A Note on the Dunkl-Appell Orthogonal Polynomials

Mabrouk Sghaier ${ }^{1}$
${ }^{1}$ Université de Gabès, Institut Supérieur d'Informatique de Medenine, Route DJerba - km 3-4119 Medenine, Tunisia

Abstract

This paper deals with the problem of finding all orthogonal polynomial sets which are also T_{μ}-Appell where $T_{\mu}, \mu \in \mathbb{C}$ is the Dunkl operator. The resulting polynomials reduce to Generalized Hermite polynomials $\left\{\mathscr{\mathscr { H }}_{n}(\mu)\right\}_{n \geq 0}$.

Keywords: Orthogonal polynomials, Dual sequence, Dunkl operator, Generalized Hermite Polynomials.
2010 Mathematics Subject Classification: 33C45, 42C05.

1. Introduction and Preliminary Results

Let L be a lowering operator, that is, a linear operator that decreases in one unit the degree of a polynomial and such that $L(1)=0$. Among such lowering operators, we mention the derivative operator D, the difference operator D_{w}, the Hahn operator H_{q} and the Dunkl operator T_{μ}. Let $\left\{P_{n}\right\}_{n \geq 0}$ be a sequence of monic polynomials with $\operatorname{deg} P_{n}=n, n \geq 0$. The sequence $\left\{P_{n}\right\}_{n \geq 0}$ is called L-Appell when $P_{n}=\frac{L\left(P_{n+1}\right)}{\alpha_{n}}, n \geq 0$, with α_{n} is the normalization coefficient.
A most specific problem is to find the sequences of monic orthogonal polynomials which belong to the L-Appell class. Such characterization takes into account the fact that polynomial set which are obtainable from one another by a linear change of variable are assumed equivalent. For the derivative operator D, it is well known (see [3]) that the Hermite polynomials are the only solution to the last problem. This characterization of the Hermite polynomials was first given by Angelesco [3], and later by other authors (see [2] and [13] for additional references).
For the difference operator D_{w}, the only solution is the Charlier family (see [6]).
For the Hahn operator H_{q}, the only solution is the Al-Salam and Carlitz sequence [10].
Lastly, for the Dunkl operator T_{μ}, the problem was solved by Y. Ben Cheikh and M. Gaied in the positive define case (for $\mu>-\frac{1}{2}$) [5] and by L Kheriji and A. Gherissi in the symmetric case (e.i. $\left.P_{n}(-x)=(-1)^{n} P_{n}(x), n \geq 0\right)$ [9]. The obtained solution is the generalized Hermite polynomials set. In this paper,using duality, we solve the problem in the general case with $\mu \in \mathbb{C}$.
This first section contains preliminary results and notations To be used in the sequel. In the second section, using a technique based on duality, we determine all the sequences of monic orthogonal polynomials which belong to the T_{μ}-Appell class without the constraint the sequences are symmetric. There's a unique solution, up to affine transformations, it is the set of generalized Hermite orthogonal polynomials. This result generalizes Corollary 2.3. in [9].

We begin by reviewing some preliminary results needed for the sequel. The vector space of polynomials with coefficients in \mathbb{C} (the field of complex numbers) is denoted by \mathbb{P} and by \mathbb{P}^{\prime} its dual space, whose elements are called forms. The set of all nonnegative integers will be denoted by \mathbb{N}. The action of $u \in \mathbb{P}^{\prime}$ on $f \in \mathbb{P}$ is denoted by $\langle u, f\rangle$. In particular, we denote by $(u)_{n}:=\left\langle u, x^{n}\right\rangle, n \in \mathbb{N}$, the moments of u. For any form u, any $a \in \mathbb{C}-\{0\}$ and any polynomial h let $D u=u^{\prime}, h u$, and $h_{a} u$ be respectively the forms defined by: $\left\langle u^{\prime}, f\right\rangle:=-\left\langle u, f^{\prime}\right\rangle,\langle h u, f\rangle:=\langle u, h f\rangle$, and $\left\langle h_{a} u, f\right\rangle=:\left\langle u, h_{a} f\right\rangle=\langle u, f(a x)\rangle, f \in \mathbb{P}$.

