

Konuralp Journal of Mathematics

Journal Homepage: www.dergipark.gov.tr/konuralpjournalmath e-ISSN: 2147-625X

Oscillation Criteria for Higher Order Fractional Differential Equations with Mixed Nonlinearities

Tuğba Yalçın Uzun^{1*}, Hande Büyükçavuşoğlu Erçolak¹ and Mustafa Kemal Yıldız¹

¹Department of Mathematics, Faculty of Science and Arts, Afyon Kocatepe University, Afyonkarahisar, Turkey

*Corresponding author E-mail: tyalcin@aku.edu.tr

Abstract

In this article, we consider higher order fractional nonlinear differential equation of type

$$\label{eq:sum_eq} \begin{split} {}_aD_t^qx(t)-p(t)x(t) + \sum_{i=1}^m q_i(t)|x(t)|^{\lambda_i-1}x(t) = v(t) \\ \lim_{t \to a^+} J_a^{n-q}x(t) = a_n \end{split}$$

$$_{a}D_{t}^{q-k}x(a) = a_{k}, \qquad k = 1,...,n-1$$

where ${}_aD_t^q$ is Riemann-Liouville fractional differential operator of order $q, m-1 < q \le m, m \ge 1$ is an integer. We obtain some oscillation criteria for this equation.

Keywords: Fractional differential, Oscillation

2010 Mathematics Subject Classification: 34A08, 34K11

1. Introduction

In this paper, we consider the oscillation theory for a fractional differential equation with mixed nonlinearities of the type

$${}_{a}D_{t}^{q}x(t) - p(t)x(t) + \sum_{i=1}^{m} q_{i}(t)|x(t)|^{\lambda_{i}-1}x(t) = v(t)$$

$$\lim_{t \to a^{+}} J_{a}^{n-q}x(t) = a_{n}$$

$${}_{a}D_{t}^{q-k}x(a) = a_{k}, \qquad k = 1, ..., n-1$$
(1.1)

where $\{p(t)\}, \{v(t)\}$ and $\{q_i(t)\}$ $(1 \le i \le m)$ are continuous functions on $[a, +\infty)$ and λ_i $(1 \le i \le m)$ are ratios of odd positive integers with $\lambda_1 > \cdots > \lambda_l > 1 > \lambda_{l+1} > \cdots > \lambda_m$.

By a solution of equation (1.1) we mean a function x(t) which is defined for $t \ge a$ and satisfies equation (1.1). Such a solution is said to be oscillatory if it has arbitrarily large zeros on $[a, \infty)$; otherwise, it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

By ${}_aD_t^q$ we denote the Riemann-Liouville differential operator of order q with $0 < q \le 1$. For $p \ge 0$, the operator J_q^q defined by

$$J_a^q x(t) = \frac{1}{\Gamma(a)} \int_a^t (t-s)^{p-1} x(s) ds,$$
 $J_a^0 x = x$

is called the Riemann-Liouville fractional integral operator. The Riemann-Liouville differential operator ${}_aD_t^q$ of order q for $0 < q \leqslant 1$ is defined by ${}_aD_t^qx(t) = \frac{d}{dt}J_a^{1-q}x(t)$ and, more generally, if $n \geqslant 1$ is an integer and $n-1 < q \leqslant n$, then

$$_{a}D_{t}^{q}x(t) = \frac{d^{n}}{dt^{n}}J_{a}^{n-q}x(t)$$

In [4,Lemma 5.3], under much weaker assumptions on p(t),v(t) and $q_i(t)$, the initial value problem (1.1) is equivalent to be Volterra fractional integral equation

$$x(t) = \sum_{k=1}^{n} \frac{a_k(t-a)^{q-k}}{\Gamma(q-k+1)} + \frac{1}{\Gamma(q)} \int_a^t (t-s)^{q-1} \left[v(s) + p(s)x(s) - \sum_{i=1}^{m} q_i(s)|x(s)|^{\lambda_i - 1} x(s) \right] ds$$

$$(1.2)$$

Therefore, a function x(t) is a solution of (1.2) if and only if it is a solution of fractional differential equation (1.1).

2. Preliminaries

Definition 2.1. The Riemann-Liouville fractional derivative of order q > 0 of a function $x : [a, \infty) \to \mathbb{R}$ is defined by

$$(I_a^q x)(t) := \frac{1}{\Gamma(q)} \int_a^t (t - s)^{q - 1} x(s) ds \tag{2.1}$$

provided the right-hand side is pointwise defined on $[a,\infty)$, where Γ is the gamma function. Furthermore, $I_a^0x:=x$.

