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1Department of Mathematics, Faculty of Science and Arts, Afyon Kocatepe University, Afyonkarahisar, Turkey
*Corresponding author E-mail: tyalcin@aku.edu.tr

Abstract

In this article, we consider higher order fractional nonlinear differential equation of type

aDq
t x(t)− p(t)x(t)+

m

∑
i=1

qi(t)|x(t)|λi−1x(t) = v(t)

lim
t→a+

Jn−q
a x(t) = an

aDq−k
t x(a) = ak, k = 1, ...,n−1

where aDq
t is Riemann-Liouville fractional differential operator of order q, m−1 < q≤ m,m≥ 1 is an integer. We obtain some oscillation

criteria for this equation.
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1. Introduction

In this paper, we consider the oscillation theory for a fractional differential equation with mixed nonlinearities of the type

aDq
t x(t)− p(t)x(t)+

m

∑
i=1

qi(t)|x(t)|λi−1x(t) = v(t)

lim
t→a+

Jn−q
a x(t) = an (1.1)

aDq−k
t x(a) = ak, k = 1, ...,n−1

where {p(t)},{v(t)} and {qi(t)} (1 6 i 6 m) are continuous functions on [a,+∞) and λi (1 6 i 6 m) are ratios of odd positive integers with
λ1 > · · ·> λl > 1 > λl+1 > · · ·> λm.
By a solution of equation (1.1) we mean a function x(t) which is defined for t > a and satisfies equation (1.1). Such a solution is said to be
oscillatory if it has arbitrarily large zeros on [a,∞); otherwise, it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all its
solutions are oscillatory.
By aDq

t we denote the Riemann-Liouville differential operator of order q with 0 < q 6 1. For p > 0, the operator Jq
a defined by

Jq
a x(t) =

1
Γ(q)

∫ t

a
(t− s)p−1x(s)ds, J0

a x = x

is called the Riemann-Liouville fractional integral operator. The Riemann-Liouville differential operator aDq
t of order q for 0 < q 6 1 is

defined by aDq
t x(t) = d

dt J1−q
a x(t) and, more generally, if n > 1 is an integer and n−1 < q 6 n, then

aDq
t x(t) =

dn

dtn Jn−q
a x(t)
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In [4,Lemma 5.3], under much weaker assumptions on p(t),v(t) and qi(t), the initial value problem (1.1) is equivalent to be Volterra fractional
integral equation

x(t) =
n

∑
k=1

ak(t−a)q−k

Γ(q− k+1)
+

1
Γ(q)

∫ t

a
(t− s)q−1

[
v(s)+ p(s)x(s)−

m

∑
i=1

qi(s)|x(s)|λi−1x(s)

]
ds (1.2)

Therefore, a function x(t) is a solution of (1.2) if and only if it is a solution of fractional differential equation (1.1).

2. Preliminaries

Definition 2.1. The Riemann-Liouville fractional derivative of order q > 0 of a function x : [a,∞)→ R is defined by

(Iq
a x)(t) :=

1
Γ(q)

∫ t

a
(t− s)q−1x(s)ds (2.1)

provided the right-hand side is pointwise defined on [a,∞), where Γ is the gamma function. Furthermore, I0
a x := x.

Definition 2.2. The Riemann-Liouville fractional derivative of order q > 0 of a function x : [a,∞)→ R is defined by

(aDq
t x)(t) :=

dm

dtm (Im−q
a x)(t) (2.2)

provided the right-hand side is pointwise defined on [a,∞),where n−1 < q 6 n and n > 1 is an integer. Furthermore, we set D0
ax := x.

Lemma 2.3. Suppose that X ,Y and U,V are nonnegative, then

λXY λ−1−Xλ 6 (λ −1)Y λ , λ > 1 (2.3)

µUV µ−1−U µ > (µ−1)V µ , 0 < µ < 1 (2.4)

where each equality holds if and only if X = Y or U =V

Lemma 2.4. Let (α1,α2, . . . ,αm) be an m-tuple satisfying α1 > α2 > .. . > αl > 1 > αl+1 > .. . > αm > 0. Then there exists an m-tuple
(η1,η2, . . . ,ηm) satisfying

l

∑
i=1

αiηi =
m

∑
i=l+1

αiηi

with ∑
m
i=1 ηi = 1 and 0 < ηi < 1 for i = 1,2, . . . ,m.

3. Main Results

Theorem 3.1. Assume

p(t)> 0, qi(t)

{
> 0 for 1 6 i 6 l;
6 0 for l +1 6 i 6 m.