Then, it is straightforward to prove that for $f \in \mathbb{P}$ and $u \in \mathbb{P}^{\prime}$, we have
$(f u)^{\prime}=f^{\prime} u+f u^{\prime}$.
We will only consider sequences of polynomials $\left\{P_{n}\right\}_{n \geq 0}$ such that $\operatorname{deg} P_{n} \leq n, n \in \mathbb{N}$. If the set $\left\{P_{n}\right\}_{n \geq 0}$ spans \mathbb{P}, which occurs when $\operatorname{deg} P_{n}=n, n \in \mathbb{N}$, then it will be called a polynomial sequence (PS). Along the text, we will only deal with PS whose elements are monic, that is, monic polynomial sequences (MPS). It is always possible to associate to $\left\{P_{n}\right\}_{n \geq 0}$ a unique sequence $\left\{u_{n}\right\}_{n \geq 0}, u_{n} \in \mathbb{P}^{\prime}$, called its dual sequence, such that $\left\langle u_{n}, P_{m}\right\rangle=\delta_{n, m}, n, m \geq 0$, where $\delta_{n, m}$ is the Kronecker's symbol [11].

The MPS $\left\{P_{n}\right\}_{n \geq 0}$ is orthogonal with respect to $u \in \mathbb{P}^{\prime}$ when the following conditions hold: $\left\langle u, P_{n} P_{m}\right\rangle=r_{n} \delta_{n, m}, n, m \geq 0, r_{n} \neq 0, \quad n \geq$

0 [7]. In this case, we say that $\left\{P_{n}\right\}_{n \geq 0}$ is a monic orthogonal polynomial sequence (MOPS) and the form u is said to be regular. Necessarily, $u=\lambda u_{0}, \lambda \neq 0$. Furthermore, we have
$u_{n}=\left(\left\langle u_{0}, P_{n}^{2}\right\rangle\right)^{-1} P_{n} u_{0}, n \geq 0$,
and the MOPS $\left\{P_{n}\right\}_{n \geq 0}$ fulfils the second order recurrence relation

$$
\begin{align*}
& P_{0}(x)=1 \quad, \quad P_{1}(x)=x-\beta_{0} \\
& P_{n+2}=\left(x-\beta_{n+1}\right) P_{n+1}(x)-\gamma_{n+1} P_{n}(x) \quad, \gamma_{n+1} \neq 0, \quad n \geq 0 . \tag{1.3}
\end{align*}
$$

A form u is said symmetric if and only if $(u)_{2 n+1}=0, n \geq 0$, or, equivalently, in (1.3) $\beta_{n}=0, n \geq 0$. Furthermore, the orthogonality is kept by shifting. In fact, let
$\left\{\tilde{P}_{n}:=a^{-n}\left(h_{a} P_{n}\right)\right\}_{n \geq 0}, \quad a \neq 0$,
then the recurrence elements $\tilde{\beta}_{n}, \tilde{\gamma}_{n+1}, n \geq 0$, of the sequence $\left\{\tilde{P}_{n}\right\}_{n \geq 0}$ are
$\tilde{\beta}_{n}=\frac{\beta_{n}}{a}, \quad \tilde{\gamma}_{n+1}=\frac{\gamma_{n+1}}{a^{2}}, \quad n \geq 0$.
Let us introduce the Dunkl operator

$$
T_{\mu}(f)=f^{\prime}+2 \mu H_{-1} f, \quad\left(H_{-1} f\right)(x)=\frac{f(x)-f(-x)}{2 x}, \quad f \in \mathbb{P}, \mu \in \mathbb{C}
$$

This operator was introduced and studied for the first time by Dunkl [8]. Note that T_{0} is reduced to the derivative operator D. The transposed ${ }^{t} T_{\mu}$ of $T \mu$ is ${ }^{t} T_{\mu}=-D-H_{-1}=-T_{\mu}$, leaving out a light abuse of notation without consequence. Thus we have

$$
\left\langle T_{\mu} u, f\right\rangle=-\left\langle u, T_{\mu} f\right\rangle, \quad u \in \mathbb{P}^{\prime}, \quad f \in \mathbb{P}, \quad \mu \in \mathbb{C}
$$