Definition 2.2. The Riemann-Liouville fractional derivative of order q > 0 of a function $x : [a, \infty) \to \mathbb{R}$ is defined by

$$({}_{a}D_{t}^{q}x)(t) := \frac{d^{m}}{dt^{m}}(I_{a}^{m-q}x)(t)$$
(2.2)

provided the right-hand side is pointwise defined on $[a,\infty)$, where $n-1 < q \le n$ and $n \ge 1$ is an integer. Furthermore, we set $D^0_a x := x$.

Lemma 2.3. Suppose that X, Y and U, V are nonnegative, then

$$\lambda X Y^{\lambda - 1} - X^{\lambda} \leqslant (\lambda - 1) Y^{\lambda}, \quad \lambda > 1 \tag{2.3}$$

$$\mu U V^{\mu - 1} - U^{\mu} \geqslant (\mu - 1) V^{\mu}, \ 0 < \mu < 1$$
 (2.4)

where each equality holds if and only if X = Y or U = V

Lemma 2.4. Let $(\alpha_1, \alpha_2, ..., \alpha_m)$ be an m-tuple satisfying $\alpha_1 > \alpha_2 > ... > \alpha_l > 1 > \alpha_{l+1} > ... > \alpha_m > 0$. Then there exists an m-tuple $(\eta_1, \eta_2, ..., \eta_m)$ satisfying

$$\sum_{i=1}^{l} lpha_i \eta_i = \sum_{i=l+1}^{m} lpha_i \eta_i$$

with $\sum_{i=1}^{m} \eta_i = 1$ and $0 < \eta_i < 1$ for i = 1, 2, ..., m.

3. Main Results

Theorem 3.1. Assume

$$p(t) > 0, \ q_i(t) \begin{cases} \geqslant 0 & \text{for } 1 \leqslant i \leqslant l; \\ \leqslant 0 & \text{for } l+1 \leqslant i \leqslant m. \end{cases}$$

$$(3.1)$$

If for some constant K > 0,

$$\liminf_{t \to \infty} t^{1-q} \int_{a}^{t} (t-s)^{q-1} \left(v(s) + K \sum_{i=1}^{m} p^{\frac{\lambda_{i}}{\lambda_{i}-1}} (s) |q_{i}(s)|^{\frac{1}{1-\lambda_{i}}} \right) ds = -\infty$$
(3.2)

and

$$\limsup_{t \to \infty} t^{1-q} \int_{a}^{t} (t-s)^{q-1} \left(v(s) + K \sum_{i=1}^{m} p^{\frac{\lambda_{i}}{\lambda_{i-1}}}(s) |q_{i}(s)|^{\frac{1}{1-\lambda_{i}}} \right) ds = \infty$$
(3.3)

then every solution of (1.1) is oscillatory.

Proof. Suppose to the contrary that there exist a nonoscillatory solution x(t) of equation (1.1). Without loss of generality, we may suppose that x(t) > 0 for $t \ge T$. It follows from equation (1.2) that

$$\begin{split} x(t) &\leqslant \sum_{k=1}^{n} \frac{|a_{k}|(t-a)^{q-k}}{\Gamma(q-k+1)} + \frac{1}{\Gamma(q)} \int_{a}^{t} (t-s)^{q-1} |F(s)| ds \\ &= \sum_{k=1}^{n} \frac{|a_{k}|(t-a)^{q-k}}{\Gamma(q-k+1)} + \frac{1}{\Gamma(q)} \int_{a}^{T_{1}} (t-s)^{q-1} |F(s)| ds + \frac{1}{\Gamma(q)} \int_{T_{1}}^{t} (t-s)^{q-1} |F(s)| ds \\ &= \sum_{k=1}^{n} \frac{|a_{k}|(t-a)^{q-k}}{\Gamma(q-k+1)} + \frac{1}{\Gamma(q)} \int_{a}^{T_{1}} (t-s)^{q-1} |F(s)| ds + \frac{1}{\Gamma(q)} \int_{T_{1}}^{t} (t-s)^{q-1} v(s) ds \\ &\quad + \frac{1}{\Gamma(q)} \int_{T_{1}}^{t} (t-s)^{q-1} \left(p(s)x(s) - \sum_{i=1}^{m} q_{i}(s)x^{\lambda_{i}}(s) \right) ds \\ &= \sum_{k=1}^{n} \frac{|a_{k}|(t-a)^{q-k}}{\Gamma(q-k+1)} + \frac{1}{\Gamma(q)} \int_{a}^{T_{1}} (t-s)^{q-1} |F(s)| ds + \frac{1}{\Gamma(q)} \int_{T_{1}}^{t} (t-s)^{q-1} v(s) ds \\ &\quad + \frac{1}{\Gamma(q)} \int_{T_{1}}^{t} (t-s)^{q-1} \left[\sum_{i=1}^{l} (\lambda_{i}p(s)x(s) - q_{i}(s)x^{\lambda_{i}}(s)) \right] ds \\ &\quad + \frac{1}{\Gamma(q)} \int_{T_{1}}^{t} (t-s)^{q-1} \left[\sum_{i=l+1}^{m} (-Ap(s)x(s) + |q_{i}(s)|x^{\lambda_{i}}(s)) \right] ds \end{split} \tag{3.4}$$