(3.1)

If for some constant K > 0,

liminf
t→∞

t1−q
∫ t

a
(t− s)q−1

(
ν(s)+K

m

∑
i=1

p
λi

λi−1 (s)|qi(s)|
1

1−λi

)
ds =−∞ (3.2)

and

limsup
t→∞

t1−q
∫ t

a
(t− s)q−1

(
ν(s)+K

m

∑
i=1

p
λi

λi−1 (s)|qi(s)|
1

1−λi

)
ds = ∞ (3.3)

then every solution of (1.1) is oscillatory.
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Proof. Suppose to the contrary that there exist a nonoscillatory solution x(t) of equation (1.1). Without loss of generality, we may suppose
that x(t)> 0 for t > T . It follows from equation (1.2) that

x(t)6
n

∑
k=1

|ak|(t−a)q−k

Γ(q− k+1)
+

1
Γ(q)

∫ t

a
(t− s)q−1|F(s)|ds

=
n

∑
k=1

|ak|(t−a)q−k

Γ(q− k+1)
+

1
Γ(q)

∫ T1

a
(t− s)q−1|F(s)|ds+

1
Γ(q)

∫ t

T1

(t− s)q−1|F(s)|ds

=
n

∑
k=1

|ak|(t−a)q−k

Γ(q− k+1)
+

1
Γ(q)

∫ T1

a
(t− s)q−1|F(s)|ds+

1
Γ(q)

∫ t

T1

(t− s)q−1
ν(s)ds

+
1

Γ(q)

∫ t

T1

(t− s)q−1

(
p(s)x(s)−

m

∑
i=1

qi(s)xλi(s)

)
ds

=
n

∑
k=1

|ak|(t−a)q−k

Γ(q− k+1)
+

1
Γ(q)

∫ T1

a
(t− s)q−1|F(s)|ds+

1
Γ(q)

∫ t

T1

(t− s)q−1
ν(s)ds

+
1

Γ(q)

∫ t

T1

(t− s)q−1

[
l

∑
i=1

(λi p(s)x(s)−qi(s)xλi(s))

]
ds

+
1

Γ(q)

∫ t

T1

(t− s)q−1

[
m

∑
i=l+1

(−Ap(s)x(s)+ |qi(s)|xλi(s))

]
ds (3.4)

(3.5)

where F(s) = ν(s)+ p(s)x(s)−∑
m
i=1 qi(s)xλi(s) and A = (∑l

i=1 λi−1)/(m− l)> 0. For t > T , set

Xi = q
1
λi
i (s)x(s) and Yi =

(
p(s)q

− 1
λi

i (s)
) 1

λi−1

(s), 1 6 i 6 l,

Ui = |qi(s)|
1
λi x(s) and Vi =

(
A
λi

p(s)|qi(s)|
− 1

λi

) 1
λi−1

(s), l +1 6 i 6 m.

For t > T , multiplying the inequality (3.4) by Γ(q)t1−q and using (2.3) and (2.4) we find that

Γ(q)t1−qx(t)6
n

∑
k=1

|ak|(t−a)q−k

Γ(q− k+1)
Γ(q)t1−q + t1−q

∫ T1

a
(t− s)q−1|F(s)|ds+ t1−q

∫ t

T1

(t− s)q−1
ν(s)ds

+ t1−q
∫ t

T1

(t− s)q−1
l

∑
i=1

(λi−1)p
λi

λi−1 (s)q
1

1−λi
i (s)ds

+ t1−q
∫ t

T1

(t− s)q−1
m

∑
i=l+1

(1−λi)

(
λi

A

) λi
1−λi

p
λi

λi−1 (s)|qi(s)|
1

1−λi ds

6
n

∑
k=1

|ak|(t−a)q−k

Γ(q− k+1)
Γ(q)t1−q + t1−q

∫ T1

a
(t− s)q−1|F(s)|ds+ t1−q

∫ t

T1

(t− s)q−1
ν(s)ds

+ t1−q
∫ t

T1

(t− s)q−1K
m

∑
i=1

p
λi

λi−1 (s)|qi(s)|
1

1−λi ds, t > T1, (3.6)

where K = max{λ1−1,maxl+16i6m(1−λi)(
λi
A )

λi
1−λi }. Take T2 > T1. Next, we consider the cases 0 < q 6 1 and q > 1.

Case 1. Let 0 < q 6 1.Then we get n = 1,

|a1|t1−q(t−a)q−1 6 |a1|
(

T2

T2−a

)1−q
:= c(T2) for t > T2 (3.7)

and

t1−q
∫ T1

a
(t− s)q−1|F(s)|ds 6

∫ T1

a

(
T2

T2− s

)1−q
|F(s)|ds := c2(T1,T2) for t > T2 (3.8)

it follows from (3.7)-(3.8) that

Γ(q)t1−qx(t)6 c1(T2)+ c2(T1,T2)+ t1−q
∫ t

T1

(t− s)q−1

(
ν(s)+K

m

∑
i=1

p
λi

λi−1 (s)|qi(s)|
1

1−λi

)
ds for t > T2 (3.9)

Taking the limit inferior of both sides of inequality (3.9) as t→ ∞, we get a contradiction to (3.2). In the case x(t) is eventually negative, a
similar argument leads to contradiction to (3.3).
Case 2. Let q > 1. Then we have n > 2,

Γ(q)t1−q
n

∑
k=1

|ak|(t−a)q−k

Γ(q− k+1)
6

n

∑
k=1

Γ(q)|ak|(T2−a)1−k

Γ(q− k+1)
:= c3(T2) for t > T2 (3.10)
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and

