsm(npe)dp

where 7 (p) = My {f (r) :p} = f PPl () dr
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