where $F(s) = v(s) + p(s)x(s) - \sum_{i=1}^{m} q_i(s)x^{\lambda_i}(s)$ and $A = (\sum_{i=1}^{l} \lambda_i - 1)/(m-l) > 0$. For $t \ge T$, set

$$X_i = q_i^{\frac{1}{\lambda_i}}(s)x(s) \quad \text{and} \quad Y_i = \left(p(s)q_i^{-\frac{1}{\lambda_i}}(s)\right)^{\frac{1}{\lambda_i-1}}(s), \quad 1 \leqslant i \leqslant l,$$

$$U_i = |q_i(s)|^{\frac{1}{\lambda_i}} x(s) \quad \text{and} \quad V_i = \left(\frac{A}{\lambda_i} p(s) |q_i(s)|^{-\frac{1}{\lambda_i}}\right)^{\frac{1}{\lambda_i - 1}} (s), \quad l + 1 \leqslant i \leqslant m.$$

For $t \ge T$, multiplying the inequality (3.4) by $\Gamma(q)t^{1-q}$ and using (2.3) and (2.4) we find that

$$\Gamma(q)t^{1-q}x(t) \leq \sum_{k=1}^{n} \frac{|a_{k}|(t-a)^{q-k}}{\Gamma(q-k+1)} \Gamma(q)t^{1-q} + t^{1-q} \int_{a}^{T_{1}} (t-s)^{q-1} |F(s)| ds + t^{1-q} \int_{T_{1}}^{t} (t-s)^{q-1} v(s) ds$$

$$+ t^{1-q} \int_{T_{1}}^{t} (t-s)^{q-1} \sum_{i=1}^{l} (\lambda_{i}-1) p^{\frac{\lambda_{i}}{\lambda_{i}-1}} (s) q_{i}^{\frac{1}{1-\lambda_{i}}} (s) ds$$

$$+ t^{1-q} \int_{T_{1}}^{t} (t-s)^{q-1} \sum_{i=l+1}^{m} (1-\lambda_{i}) \left(\frac{\lambda_{i}}{A}\right)^{\frac{\lambda_{i}}{1-\lambda_{i}}} p^{\frac{\lambda_{i}}{\lambda_{i}-1}} (s) |q_{i}(s)|^{\frac{1}{1-\lambda_{i}}} ds$$

$$\leq \sum_{k=1}^{n} \frac{|a_{k}|(t-a)^{q-k}}{\Gamma(q-k+1)} \Gamma(q)t^{1-q} + t^{1-q} \int_{a}^{T_{1}} (t-s)^{q-1} |F(s)| ds + t^{1-q} \int_{T_{1}}^{t} (t-s)^{q-1} v(s) ds$$

$$+ t^{1-q} \int_{T_{1}}^{t} (t-s)^{q-1} K \sum_{i=1}^{m} p^{\frac{\lambda_{i}}{\lambda_{i}-1}} (s) |q_{i}(s)|^{\frac{1}{1-\lambda_{i}}} ds, \quad t \geq T_{1},$$

$$(3.6)$$

where $K = \max\{\lambda_1 - 1, \max_{l+1 \leqslant i \leqslant m} (1 - \lambda_i) (\frac{\lambda_i}{A})^{\frac{\lambda_i}{1 - \lambda_i}}\}$. Take $T_2 > T_1$. Next, we consider the cases $0 < q \leqslant 1$ and q > 1. Case 1. Let $0 < q \leqslant 1$. Then we get n = 1,

$$|a_1|t^{1-q}(t-a)^{q-1} \le |a_1| \left(\frac{T_2}{T_2-a}\right)^{1-q} := c(T_2) \quad \text{for } t \ge T_2$$
 (3.7)

