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Common fixed point of four maps in b−metric
spaces

J. R. Roshan ∗, N. Shobkolaei† , S. Sedghi‡ and M. Abbas§

Abstract

In this paper, some common fixed point results for four mappings satis-
fying generalized contractive condition in a b−metric space are proved.
Advantage of our work in comparison with studies done in the context
of b−metric is that, the b−metric function used in the theorems and
results are not necessarily continuous. So, our results extend and im-
prove several comparable results obtained previously. We also present
two examples that show the applicability and validity of our results.
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1. Introduction and preliminaries

Czerwik in [13] introduced the concept of a b−metric space. Since then, several
research papers have dealt with fixed point theory for single-valued and multivalued
operators in b−metric spaces (see, e.g., [2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 16, 17, 18, 20, 21,
26, 25]). Pacurar [26] obtained results on fixed point of sequences of almost contractions
in b−metric spaces. Recently, Hussain and Shah [17] studied KKM mappings in cone
b−metric spaces. Khamsi [20, 21] showed that each cone metric space over a normal cone
induces a b-metric structure ( see also [18]).

The aim of this paper is to present some common fixed point results for four mappings
satisfying generalized contractive condition in a b−metric space, where the b−metric is
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not necessarily continuous. Many authors in their work have used the b−metric spaces in
which b−metric function is continuous, but the techniques used here can be employed in
the setup of discontinuous b−metric spaces. From this point of view the results obtained
in this paper generalize and extend several comparable existing results in the framework
of b−metric spaces. On the other hand, many authors (see, e.g., [1, 22, 24, 27]) have used

the Ćirić [10, 11] and Hardy-Rogers [15] type contractions in their works. In this paper

we focused on Ćirić and Hardy-Rogers type contractions and present some common fixed
point results in b-metric spaces.

Consistent with [13] and [25, p. 264], following definitions and results will be needed
in the sequel.
1.1. Definition. ([13]) Let X be a nonempty set and k ≥ 1 a given real number. A
function d : X ×X → R+ is a b−metric iff for each x, y, z ∈ X, following conditions are
satisfied:

(b1) d(x, y) = 0 iff x = y,
(b2) d(x, y) = d(y, x),
(b3) d(x, z) ≤ k[d(x, y) + d(y, z)].
A pair (X, d) is called a b−metric space.

It should be noted that the class of b−metric spaces is effectively larger than that of
metric spaces. Indeed, a b-metric is a metric if and only if k = 1.

Following is an example which shows that a b−metric need not be a metric (see, also
[25, p. 264]).
1.2. Example. Let (X, d) be a metric space and ρ(x, y) = (d(x, y))p, where p > 1 is a
real number. We show that ρ is a b−metric with k = 2p−1 : Obviously, conditions (i) and
(ii) of definition 1.1 are satisfied. If 1 < p <∞, then convexity of the function f(x) = xp

(x > 0) implies that
(
a+b
2

)p ≤ 1
2

(ap + bp) , that is, (a+ b)p ≤ 2p−1(ap + bp) holds.
Thus for each x, y, z ∈ X, we have

ρ(x, y) = (d(x, y))p ≤ (d(x, z) + d(z, y))p

≤ 2p−1 ((d(x, z))p + (d(z, y))p) = 2p−1(ρ(x, z) + ρ(z, y)).

So condition (iii) of definition 1.1 holds and ρ is a b−metric. Note that (X, ρ) is not
necessarily a metric space.

For example, if X = R be the set of real numbers and d(x, y) = |x− y| a usual metric,
then ρ(x, y) = (x − y)2 is a b−metric on R with k = 2, but not a metric on R, as the
triangle inequality for a metric does not hold.

Before stating our results, we present some definitions and propositions in a b−metric
space.
1.3. Definition. ([8]) Let (X, d) be a b−metric space. Then a sequence {xn} in X is
called:

(a) convergent if and only if there exists x ∈ X such that d(xn, x)→ 0, as n→ +∞.
In this case, we write lim

n→∞
xn = x.

