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Abstract

In this study, we define a base curve, a rolling curve and a roulette on generalized complex number plane (p-complex plane) CJ . We
examine the third one of these curves under the condition that two others are given. We also re-obtain the Euler Savary’s formula in CJ as a
generalization of the Euler Savary’s formula for complex plane C, hyperbolic plane H and dual plane D.
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1. Introduction

Different definitions of the imaginary unit i from i2 =−1 give rise to interesting and useful complex number systems. The scientists have
modified the original definition of product of complex numbers. W. Clifford developed the double complex numbers (perplex numbers
[1], split-complex numbers [2] or hyperbolic numbers [2]-[3], [4]-[8]) by requiring that i2 = 1. E. Study, [9] added another variant to
the collection of complex products. The dual numbers provide the condition that i2 = 0 [3]. The ordinary, dual and double numbers are
significant members of a two-parameter family of complex number systems often called binary numbers or generalized complex numbers
[10]. Ordinary, dual, and double numbers are usually denoted by different imaginary units, i,ε and j, respectively and i2 =−1, ε2 = 0(ε 6= 0)
and j2 = 1( j 6=±1). For generalizing this unit, we will take J for three number systems. So, the generalized complex numbers have the
form [11]

z = x+ Jy, (x,y ∈ R) where J2 = iq+p, (p,q ∈ R).

The generalized complex number systems are isomorphic (as rings) to the ordinary, dual and double numbers when p+q2/4 is negative,
zero, and positive, respectively [3].
By taking J2 = p;q= 0 and −∞ < p< ∞, generalized complex number system can be represented as follows:

Cp = {x+ Jy : x,y ∈ R, J2 = p}.

Cp is called p-complex plane [10]. Moreover, the set CJ is defined

CJ =
{

x+ Jy : x,y ∈ R, J2 = p, p ∈ {−1,0,1}
}

(1.1)

such that CJ ⊂ Cp.
The set CJ is just the real numbers extended to include the unipotent J such that CJ := Pε [J], where Pε represents affine Cayley-Klein planes
[12]. This yields by the same extension of the set of ordinary (complex) numbers C, dual numbers D and double (hyperbolic) numbers H
such that C := R[i], D := R[ε] and H := R[ j], respectively [13]-[14]. The p-complex numbers system play the same role for Cayley-Klein
geometry like that played by ordinary numbers in the Euclidean geometry [3], [12]. The Cayley-Klein plane geometries first introduced by F.
Klein in 1871 and A. Cayley, and they are number of geometries including Euclidean, Galilean, Minkowskian and Bolyai-Lobachevsikan
[15]-[16]. Moreover, I. M. Yaglom distinguished these geometries by choosing one of three ways of measuring length (parabolic, elliptic or
hyperbolic) between two points on a line and one of the three ways of measuring angles (parabolic, elliptic or hyperbolic) between two lines
[12]. This gives nine ways of measuring lengths and angles. Many recent research are conducted in Cayley-Klein planes in terms of their
group structure, group contraction, relationship between kinematic groups in [17]-[22].
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On other hand, the curvature theory states the properties of a point path in planar motion has been extensively worked by many approaches
over the past decades. In this theory, two curves which are called a base curve and rolling curve is denoted by αB and γR, are considered,
respectively. Let assume that a point Q which is linked to rolling curve γR and rolling curve γR rolls without splitting along the base curve
αB. Then, the locus of the point Q makes a curve which is called roulette is denoted by (Q). For instance, if αB is a parabola, γR is a an equal
parabola and Q is the vertex of the rolling parabola γR, then the roulette βQ is the cissoid of Diocles.
Euler Savary’s formula is a very famous theorem which gives relation between curvature of roulette and curvatures of these base curve and
rolling curve. This formula has been worked extensively under the two and three- dimensional motions by many researchers: Alexander and
Maddocks, [23], Buckley and Whitfield, [24], Dooner and Griffis, [25], Ito and Takahaski, [26], Pennock and Raje, [27], Ersoy and Akyiğit,
[28], and Wang at all, [29].
Nowadays, Euler Savary’s formula has been obtained in quite studies and worked in many different plane geometries. Firstly, Müller, [30]
obtained Euler Savary’s formula for one parameter motion in Euclidean plane E2 in 1959. Secondly, in 1983, Röschel, [31]; developed
a formula by using different method from Müllers’ analog to the formula of Euler-Savary in Isotropic plane (or called Galilean plane).
Then, in 2002, Aytun, [32]; studied the Euler Savary’s formula for the one parameter Lorentzian motions as using Müller’s Method [30]. In
2003, Ikawa, [33]; gave the Euler-Savary formula on Minkowski without using Müller’s Method [30], and also examined a new way for a
generalization of the Euler Savary’s formula in the Euclidean plane in this article. Similarly, Yüce, [34] ,[35]; obtained the Euler Savary’s
formula for the one parameter on Galilean Plane G2 analog [30] ( or [32]) and [33].
The investigation of the theory of Euler Savary’s formula in number systems is attracted by many researchers. For this respect, in 2010,
Masal at all., [36], expressed Euler Savary’s formula for one parameter motion in the complex plane C. Moreover, Yüce, [37], studied this
formula on complex plane by using Ikawa’s method. As a similar way, Ersoy, [28] obtained Euler Savary’s formula for one parameter
homothetic motion on the hyperbolic plane H. Then, Yüce, [38], investigate Euler Savary’s formula on the dual plane D, analog to [30] and
[33]. Moreover, Yüce, [39]; expressed the Euler Savary’s formula for the one-parameter homothetic motions in the generalized complex
number plane CJ bu using the Müller’s method, [30].
In the light of these existing studies, in this paper, we will re-obtain Euler Savary’s formula in CJ by considering a base curve, a rolling curve
and roulette by taking into Ikawa’s method account. We will also examine the third one of these curves under the condition that two others
are given. This generalization of Euler Savary’s formula in CJ gives the opportunity to obtain it in complex plane, dual plane, and hyperbolic
plane by taking p= {−1,0,1}, respectively.