and

$$t^{1-q} \int_{a}^{T_1} (t-s)^{q-1} |F(s)| ds \leqslant \int_{a}^{T_1} \left(\frac{T_2}{T_2 - s} \right)^{1-q} |F(s)| ds := c_2(T_1, T_2) \qquad \text{for } t \geqslant T_2$$

$$(3.8)$$

it follows from (3.7)-(3.8) that

$$\Gamma(q)t^{1-q}x(t) \leqslant c_1(T_2) + c_2(T_1, T_2) + t^{1-q} \int_{T_1}^t (t-s)^{q-1} \left(v(s) + K \sum_{i=1}^m p^{\frac{\lambda_i}{\lambda_i - 1}}(s) |q_i(s)|^{\frac{1}{1-\lambda_i}} \right) ds \qquad \text{for } t \geqslant T_2$$
(3.9)

Taking the limit inferior of both sides of inequality (3.9) as $t \to \infty$, we get a contradiction to (3.2). In the case x(t) is eventually negative, a similar argument leads to contradiction to (3.3).

Case 2. Let q > 1. Then we have $n \ge 2$,

$$\Gamma(q)t^{1-q}\sum_{k=1}^{n}\frac{|a_k|(t-a)^{q-k}}{\Gamma(q-k+1)} \leqslant \sum_{k=1}^{n}\frac{\Gamma(q)|a_k|(T_2-a)^{1-k}}{\Gamma(q-k+1)} := c_3(T_2) \qquad \text{for } t \geqslant T_2$$
(3.10)

and

$$\Gamma(q)t^{1-q} \int_{a}^{T_{1}} (t-s)^{q-1} |F(s)| ds = \Gamma(q) \int_{a}^{T_{1}} \left(\frac{t-s}{t}\right)^{q-1} |F(s)| ds \leq \Gamma(q) \int_{a}^{T_{1}} |F(s)| ds := c_{4}(T_{1}) \quad \text{for } t \geq T_{2}$$
(3.11)

From (3.10) and (3.11), we conclude

$$\Gamma(q)t^{1-q}x(t) \leqslant c_3(T_2) + c_4(T_1) + t^{1-q} \int_{T_1}^t (t-s)^{q-1} \left(\nu(s) + K \sum_{i=1}^m p^{\frac{\lambda_i}{\lambda_i - 1}}(s) |q_i(s)|^{\frac{1}{1-\lambda_i}} \right) ds \qquad \text{for } t \geqslant T_2$$
(3.12)

Taking the limit inferior of both sides of inequality (3.12) as $t \to \infty$, we get a contradiction to condition (3.2). This completes the proof.

Corollary 3.2. Suppose p(t) > 0, $q_i(t) \ge 0$, $1 \le i \le m.lf$ (3.2),(3.3) hold for some constant $K_1 > 0$, then equation (1.1) is a oscillatory.

Proof. Suppose to the contrary that there exists a nonoscillatory solution x(t) of equation (1.1). Without loss of generality, we may suppose that x(t) is an ultimately positive solution of equation (1.1). So, there exists T > a such that x(t) > 0 for $t \ge T_1$. It follows from equation (1.1) that

$$\Gamma(q)t^{1-q}x(t) \leq \sum_{k=1}^{n} \frac{|a_{k}|(t-a)^{q-k}}{\Gamma(q-k+1)} \Gamma(q)t^{1-q} + t^{1-q} \int_{a}^{T_{1}} (t-s)^{q-1} |F(s)| ds + t^{1-q} \int_{T_{1}}^{t} (t-s)^{q-1} v(s) ds + t^{1-q} \int_{T_{1}}^{t} (t-s)^{q-1} \left[\sum_{i=1}^{m} \left(\frac{1}{m} p(s)x(s) - q_{i}(s)x^{\lambda_{i}}(s) \right) \right] ds,$$

$$(3.13)$$

For $t \ge T_1$, set

$$X_i = q_i^{\frac{1}{\lambda_i}}(s)x(s) \quad \text{and} \quad Y_i = \left(\frac{1}{m\lambda_i}p(s)q_i^{-\frac{1}{\lambda_i}}(s)\right)^{\frac{1}{\lambda_i-1}}(s), \quad 1 \leqslant i \leqslant m,$$