In particular, this yields $\left\langle T_{\mu} u, x^{n}\right\rangle=-\mu_{n}(u)_{n-1}, n \geq 0$, where $(u)_{-1}=0$ and
$\mu_{n}=n+\mu\left(1-(-1)^{n}\right), \quad n \geq 0$.
It is easy to see that
$T_{\mu}(f u)=f T_{\mu} u+f^{\prime} u+2 \mu\left(H_{-1} f\right)\left(h_{-1} u\right), \quad f \in \mathbb{P}, \quad u \in \mathbb{P}^{\prime}$,
$h_{a} \circ T_{\mu}=a T_{\mu} \circ h_{a} \quad$ in $\mathbb{P}^{\prime}, \quad a \in \mathbb{C}-\{0\}$.
Now, consider a MPS $\left\{P_{n}\right\}_{n \geq 0}$ and let
$P_{n}^{[1]}(x, \mu)=\frac{1}{\mu_{n+1}}\left(T_{\mu} P_{n+1}\right)(x), \quad \mu \neq-n-\frac{1}{2}, \quad n \geq 0$.
Lemma 1.1. [12] Denoting by $\left\{u_{n}^{[1]}(\mu)\right\}_{n \geq 0}$ the dual sequence of $\left\{P_{n}^{[1]}(., \mu)\right\}_{n \geq 0}$, we have
$T_{\mu}\left(u_{n}^{[1]}(\mu)\right)=-\mu_{n+1} u_{n+1}, n \geq 0$.
Definition 1.2. The sequence $\left\{P_{n}\right\}_{n \geq 0}$ is called Dunkl-Appell or T_{μ}-Appell if $P_{n}^{[1]}(., \mu)=P_{n}, n \geq 0$.
When $\mu=0$, we meet the Appell polynomials.

2. The Main Result

Let us recall some results to be used in the sequel. We begin by giving some properties of the Generalized Hermite polynomials $\left\{\mathscr{H}_{n}(\alpha)\right\}_{n \geq 0}$ (see [1, 4] and [7]). They satisfy the recurrence relation (1.3) with
$\beta_{n}=0, \gamma_{n+1}=\frac{1}{2}\left(n+1+\alpha\left(1+(-1)^{n}\right)\right), \quad 2 \alpha \neq-2 n-1, \quad n \geq 0$.
The sequence $\left\{\mathscr{H}_{n}(\alpha)\right\}_{n \geq 0}$ is orthogonal with respect to $\mathscr{H}(\alpha)$, this last form has the following integral representation [7], p. 157
$\langle\mathscr{H}(\alpha), f\rangle=\frac{1}{\Gamma\left(\alpha+\frac{1}{2}\right)} \int_{-\infty}^{+\infty}|x|^{2 \alpha} e^{-x^{2}} f(x) d x, \quad \Re(\alpha)>-\frac{1}{2}, \quad f \in \mathbb{P}$.
This family reduces to the ordinary Hermite polynomial set when $\alpha=0$.

Proposition 2.1. Let $\left\{P_{n}\right\}_{n \geq 0}$ be a MPS and let $\left\{u_{n}\right\}_{n \geq 0}$ be the corresponding dual sequence. The following statements are equivalent
(a) The sequence $\left\{P_{n}\right\}_{n \geq 0}$ is T_{μ}-Appell.
(b) The sequence $\left\{u_{n}\right\}_{n \geq 0}$ verifies
$T_{\mu} u_{n}=-\mu_{n+1} u_{n+1}, \quad n \geq 0$.

Proof. $(a) \Longrightarrow(b)$. Let $\left\{u_{n}^{[1]}(\mu)\right\}_{n \geq 0}$ be the dual sequence of $\left\{P_{n}^{[1]}(., \mu)\right\}_{n \geq 0}$. Then, Definition 1.2 results $u_{n}^{[1]}(\mu)=u_{n}$ because $\left\{P_{n}\right\}_{n \geq 0}$ has a unique dual sequence. Therefore, using (1.10), we obtain (2.3).
$(b) \Longrightarrow(a)$. From (1.10) and (2.3), we have the following

$$
\left\{\begin{array}{l}
T_{\mu} u_{n}=-\mu_{n+1} u_{n+1}, n \geq 0 \\
T_{\mu}\left(u_{n}^{[1]}(\mu)\right)=-\mu_{n+1} u_{n+1}, n \geq 0
\end{array}\right.
$$

Then, we obtain $T_{\mu} u_{n}=T_{\mu}\left(u_{n}^{[1]}(\mu)\right), n \geq 0$. So, $u_{n}=u_{n}^{[1]}(\mu)$ because T_{μ} is injective in \mathbb{P}^{\prime}. Moreover, we have $\left\langle u_{n}, P_{m}\right\rangle=\left\langle u_{n}^{[1]}(\mu), P_{m}^{[1]}(., \mu)\right\rangle=$ $\delta_{n, m}, n, m \geq 0$, which gives

$$
\left\langle u_{n}, P_{m}-P_{m}^{[1]}(., \mu)\right\rangle=0, \quad n, m \geq 0
$$

Since $\left\{u_{n}\right\}_{n \geq 0}$ is a set of linearly independent vectors, we deduce that $P_{m}=P_{m}^{[1]}(., \mu), m \geq 0$. Hence, the sequence $\left\{P_{n}\right\}_{n \geq 0}$ is T_{μ}-Appell.
Now, we state our main result:
Theorem 2.2. The orthogonal polynomial sets which are also T_{μ}-Appell, up to affine transformations, is the set of the Generalized Hermite polynomials $\left\{\mathscr{H}_{n}(\mu)\right\}_{n \geq 0}(\mu \neq 0,2 \mu \neq-2 n-1, n \geq 0)$.