(b) Cauchy if and only if d(xn, xm)→ 0, as n,m→ +∞.
1.4. Proposition. (See, remark 2.1 in [8] ) In a b−metric space (X, d) the following
assertions hold:

(i) a convergent sequence has a unique limit,
(ii) each convergent sequence is Cauchy,
(iii) in general, a b−metric is not continuous.
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1.5. Definition. ([8]) Let (X, d) be a b−metric space. If Y is a nonempty subset of X,

then the closure Y of Y is the set of limits of all convergent sequences of points in Y , i.e.,

Y =
{
x ∈ X : there exists a sequence {xn} in Y such that lim

n→∞
xn = x

}
.

1.6. Definition. ([8]) Let (X, d) be a b−metric space. Then a subset Y ⊂ X is called
closed if and only if for each sequence {xn} in Y which converges to an element x, we

have x ∈ Y (i.e., Y = Y ).
1.7. Definition. ([8]) The b−metric space (X, d) is complete if every Cauchy sequence
in X converges.

In general a b−metric function d for k > 1 is not jointly continuous in all of its two
variables. Following is an example of a b−metric which is not continuous.
1.8. Example. ([16]) Let X = N ∪ {∞} and D : X ×X → R defined by

D(m,n) =





0, if m = n,∣∣ 1
m
− 1

n

∣∣ , if m,n are even or mn =∞,
5, if m and n are odd and m 6= n,
2, otherwise.

Then it is easy to see that for all m,n, p ∈ X, we have

D(m, p) ≤ 3(D(m,n) +D(n, p)).

Thus, (X,D) is a b−metric space with k = 3. If xn = 2n, for each n ∈ N, then

D(2n,∞) =
1

2n
→ 0, as n→∞,

that is, xn →∞, but D(x2n, 1) = 2 9 D(∞, 1), as n→∞.
As b−metric is not continuous in general, so we need the following simple lemma about

the b-convergent sequences.
1.9. Lemma. ([2]) Let (X, d) be a b−metric space with k ≥ 1. Suppose that {xn} and
{yn} are b-convergent to x and y, respectively. Then, we have

1

k2
d(x, y) ≤ lim inf

n−→∞
d(xn, yn) ≤ lim sup

n−→∞
d(xn, yn) ≤ k2d(x, y).

In particular, if x = y, then we have lim
n−→∞

d(xn, yn) = 0. Moreover for each z ∈ X we

have
1

k
d(x, z) ≤ lim inf

n−→∞
d(xn, z) ≤ lim sup

n−→∞
d(xn, z) ≤ kd(x, z).

Also, we present the following simple lemma needed in the proof of our main result.
1.10. Lemma. Let (X, d) be a b−metric space. If there exist two sequences {xn}
and {yn} such that lim

n→∞
d(xn, yn) = 0, whenever {xn} is a sequence in X such that

lim
n→∞

xn = t for some t ∈ X then lim
n→∞

yn = t.

Proof. By a triangle inequality in a b−metric space, we have

d(yn, t) ≤ k(d(yn, xn) + d(xn, t)).

Now, by taking the upper limit when n→∞ in the above inequality we get

lim sup
n−→∞

d(yn, t) ≤ k( lim sup
n−→∞

d(xn, yn) + lim sup
n−→∞

d(xn, t)) = 0.

Hence lim
n→∞

yn = t.

1.11. Definition. ([19]) Let (X, d) be a b−metric space. A pair {f, g} is said to be
compatible if and only if lim

n→∞
d(fgxn, gfxn) = 0, whenever {xn} is a sequence in X such

that lim
n→∞

fxn = lim
n→∞

gxn = t for some t ∈ X.
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2. Common fixed point results

2.1. Theorem. Suppose that f , g, S and T are self mappings on a complete b−metric
space (X, d) such that f(X) ⊆ T (X), g(X) ⊆ S(X). If