and, using (2.3), we obtain

$$\Gamma(q)t^{1-q}x(t) \leqslant \sum_{k=1}^{n} \frac{|a_{k}|(t-a)^{q-k}}{\Gamma(q-k+1)} \Gamma(q)t^{1-q} + t^{1-q} \int_{a}^{T_{1}} (t-s)^{q-1} |F(s)| ds + t^{1-q} \int_{T_{1}}^{t} (t-s)^{q-1} v(s) ds + t^{1-q} \int_{T_{1}}^{t} (t-s)^{q-1} K_{1} \sum_{i=1}^{m} p^{\frac{\lambda_{i}}{\lambda_{i}-1}} (s) |q_{i}(s)|^{\frac{1}{1-\lambda_{i}}} ds, \quad t \geqslant T_{1}$$

$$(3.14)$$

where $K_1 \ge \frac{\lambda_1 - 1}{m}$. The remaining part is similar to that of Theorem 1, so we omit the details. The proof Corollary 1 is finished.

If l=0 in equation (1.1), then $1>\lambda_1>\lambda_2>\cdots>\lambda_m$. Similarly, we obtain the following corollary.

Corollary 3.3. Suppose p(t) < 0, $q_i(t) \le 0$, $1 \le i \le m.If$ (3.2),(3.3) hold for some constant $K_2 > 0$, then equation (1.1) is a oscillatory. If $p(s) \equiv 0$ and 1 < l < m in equation (1.1), we obtain the following corollary.

Corollary 3.4. Assume

$$q_i(t) \begin{cases} \geqslant 0 & \text{for } 1 \leqslant i \leqslant l; \\ \leqslant 0 & \text{for } l+1 \leqslant i \leqslant m. \end{cases}$$
(3.15)

If there exists a positive function r(t) on $[a, \infty)$ such that for some constant $K_3 > 0$,

$$\liminf_{t \to \infty} t^{1-q} \int_{a}^{t} (t-s)^{q-1} \left(v(s) + K_3 \sum_{i=1}^{m} r^{\frac{\lambda_i}{\lambda_i - 1}}(s) |q_i(s)|^{\frac{1}{1 - \lambda_i}} \right) ds = -\infty$$
(3.16)

and

$$\limsup_{t \to \infty} t^{1-q} \int_{a}^{t} (t-s)^{q-1} \left(v(s) + K_3 \sum_{i=1}^{m} r^{\frac{\lambda_i}{\lambda_i - 1}}(s) |q_i(s)|^{\frac{1}{1 - \lambda_i}} \right) ds = \infty$$
(3.17)

then every solution of equation (1.1) is oscillatory.

Proof. For $\lambda_1 > \dots > \lambda_l > 1 > \lambda_{l+1} > \dots > \lambda_m$, by Lemma 2, there exist an *m*-tuple (η_1, \dots, η_m) satisfying

$$\sum_{i=1}^l \lambda_i \eta_i = \sum_{i=l+1}^m \lambda_i \eta_i.$$

Suppose to the contrary that there exists a nonoscillatory positive solution x(t) for $t \ge T$. It follows from equation (1.1) that

$$\Gamma(q)t^{1-q}x(t) \leqslant \sum_{k=1}^{n} \frac{|a_{k}|(t-a)^{q-k}}{\Gamma(q-k+1)} + t^{1-q} \int_{a}^{T_{1}} (t-s)^{q-1} |F(s)| ds + t^{1-q} \int_{T_{1}}^{t} (t-s)^{q-1} v(s) ds + t^{1-q} \int_{T_{1}}^{t} (t-s)^{q-1} \left[\sum_{i=1}^{l} (\lambda_{i} \eta_{i} r(s) x(s) - q_{i}(s) x^{\lambda_{i}}(s)) \right] ds + t^{1-q} \int_{T_{1}}^{t} (t-s)^{q-1} \left[\sum_{i=l+1}^{m} (-\lambda_{i} \eta_{i} r(s) x(s) + |q_{i}(s)| x^{\lambda_{i}}(s)) \right] ds$$

The remainder of the proof is similar, so we omit the details.

References

- Shao, J., Zheng, Z. and Meng, F. Oscillation criteria for higher order fractional differential equations with mixed nonlinearities, Advanced in Difference Equations 2013:323 (2013)
 Chen, D. X., Qu, P. X. and Lan, Y. H., Forced oscillation of certain fractional differential equations, Advanced in Difference Equations 2013:125 (2013)
 Grace, S. R., Agarwal, R. P., Wong, P. J. Y. and Zafer, A. On the oscillation of fractional differential equations, An International Journal for Theory and Applications Vol:15, No:2 (2012)
 Diethelm, K. The Analysis of Fractional Differential Equations, Springer, Berlin(2010)