Proof. Suppose that the sequence $\left\{P_{n}\right\}_{n \geq 0}$ is both orthogonal and T_{μ}-Appell.
$u_{n}=\left(\left\langle u_{0}, P_{n}^{2}\right\rangle\right)^{-1} P_{n} u_{0}, n \geq 0$,
From (1.2), (1.10) and (2.3) (according to assumptions)
$\left(\left\langle u_{0}, P_{n}^{2}\right\rangle\right)^{-1} T_{\mu}\left(P_{n} u_{0}\right)=-\mu_{n+1}\left(\left\langle u_{0}, P_{n+1}^{2}\right\rangle\right)^{-1} P_{n+1} u_{0}, \quad n \geq 0$
Then, by (1.3), the last equation becomes
$T_{\mu}\left(P_{n} u_{0}\right)=-\frac{\mu_{n+1}}{\gamma_{n+1}} P_{n+1} u_{0}, \quad n \geq 0$.
The particular choice of $n=0$ in (2.6) yields
$T_{\mu} u_{0}=-(1+2 \mu) \gamma_{1}^{-1} P_{1} u_{0}$.
In accordance with (1.7), we have
$T_{\mu}\left(P_{n} u_{0}\right)=P_{n} T_{\mu} u_{0}+P_{n}^{\prime} u_{0}+2 \mu\left(H_{-1} P_{n}\right)\left(h_{-1} u_{0}\right), \quad n \geq 0$.
Then, using (2.7) and (2.8), (2.6) becomes
$-\frac{\mu_{1}}{\gamma_{1}} P_{n} P_{1} u_{0}+P_{n}^{\prime} u_{0}+2 \mu\left(H_{-1} P_{n}\right)\left(h_{-1} u_{0}\right)=-\frac{\mu_{n+1}}{\gamma_{n+1}} P_{n+1} u_{0}, \quad n \geq 0$.
For $n=1$, equation (2.9) becomes
$2 \mu\left(h_{-1} u_{0}\right)=\left(\frac{\mu_{1}}{\gamma_{1}} P_{1}^{2}-\frac{\mu_{2}}{\gamma_{2}} P_{2}-1\right) u_{0}$.
Thus,
$-\frac{\mu_{1}}{\gamma_{1}} P_{n} P_{1} u_{0}+P_{n}^{\prime} u_{0}+\left(H_{-1} P_{n}\right)\left(\frac{\mu_{1}}{\gamma_{1}} P_{1}^{2}-\frac{\mu_{2}}{\gamma_{2}} P_{2}-1\right) u_{0}=-\frac{\mu_{n+1}}{\gamma_{n+1}} P_{n+1} u_{0}, \quad n \geq 0$.
By virtue of the regularity of u_{0}, we get
$-\frac{\mu_{1}}{\gamma_{1}} P_{n} P_{1}+P_{n}^{\prime}+\left(H_{-1} P_{n}\right)\left(\frac{\mu_{1}}{\gamma_{1}} P_{1}^{2}-\frac{\mu_{2}}{\gamma_{2}} P_{2}-1\right)=-\frac{\mu_{n+1}}{\gamma_{n+1}} P_{n+1} \quad n \geq 0$.
The comparison of the coefficients of x^{n+1} in the previous identity leads to

$$
-\frac{\mu_{1}}{\gamma_{1}}+\frac{1-(-1)^{n}}{2}\left(\frac{\mu_{1}}{\gamma_{1}}-\frac{\mu_{2}}{\gamma_{2}}\right)=-\frac{\mu_{n+1}}{\gamma_{n+1}}, \quad n \geq 0 .
$$

Therefore,
$\gamma_{2 n+1}=\frac{\gamma_{1}}{\mu_{1}} \mu_{2 n+1}, \quad \gamma_{2 n+2}=\frac{\gamma_{2}}{\mu_{2}} \mu_{2 n+2}, \quad n \geq 0$.
Now we treat the two cases $\beta_{0}=0$ and $\beta_{0} \neq 0$ separately.
Case I. $\left(\beta_{0}=0\right)$.