(2.1) d(fx, gy) ≤ q

k4
max{d(Sx, Ty), d(fx, Sx), d(gy, Ty),

1

2
(d(Sx, gy) + d(fx, Ty))},

holds for each x, y ∈ X with 0 < q < 1, then f , g, S and T have a unique common fixed
point in X provided that S and T are continuous and and pairs {f, S} and {g, T} are
compatible.
Proof. Let x0 ∈ X. As f(X) ⊆ T (X), there exists x1 ∈ X such that fx0 = Tx1. Since
gx1 ∈ S(X), we can choose x2 ∈ X such that gx1 = Sx2. In general, x2n+1 and x2n+2

are chosen in X such that fx2n = Tx2n+1 and gx2n+1 = Sx2n+2. Define a sequence {yn}
in X such that y2n = fx2n = Tx2n+1, and y2n+1 = gx2n+1 = Sx2n+2, for all n ≥ 0. Now,
we show that {yn} is a Cauchy sequence. Consider

d(y2n, y2n+1) = d(fx2n, gx2n+1)

≤ q

k4
max{d(Sx2n, Tx2n+1), d(fx2n, Sx2n), d(gx2n+1, Tx2n+1),

1

2
(d(Sx2n, gx2n+1) + d(fx2n, Tx2n+1))}

=
q

k4
max{d(y2n−1, y2n), d(y2n, y2n−1), d(y2n+1, y2n),

1

2
(d(y2n−1, y2n+1) +

+d(y2n, y2n))}

=
q

k4
max{(d(y2n−1, y2n), d(y2n, y2n+1),

d(y2n−1, y2n+1)

2
}

≤ q

k4
max{d(y2n−1, y2n), d(y2n, y2n+1),

k

2
(d(y2n−1, y2n) + d(y2n, y2n+1))}.

If d(y2n, y2n+1) > d(y2n−1, y2n) for some n, then from the above inequality we have

d(y2n, y2n+1) <
q

k3
d(y2n, y2n+1),

a contradiction. Hence d(y2n, y2n+1) ≤ d(y2n−1, y2n) for all n ∈ N. Also, by the above
inequality we obtain

(2.2) d(y2n, y2n+1) ≤ q

k3
d(y2n−1, y2n).

Similarly,

(2.3) d(y2n−1, y2n) ≤ q

k3
d(y2n−2, y2n−1).

From 2.2 and 2.3 we have

d(yn, yn−1) ≤ λd(yn−1, yn−2),

where λ =
q

k3
< 1 and n ≥ 2. Hence, for all n ≥ 2, we obtain

(2.4) d(yn, yn−1) ≤ · · · ≤ λn−1d(y1, y0).

So for all n > m, we have

d(yn, ym) ≤ kd(ym, ym+1) + k2d(ym+1, ym+2) + · · ·+ kn−m−1d(yn−1, yn).
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Now from (4), we have

d(yn, ym) ≤ (kλm + k2λm+1 + · · ·+ kn−m−1λn−1)d(y1, y0)

≤ kλm[1 + kλ+ (kλ)2 + · · · ]d(y1, y0)

≤ kλm

1− kλd(y1, y0)

On taking limit as m,n → ∞, we have d(yn, ym) → 0 as kλ < 1. Therefore {yn} is a
Cauchy sequence. Since X is a complete b−metric space, there is some y in X such that

lim
n→∞

fx2n = lim
n→∞

Tx2n+1 = lim
n→∞

gx2n+1 = lim
n→∞

Sx2n+2 = y.

We show that y is a common fixed point of f , g, S and T .
Since S is continuous, therefore lim

n→∞
S2x2n+2 = Sy and lim

n→∞
Sfx2n = Sy.