Γ(q)t1−q
∫ T1

a
(t− s)q−1|F(s)|ds = Γ(q)

∫ T1

a

(
t− s

t

)q−1
|F(s)|ds 6 Γ(q)

∫ T1

a
|F(s)|ds := c4(T1) for t > T2 (3.11)

From (3.10) and (3.11), we conclude

Γ(q)t1−qx(t)6 c3(T2)+ c4(T1)+ t1−q
∫ t

T1

(t− s)q−1

(
ν(s)+K

m

∑
i=1

p
λi

λi−1 (s)|qi(s)|
1

1−λi

)
ds for t > T2 (3.12)

Taking the limit inferior of both sides of inequality (3.12) as t→ ∞, we get a contradiction to condition (3.2).This completes the proof.

Corollary 3.2. Suppose p(t)> 0, qi(t)≥ 0, 1≤ i≤ m.If (3.2),(3.3) hold for some constant K1 > 0, then equation (1.1)is a oscillatory.

Proof. Suppose to the contrary that there exists a nonoscillatory solution x(t) of equation (1.1). Without loss of generality, we may suppose
that x(t) is an ultimately positive solution of equation (1.1). So, there exists T > a such that x(t)> 0 for t ≥ T1. It follows from equation
(1.1) that

Γ(q)t1−qx(t)6
n

∑
k=1

|ak|(t−a)q−k

Γ(q− k+1)
Γ(q)t1−q + t1−q

∫ T1

a
(t− s)q−1|F(s)|ds+ t1−q

∫ t

T1

(t− s)q−1
ν(s)ds

+ t1−q
∫ t

T1

(t− s)q−1

[
m

∑
i=1

(
1
m

p(s)x(s)−qi(s)xλi(s))

]
ds, (3.13)

For t > T1, set

Xi = q
1
λi
i (s)x(s) and Yi =

(
1

mλi
p(s)q

− 1
λi

i (s)
) 1

λi−1

(s), 1 6 i 6 m,

and, using (2.3), we obtain

Γ(q)t1−qx(t)6
n

∑
k=1

|ak|(t−a)q−k

Γ(q− k+1)
Γ(q)t1−q + t1−q

∫ T1

a
(t− s)q−1|F(s)|ds+ t1−q

∫ t

T1

(t− s)q−1
ν(s)ds

+ t1−q
∫ t

T1

(t− s)q−1K1

m

∑
i=1

p
λi

λi−1 (s)|qi(s)|
1

1−λi ds, t > T1 (3.14)

where K1 ≥
λ1−1

m
. The remaining part is similar to that of Theorem 1, so we omit the details. The proof Corollary 1 is finished.

If l = 0 in equation (1.1), then 1 > λ1 > λ2 > · · ·> λm.Similarly, we obtain the following corollary.

Corollary 3.3. Suppose p(t)< 0, qi(t)≤ 0, 1≤ i≤ m.If (3.2),(3.3) hold for some constant K2 > 0, then equation (1.1)is a oscillatory.
If p(s)≡ 0 and 1 < l < m in equation (1.1), we obtain the following corollary.

Corollary 3.4. Assume

qi(t)

{
> 0 for 1 6 i 6 l;
6 0 for l +1 6 i 6 m.

(3.15)

If there exists a positive function r(t) on [a,∞) such that for some constant K3 > 0,

liminf
t→∞

t1−q
∫ t

a
(t− s)q−1

(
ν(s)+K3

m

∑
i=1

r
λi

λi−1 (s)|qi(s)|
1

1−λi

)
ds =−∞ (3.16)

and

limsup
t→∞

t1−q
∫ t

a
(t− s)q−1

(
ν(s)+K3

m

∑
i=1

r
λi

λi−1 (s)|qi(s)|
1

1−λi

)
ds = ∞ (3.17)

then every solution of equation (1.1) is oscillatory.

Proof. For λ1 > · · ·> λl > 1 > λl+1 > .. . > λm, by Lemma 2, there exist an m-tuple (η1, . . . ,ηm) satisfying

l

∑
i=1

λiηi =
m

∑
i=l+1

λiηi.

Suppose to the contrary that there exists a nonoscillatory positive solution x(t) for t ≥ T .It follows from equation (1.1) that

Γ(q)t1−qx(t)6
n

∑
k=1

|ak|(t−a)q−k

Γ(q− k+1)
+ t1−q

∫ T1

a
(t− s)q−1|F(s)|ds+ t1−q

∫ t

T1

(t− s)q−1
ν(s)ds

+ t1−q
∫ t

T1

(t− s)q−1

[
l

∑
i=1

(λiηir(s)x(s)−qi(s)xλi(s))

]
ds

+ t1−q
∫ t

T1

(t− s)q−1

[
m

∑
i=l+1

(−λiηir(s)x(s)+ |qi(s)|xλi(s))

]
ds

The remainder of the proof is similar, so we omit the details.
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