In this case, from (1.3), we have $P_{1}(x)=x$. Then, by (2.7), we obtain
$\left\langle T_{\mu} u_{0}, x^{n}\right\rangle=-(1+2 \mu) \gamma_{1}^{-1}\left\langle u_{0}, x^{n+1}\right\rangle$.
So, for $n=0$, we get $(u)_{1}=0$ and for $n \geq 1,-\mu_{n}(u)_{n-1}=-(1+2 \mu) \gamma_{1}^{-1}(u)_{n+1}$. Thus, we deduce $\left\langle u_{0}, x^{2 n+1}\right\rangle=0, \quad n \geq 0$. Then, the form u_{0} is symmetric which is equivalent to $\beta_{n}=0, n \geq 0$.
Therefore, we deduce $\left(h_{-1} u_{0}\right)=u_{0}$ and the equation (2.10) becomes
$2 \mu u_{0}=\left(\frac{\mu_{1}}{\gamma_{1}} P_{1}^{2}-\frac{\mu_{2}}{\gamma_{2}} P_{2}-1\right) u_{0}$.
Thus, we deduce $\frac{\mu_{1}}{\gamma_{1}}=\frac{\mu_{2}}{\gamma_{2}}$. Then, (2.13) becomes
$\gamma_{2 n+1}=\frac{\gamma_{1}}{\mu_{1}} \mu_{2 n+1}, \quad \gamma_{2 n+2}=\frac{\gamma_{1}}{\mu_{1}} \mu_{2 n+2}, \quad n \geq 0$.
With the choice $a=\sqrt{\frac{\gamma_{1}}{\mu_{1}}}$ in (1.4)-(1.5) and using the last equation where $\left\{\mu_{n}\right\}_{n \geq 0}$ is given by (1.6) and the fact $\beta_{n}=0, n \geq 0$, we get the following canonical case
$\tilde{\beta}_{n}=0, \tilde{\gamma}_{n+1}=\frac{1}{2}\left(n+1+\mu\left(1+(-1)^{n}\right)\right), \quad 2 \mu \neq-2 n-1, \quad n \geq 0$.
Hence the MOPS $\left\{\tilde{P}_{n}\right\}_{n \geq 0}$ corresponds to the Generalized Hermite polynomials of parameter μ according to (2.1). Indeed $\tilde{P}_{n}=$ $\mathscr{H}_{n}(\mu), \quad \mu \neq 0, \quad \mu \neq-n-\frac{1}{2}, \quad n \geq 0$.

Case II. $\left(\beta_{0} \neq 0\right)$.
From the recurrence relation (1.3), we have
$\left\{\begin{array}{l}P_{1}(x)=x-\beta_{0}, \\ P_{2}(x)=x^{2}-\left(\beta_{0}+\beta_{1}\right) x+\beta_{0} \beta_{1}-\gamma_{1}, \\ P_{3}(x)=x^{3}-\left(\beta_{0}+\beta_{1}+\beta_{2}\right) x+\left(\beta_{2}\left(\beta_{0}+\beta_{1}\right)+\beta_{0} \beta_{1}-\gamma_{1}-\gamma_{2}\right) x-\beta_{2}\left(\beta_{0} \beta_{1}-\gamma_{1}\right)+\gamma_{2} \beta_{0}\end{array}\right.$
Making $n=1$ in (2.12) and using (2.18), we get by equating the coefficients of x^{2} in the obtained equation
$\left(\beta_{0}+\beta_{1}\right) \frac{\mu_{2}}{\gamma_{2}}=\left(\beta_{1}+\beta_{2}\right) \frac{\mu_{1}}{\gamma_{1}}$
We have $P_{1}(x)=P_{1}^{[1]}(x, \mu)=\mu_{2}^{-1} T_{\mu} P_{2}(x)$ because $\left\{P_{n}\right\}_{n \geq 0}$ is T_{μ}-Appell. Then, using (2.18), we get