Since a pair {f, S} is compatible, lim
n→∞

d(fSx2n, Sfx2n) = 0. So by lemma 1.10, we

have limn→∞ fSx2n = Sy.
Putting x = Sx2n and y = x2n+1 in 2.1, we obtain

d(fSx2n, gx2n+1) ≤ q

k4
max{d(S2x2n, Tx2n+1), d(fSx2n, S

2x2n), (gx2n+1, Tx2n+1),

1

2
(d(S2x2n, gx2n+1) + d(fSx2n, Tx2n+1))}.(2.5)

Taking the upper limit as n→∞ in 2.5 and using lemma 1.9, we get

d(Sy, y)

k2
≤ lim sup

n−→∞
d(fSx2n, gx2n+1)

≤ q

k4
max{lim sup

n−→∞
d(S2x2n, Tx2n+1), lim sup

n−→∞
d(fSx2n, S

2x2n),

lim sup
n−→∞

d(gx2n+1, Tx2n+1),

1

2
(lim sup
n−→∞

d(S2x2n, gx2n+1) + lim sup
n−→∞

d(fSx2n, Tx2n+1))}.

≤ q

k4
max{k2d(Sy, y), 0, 0,

k2

2
(d(Sy, y) + d(Sy, y))}

=
q

k4
k2d(Sy, y) =

q

k2
d(Sy, y).

Consequently, d(Sy, y) ≤ qd(Sy, y). As 0 < q < 1, so Sy = y.
Using continuity of T , we obtain lim

n→∞
T 2x2n+1 = Ty and lim

n→∞
Tgx2n+1 = Ty.

Since g and T are compatible, limn→∞ d(gTxn, T gxn) = 0. So, by lemma 1.10, we
have limn→∞ gTx2n = Ty.

Putting x = x2n and y = Tx2n+1 in 2.1, we obtain

d(fx2n, gTx2n+1) ≤ q

k4
max{d(Sx2n, T

2x2n+1), d(fx2n, Sx2n), d(gTx2n+1, T
2x2n+1),

1

2
(d(Sx2n, gTx2n+1) + d(fx2n, T

2x2n+1))}.(2.6)

Taking upper limit as n→∞ in 2.6 and using lemma 1.9, we obtain

d(y, Ty)

k2
≤ lim sup

n−→∞
d(fx2n, gTx2n+1) ≤ q

k4
max{k2d(y, Ty), 0, 0,

k2

2
(d(y, Ty) + d(y, Ty))}

=
qd(y, Ty)

k2
,
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which implies that Ty = y. Also, we can apply condition 2.1 to obtain

d(fy, gx2n+1) ≤ q

k4
max{d(Sy, Tx2n+1), d(fy, Sy), d(gx2n+1, Tx2n+1),

1

2
(d(Sy, gx2n+1) + d(fy, Tx2n+1))}.(2.7)

Taking upper limit n→∞ in 2.7, and using Sy = Ty = y, we have

d(fy, y)

k2
≤ q

k4
max{k2d(Sy, y), k2d(fy, Sy), k2d(y, y),

k2

2
(d(Sy, y) + d(fy, y))}

=
q

k2
d(fy, y).

which implies that d(fy, y) = 0 and fy = y as 0 < q < 1.
Finally, from condition 2.1, and the fact Sy = Ty = fy = y, we have

d(y, gy) = d(fy, gy)

≤ q

k4
max{d(Sy, Ty), d(fy, Sy), d(gy, Ty),

1

2
(d(Sy, gy) + d(fy, Ty))}

=
q

k4
d(y, gy) ≤ qd(y, gy),

which implies that d(y, gy) = 0 and gy = y. Hence Sy = Ty = fy = gy = y.
If there exists another common fixed point x in X for f, g, S and T , then

d(x, y) =d(fx, gy)

≤ q

k4
max{d(Sx, Ty), d(fx, Sx), d(gy, Ty),

1

2
(d(Sx, gy) + d(fx, Ty))}

=
q

k4
max{d(x, y), d(x, x), d(y, y),

1

2
(d(x, y) + d(x, y))}

=
q

k4
d(x, y) ≤ qd(x, y),

which further implies that d(x, y) = 0 and hence, x = y. Thus, y is a unique common
fixed point of f, g, S and T . �

Now, we give two examples to support our result.
2.2. Example. Let X = [0,∞) be endowed with b−metric d(x, y) = |x− y|2 =

(x− y)2 , where k = 2. Define f, g, S and T on X by

f(x) = ln(1 + x
4
), g(x) = ln(1 + x

5
),

S(x) = e5x − 1, T (x) = e4x − 1.