2. Preliminaries

Let α : I ⊂ R→ CJ from a open interval I into p-complex plane be a planar curve with arc length parameter s which is defined by
α (s) = α1 (s)+ Jα2 (s) . Then, the unit tangent vector of the curve α at the point α (s) is defined by

t(s) = α
′
1 (s)+ Jα

′
2 (s) .

Frenet formulas of the curve α have the following equations

t′ = κn
n′ = pκt,

where n is the unit normal vector of the curve α and κ (s) = dθ

ds is curvature of α. Also, θ is a slope angle of α . By using these equations,
we can define a new curve

βA (s) = α (s)+ x(s) t(s)+ y(s)n(s) (2.1)

which is called associated curve where x(s) , y(s) ∈ R. By differentiating equation (2.1) with respect to s, we have

d (βA (s))
ds

=

(
1+pκ (s)y(s)+

dx(s)
ds

)
t(s)+

(
κ (s)x(s)+

dy(s)
ds

)
n(s) .

However, associated curve is written as

βA (s) = x(s)+ Jy(s) ,

with respect to frame {α (s) ; t(s) ,n(s)} on the p−complex plane CJ . The expression x(s)+ Jy(s) is called relative coordinate of βA (s)
with respect to frame {α (s) ; t(s) ,n(s)} . Moreover, the velocity vector of associated curve βA (s) is given by

d (βA (s))
ds

= v1 (s)+ Jv2 (s)

with respect to frame {α (s) ; t(s) ,n(s)} , where

v1 (s)+ Jv2 (s) := 1+pκ (s)y(s)+
dx(s)

ds
+ J
(

κ (s)x(s)+
dy(s)

ds

)
. (2.2)

Furthermore, the Frenet frame {tA,nA} of βA with the arc length parameter sA of βA can be given as below:

t′A = κA (sA)nA (sA)

n′A = pκA (sA) tA (sA) ,

where κA is the curvature of βA. Let ω be a slope angle of βA then, we can write

κA (sA) =
dω

dsA
=

dω

ds
ds

dsA
(2.3)

=

(
κ +

dφ

ds

)
1∥∥β ′A (s)
∥∥ , (2.4)

where φ = ω−θ .
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3. The Base, Rolling and Roulette Curves on CJ

In this section, we will investigate the Euler Savary’s formula which gives the relation between curvatures of a base curve, a rolling curve,
and roulette. Also, we will query the curves for three situation:

i) Suppose that the base curve and the rolling curve are given.