$$
x-\beta_{0}=x-\frac{\mu_{1}}{2}\left(\beta_{0}+\beta_{1}\right)
$$

This, leads to
$\beta_{0}+\beta_{1}=\frac{2 \beta_{0}}{\mu_{1}}$.
We have $P_{2}(x)=P_{2}^{[1]}(x, \mu)=\mu_{3}^{-1} T_{\mu} P_{3}(x)$. Then, using (2.18) and comparing coefficients of powers of x in both sides of the resulting equation, we find that
$\beta_{0}+\beta_{1}=\frac{2\left(\beta_{0}+\beta_{1}+\beta_{2}\right)}{\mu_{3}}$,
and
$\beta_{0} \beta_{1}-\gamma_{1}=\frac{\mu_{1}}{\mu_{3}}\left(\beta_{2}\left(\beta_{0}+\beta_{1}\right)+\beta_{0} \beta_{1}-\gamma_{1}-\gamma_{2}\right)$.
Using (2.20) and taking into account that $\mu_{1}=1+2 \mu$ and $\mu_{3}=3+2 \mu$, we get from (2.21)
$\beta_{2}=\beta_{0}$.
Based on (2.20), (2.23) and the fact $\mu_{2}=2$, (2.22) becomes
$\frac{\gamma_{1}}{\mu_{1}}-\frac{\gamma_{2}}{\mu_{2}}=\frac{2 \mu \beta_{0}^{2}}{\mu_{1}}$.
But, from (2.20), (2.23), (2.19) and the fact $\beta_{0} \neq 0$, we deduce $\frac{\gamma_{1}}{\mu_{1}}=\frac{\gamma_{2}}{\mu_{2}}$. Then, (2.24) gives $\frac{2 \mu \beta_{0}^{2}}{\mu_{1}}=0$ which is a contradiction if $\mu \neq 0$. This completes the proof of the Theorem2.2.

Remark 2.3. The Theorem 2.2 generalizes Corollary 2.3. in [9].
Remark 2.4. From (2.3), by induction we can easily prove

$$
u_{n}=(-1)^{n}\left(\prod_{k=0}^{n} \mu_{k}\right)^{-1} T_{\mu}^{n} u_{0}, \quad n \geq 0
$$

Then, using (1.2), (2.2), (2.16) where $\gamma_{1}=\mu_{1}$, (2.17) and the above equation, we can deduce the following Rodrigues formula for Generalized Hermite polynomials

$$
\mathscr{H}_{n}(\mu)=(-1)^{n}|x|^{-2 \mu} e^{x^{2}} T_{\mu}^{n}\left(|x|^{2 \mu} e^{-x^{2}}\right), \quad n \geq 0
$$

Acknowledgement

The author is thankful to the reviewers for their comments.

References

[1] J. Alaya and P. Maroni, Symmetric Laguerre-Hahn forms of class $s=1$. Integral Transforms Spec. Funct. 4, (4), (1996), 301-320.
[2] W. Al-Salam, Characterization theorems for orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials: Theory and Practice, in: NATO ASI Ser. C Math. Phys. Sci., vol. 294, Kluwer Academic Publishers, Dordrecht, 1990, pp. 1-24.
[3] A. Angelesco, Sur les polynômes orthogonaux en rapport avec d'autre polynomes, Buletinul Societâtii din Cluj, 1(1921), 44-59.
[4] Y. Ben Cheikh and M. Gaied, Characterization of the Dunkl-classical symmetric orthogonal polynomials. Appl. Math. Comput., 187 (2007), 105-114
[5] Y. Ben Cheikh and M. Gaied, Dunkl-Appell d-orthogonal polynomials. Integral Transforms Spec. Funct. 18 (8), (2007) 581-597.
[6] L. Carlitz, Characterization of certain sequences of orthogonal polynomials, Portugaliae Math., 20 (1961), 43-46.
[7] T. S. Chihara, An introduction to orthogonal polynomials. Gordon and Breach, New York, 1978.
[8] C.F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), 1213-1227.
[9] A. Ghressi and L. Khériji, A new characterization of the generalized Hermite form. Bull Belg Math Soc Simon Stevin. 15 (3) (2008), 561-567.
[10] L. Khériji, P. Maroni, The H_{q}-classical orthogonal polynomials,Acta Appl. Math. 71 (2002), 49-115.
[11] P. Maroni, Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques, in: Orthogonal Polynomials and their applications. (C. Brezinski et al Editors.) IMACS, Ann. Comput. Appl. Math. 9, (Baltzer, Basel) (1991), 95-130.
[12] M. Sghaier, A note on the Dunkl-classical orthogonal polynomials, Integral Transforms Spec. Funct. 23 (10), (2012) 753-760.
[13] J. Shohat, The relation of the classical orthogonal polmomials to the polmomials of Appell, Amer. J. Math., 58 (1936), 453-464.