Obviously, f(X) = T (X) = g(X) = S(X) = [0,∞). We show that the pair {f, S} is
compatible: Let {xn} be a sequence in X such that for some t ∈ X, lim

n→∞
d(fxn, t) = 0

and lim
n→∞

d(Sxn, t) = 0. That is, lim
n→∞

|fxn − t| = lim
n→∞

|Sxn − t| = 0. Since f and S are

continuous, we have

lim
n→∞

d(fSxn, Sfxn) = ( lim
n→∞

|fSxn − Sfxn|)2 = (|ft− St|)2

= (

∣∣∣∣ln(1 +
t

4
)− e5t + 1

∣∣∣∣)
2.

But (
∣∣ln(1 + t

4
)− e5t + 1

∣∣)2 = 0 ⇐⇒ t = 0, so the pair {f, S} is compatible. Similarly
{g, T} is compatible.
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For each x, y ∈ X, the mean value theorem gives

d(fx, gy) = (fx− gy)2 = [ln(1 +
x

4
)− ln(1 +

y

5
)]2

≤ (
x

4
− y

5
)2 ≤ 1

202
(5x− 4y)2

≤ 1

202
(e5x − e4y)2 =

1

202
d(Sx, Ty)

≤
1
25

24
max{d(Sx, Ty), d(fx, Sx), d(gy, Ty),

1

2
(d(Sx, gy) + d(fx, Ty))},

where
1

25
≤ q < 1 and k = 2. Thus, f, g, S and T satisfy all conditions of Theorem 2.1.

Moreover 0 is the unique common fixed point of f, g, S and T .
2.3. Example. Let X = [0, 1] be endowed with b−metric d(x, y) = |x− y|2 =

(x− y)2 , where k = 2. Define f, g, S and T on X by

f(x) = (x
2
)8, g(x) = (x

2
)4,

S(x) = (x
2
)4, T (x) = (x

2
)2.

Obviously, f(X) ⊆ T (X) and g(X) ⊆ S(X). Furthermore, the pairs {f, S} and {g, T}
are compatible.

For each x, y ∈ X, we have

d(fx, gy) = (fx− gy)2 = ((
x

2
)8 − (

y

2
)4)2 = ((

x

2
)4 + (

y

2
)2)2.((

x

2
)4 − (

y

2
)2)2

≤ (
1

16
+

1

4
)2d(Sx, Ty) =

5
16

24
d(Sx, Ty)

≤ q

k4
max{d(Sx, Ty), d(fx, Sx), d(gy, Ty),

1

2
(d(Sx, gy) + d(fx, Ty))},

where 5
16
≤ q < 1 and k = 2. Thus, f, g, S and T satisfy all conditions of Theorem 2.1.

Moreover 0 is the unique common fixed point of f, g, S and T .
Now, we get the special cases of Theorem 2.1 as follows:

2.4. Corollary. Let (X, d) be a complete b−metric space and f, g : X → X two
mappings such that

d(fx, gy) ≤ q

k4
max{d(x, y), d(fx, x), d(gy, y),

1

2
(d(x, gy) + d(fx, y))},

holds for all x, y ∈ X with 0 < q < 1. Then, there exists a unique point y ∈ X such that fy = gy = y.

Proof. If we take S = T = IX ( identity mapping on X), then Theorem 2.1 gives that f
and g have a unique common fixed point.
2.5. Corollary. Let (X, d) be a complete b−metric space and S, T : X → X continuous
mappings such that

d(x, y) ≤ qmax{d(Sx, Ty), d(x, Sx), d(y, Ty),
d(Sx, y) + d(x, Ty)