Let αB be the base curve with curvature κB and γR be a rolling curve with curvature κR. Assume that Q is a point relative to γR and the
roulette of the locus of this point Q constitues generally a curve denoted by (Q). And βQ is an associated curve of αB. So from the equation
(2.2), we can write the relative coordinate {x,y} of βQ with respect to curve αB such that

v1 (s)+ Jv2 (s) = 1+pκB (s)y(s)+
dx(s)

ds
+ J
(

κB (s)x(s)+
dy(s)

ds

)
.

Besides, when the rolling curve rolls without splitting along αB at the each point of contact, we can consider the relative coordinate {x,y} is
a relative coordinate of βQ with respect to γR for a suitable parameter sR. In this situation, the associated curve is only a point Q and

v1 (sR)+ Jv2 (sR) = 1+pκR (sR)y(sR)+
dx(sR)

dsR
+ J
(

κR (sR)x(sR)+
dy(sR)

dsR

)
= 0. (3.1)

So, we get

dx(sR)

dsR
+ J

dy(sR)

dsR
=−1−pκR (sR)y(sR)− JκR (sR)x(sR) . (3.2)

Substituting the last equation into (2.2), we have

v1 (sR)+ Jv2 (sR) = p(κR−κB)y+ J (κB−κR)x. (3.3)

Assume that the associated curve βQ is given by

βQ = reJφ

on the polar coordinate with respect to {αB(s);x,y} where r is the distance from the origin point αB(s) to point Q. In this case, we calculate
from (3.2)

dβQ

dsR
=

dr
dsR

eJφ(s)+ JreJφ(sR) dφ (sR)

dsR

= −pκRr sinp φ −1+ J(−κRr cosp φ).

If we solve this equation with respect to r dφ

dsR
, then we find

r
dφ

dsR
=−κRr+ Im(eJφ ). (3.4)

Furthermore, we know that

κQ =

(
κB +

dφ

ds

)
1

|κB−κR|
√

x2−py2
(3.5)

=

(
κB +

dφ

ds

)
1

|κB−κR|r
. (3.6)

So from the equations (3.4), (3.5), we get

rκQ =
κB−κR

|κB−κR|
+

Im(eJφ )

r |κB−κR|
. (3.7)

Theorem 3.1. On the p−complex plane CJ , assume that a curve γR rolls without splitting along a curve αB. Let βQ be a locus of a point
that is relative to γR. Let Q be a point on βQ and R be a point of contact of αB and γR corresponds to Q relative to the rolling relation. By
(r,φ) we denote a polar coordinate of Q with respect to the origin R and the base line α ′B |R . Then, curvature κB, κR and κQ of the curves
αB, γR, and βQ, respectively, satisfies the following equation

rκQ =±1+
Im(eJφ )

r |κB−κR|
.

Remark 3.2. In the special case J2 = p = 1, vectors are classified as timelike, spacelike and null. So, if the associated curve βQ is spacelike,
then on the polar coordinate of the associated curve βQ can write

βQ = rJeJφ(s).

Hence, the equation given by above theorem turns out to be the below equation

rκQ =
κB−κR

|κB−κR|
− Im(JeJφ )

r |κB−κR|
. (3.8)

Also, if the associated curve βQ is null, then goes to a contradiction.
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In the special case J2 = p =−1, we obtain Euler Savary’s formula on p−complex plane as [37]. In the special case J2 = p = 0, we have
Euler Savary’s formula on dual plane which was given in [38]. Also, if J2 = p = 1, then we get Euler Savary’s formula on hyperbolic plane
as similar to isomorphic plane in [33].

ii) Assume that the base curve and the roulette are given.