2
},

holds for all x, y ∈ X with 0 < q < 1. Then, S and T have a unique common fixed point.
Proof. If we take f and g as identity maps on X, then Theorem 2.1 gives that S and T
have a unique common fixed point.
2.6. Corollary. Let (X, d) be a complete b−metric space and f : X → X a mapping
such that

d(fx, fy) ≤ q

k4
max{d(x, y), d(fx, x), d(fy, y),

1

2
(d(x, fy) + d(fx, y))},

holds for all x, y ∈ X, with 0 < q < 1. Then f has a unique fixed point in X.
Proof. Take S and T as identity maps on X and f = g and then apply Theorem 2.1.
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2.7. Theorem. Let {f , S} and{g, T} be compatible self mappings on a complete
b−metric space (X, d) satisfying

(2.8)

d(fx, gy) ≤ 1

k4
(a1d(Sx, Ty)+a2d(fx, Ty)+a3d(Sx, gy)+a4d(fx, Sx)+a5d(gy, Ty)),

for all x, y ∈ X, where ai ≥ 0 (i = 1, 2, 3, 4, 5) are real constants with a1 + αa2 + βa3 +
a4 + a5 < 1, where α+β = 2, for α, β ∈ N∪{0}. If f(X) ⊆ T (X) and g(X) ⊆ S(X) and
S and T are continuous, then f , g, S and T have a unique common fixed point.
Proof. Let x0 in X. Since f(X) ⊆ T (X), Choose x1, x2 ∈ X such that Tx1 = fx0, and
Sx2 = gx1. This can be done as f(X) ⊆ T (X) and g(X) ⊆ S(X). In general, x2n+1 ∈ X
is chosen such that Tx2n+1 = fx2n and x2n+2 ∈ X such that Sx2n+2 = gx2n+1; n =
0, 1, 2, · · · . Denote y2n = Tx2n+1 = fx2n, and y2n+1 = Sx2n+2 = gx2n+1, for all n ≥ 0.
Now, we show that {yn} is a Cauchy sequence. For this, consider

d(y2n, y2n+1) = d(fx2n, gx2n+1)

≤ 1

k4
(a1d(Sx2n, Tx2n+1) + a2d(fx2n, Tx2n+1) + a3d(Sx2n, gx2n+1)

+ a4d(fx2n, Sx2n) + a5d(gx2n+1, Tx2n+1))

=
1

k4
(a1d(y2n−1, y2n) + a2d(y2n, y2n) + a3d(y2n−1, y2n+1)

+ a4d(y2n, y2n−1) + a5d(y2n+1, y2n))

≤ 1

k4
(a1d(y2n−1, y2n) + ka3d(y2n−1, y2n) + ka3d(y2n, y2n+1)

+ a4d(y2n, y2n−1) + a5d(y2n+1, y2n)).

Hence,

d(y2n, y2n+1) ≤ 1

k4
(a1d(y2n−1, y2n) + ka3d(y2n−1, y2n) + ka3d(y2n, y2n+1) +

+a4d(y2n, y2n−1) + a5d(y2n, y2n+1))

≤ 1

k3
(a1d(y2n−1, y2n) + a3d(y2n−1, y2n)(2.9)

+ a3d(y2n, y2n+1) + a4d(y2n, y2n−1) + a5d(y2n, y2n+1)).

Now, we prove that d(y2n, y2n+1) ≤ d(y2n−1, y2n), for each n ∈ N. If d(y2n−1, y2n) <
d(y2n, y2n+1), for some n ∈ N then from the above inequality we have

d(y2n, y2n+1) <
1

k3
(a1d(y2n, y2n+1) + 2a3d(y2n, y2n+1) + a4d(y2n, y2n+1) + a5d(y2n, y2n+1))

=
1

k3
(a1 + 2a3 + a4 + a5)d(y2n, y2n+1)

< d(y2n, y2n+1),

a contradiction. So, we have d(y2n, y2n+1) ≤ d(y2n−1, y2n), for each n ∈ N. Thus

(2.10) d(y2n, y2n+1) ≤ 1

k3
(a1 + 2a3 + a4 + a5)d(y2n−1, y2n).
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Also, we have

d(y2n, y2n−1) = d(fx2n, gx2n−1)

≤ 1

k4
(a1d(Sx2n, Tx2n−1) + a2d(fx2n, Tx2n−1) + a3d(Sx2n, gx2n−1)

+ a4d(fx2n, Sx2n) + a5d(gx2n−1, Tx2n−1))

=
1

k4
(a1d(y2n−1, y2n−2) + a2d(y2n, y2n−2) + a3d(y2n−1, y2n−1)

+ a4d(y2n, y2n−1) + a5d(y2n−1, y2n−2))

≤ 1

k4
(a1d(y2n−1, y2n−2) + ka2d(y2n, y2n−1) + ka2d(y2n−1, y2n−2)

+ a4d(y2n, y2n−1) + a5d(y2n−1, y2n−2)).