Assume that αB (sB) = u(sB)+ Jv(sB) be a base curve with the arc length parameter sB. Let us draw the normal to the roulette βQ for a
point R of αB and the point Q = x(sB)+ Jy(sB) be the foot of this normal. So length of the normal RQ is given by

d (Q,R) =

√∣∣∣(x(sB)−u(sB))
2−p(y(sB)− v(sB))

2
∣∣∣. (3.9)

However, considering the equation (3.9) on the rolling curve γR, this equation represents the length of the point Q relative to γR and a point
of γR. So the orthogonal coordinate f (sB)+ Jg(sB) of γR is given by the equations

( f (sB))
2−p(g(sB))

2 = (x(sB)−u(sB))
2−p(y(sB)− v(sB))

2

and(
d f
dsB

)2
−p

(
dg
dsB

)2
=±1.

In the special case J2 = p=−1, we obtain the rolling curve as in [37]. Also, in the special cases of J2 = p= 0 and J2 = p= 1, one can be
calculate the rolling curve for dual plane and hyperbolic plane, respectively.

iii) Suppose that the rolling curve γR and the roulette βQ are given.

Suppose that βQ (sA) = x(sA)+ Jy(sA) is roulette with arc length parameter sA and γR (sR) is given by the polar coordinate r (sR) with the
arc length parameter sR. The normal of βQ is n = py′ ( sA)+ Jx′ ( sA) , and so, a point u(sB)+ Jv(sB) of the point curve αB is given

u(sB)+ Jv(sB) = x(sA)+ Jy(sA)± r (sR)n

or

u(sB)+ Jv(sB) = x(sA)∓pr (sR)y′ (s)+J
(
y(sA)± r (sR)x′ (s)

)
. (3.10)

So, we can write

du
dsR

+ J
dv
dsR

=
dx
dsA

dsA

dsR
+ J

dy
dsA

dsA

dsR
± dr

dsR
n± r

dn
dsA

dsA

dsR

or

du
dsR

+ J
dv
dsR

=
dx
dsA

dsA

dsR
+ J

dy
dsA

dsA

dsR
± dr

dsR

(
p

dy
dsA

+ J
dx
dsA

)
± r
(
pκQ

(
dx
dsA

+ J
dy
dsA

))
dsA

dsR
.

Then, we find

du
dsR

+ J
dv
dsR

=
dx
dsA

(
1∓ rpκQ

) dsA

dsR
±p

dr
dsR

dy
dsA

+ J
(

dy
dsA

(
1± rpκQ

) dsA

dsR
± dr

dsR

dx
dsA

)
,

where κQ is the curvature of βQ. Because of the fact that sR is also the arc length of αB, we get(
du
dsR

)2
−p

(
dv
dsR

)2
=±1 (3.11)

and(
dsA

dsR

)(
1± rpκQ

)2
+

(
dr

dsR

)2
=±1. (3.12)

From this differential equation, we can solve sA = sA (sR) . Substituting this equation into (3.10), we can get the orthogonal coordinate of αB.
In the special case J2 = p=−1, we obtain the base curve as in [37]. For the special cases of J2 = p= 0 and J2 = p= 1, one can obtain the
base curve in dual and hyperbolic planes from the equations (3.11) and (3.12), respectively.

4. Conclusion

In this work, we consider a base curve, a rolling curve and roulette curve. We examine the third one of these curves under the condition that
two others are known on the generalized complex number plane (p-complex plane) CJ . Furthermore, we have reconsidered Euler Savary’s
formula on CJ . So, with the aim of the obtained form of the Euler Savary’s formula on CJ gives the opportunity to obtain it in complex
plane, dual plane, and hyperbolic plane by taking p= {−1,0,1}, respectively.
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[39] N. Gürses, M. Akbıyık, S. Yüce, One-Parameter Homothetic Motions and Euler-Savary Formula in Generalized Complex Number Plane CJ , Adv. Appl.

Clifford Algebras, 26(2016), 115-136.


	Introduction
	Preliminaries
	The Base, Rolling and Roulette Curves on CJ
	Conclusion