Hence,

d(y2n, y2n−1) ≤ 1

k3
(a1d(y2n−1, y2n−2) + a2d(y2n, y2n−1)(2.11)

+ a2d(y2n−1, y2n−2) + a4d(y2n, y2n−1) + a5d(y2n−1, y2n−2)).

Similarly, if d(y2n−1, y2n−2) ≤ d(y2n, y2n−1), for some n ∈ N then from 2.11 we obtain

d(y2n, y2n−1) ≤ 1

k3
(a1d(y2n, y2n−1) + 2a2d(y2n, y2n−1) + a4d(y2n, y2n−1) + a5d(y2n, y2n−1))

≤ 1

k3
(a1 + 2a2 + a4 + a5)d(y2n, y2n−1)

< d(y2n, y2n−1),

a contradiction. So, we have d(y2n, y2n−1) ≤ d(y2n−1, y2n−2) for each n ∈ N. Now from
2.11 we get

(2.12) d(y2n, y2n−1) ≤ 1

k3
(a1 + 2a2 + a4 + a5)d(y2n−1, y2n−2).

Now, from 2.10 and 2.12 we have

d(yn, yn−1) ≤ λd(yn−1, yn−2), n ≥ 2,

where λ = max{a1+2a2+a4+a5
k3

, a1+2a3+a4+a5
k3

}. As k ≥ 1, so λ ∈ (0, 1). Now for n ≥ 2,
we have

(2.13) d(yn, yn−1) ≤ . . . ≤ λn−1d(y1, y0).

For n > m, we have

d(yn, ym) ≤ kd(ym, ym+1) + k2d(ym+1, ym+2) + . . .+ kn−m−1d(yn−1, yn).

Hence from 2.13 and kλ < 1, we have

d(yn, ym) ≤ (kλm + k2λm+1 + . . .+ kn−m−1λn−1)d(y1, y0)

≤ kλm[1 + kλ+ (kλ)2 + · · · ]d(y1, y0)

≤ kλm

1− kλd(y1, y0)

=
kλm

1− kλd(y1, y0)→ 0, as m→∞.

So {yn} is a Cauchy sequence. Let y ∈ X be such that lim
n→∞

fx2n = lim
n→∞

Tx2n+1 =

lim
n→∞

gx2n+1 = lim
n→∞

Sx2n+2 = y. Since S is continuous, so lim
n→∞

S2x2n+2 = Sy and
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lim
n→∞

Sfx2n = Sy. Using compatibility of a pair {f, S}, we have lim
n→∞

d(fSxn, Sfxn) = 0.

So, by Lemma 1.10, we obtain lim
n→∞

fSx2n = Sy. From 2.8, we have

d(fSx2n, gx2n+1) ≤ 1

k4
(a1d(S2x2n, Tx2n+1) + a2d(fSx2n, Tx2n+1) + a3d(S2x2n, gx2n+1)

+ a4d(fSx2n, S
2x2n) + a5d(gx2n+1, Tx2n+1)).

Taking the upper limit as n→∞, and using Lemma 1.9 we get

d(Sy, y)

k2
≤ 1

k4
(k2a1d(Sy, y) + k2a2d(Sy, y) + k2a3d(Sy, y) + k2a4d(Sy, Sy) + k2a5d(y, y))

≤ 1

k4
(k2a1d(Sy, y) + k2a2d(Sy, y) + k2a3d(Sy, y))

=
1

k2
(a1 + a2 + a3)d(Sy, y)

≤ (a1 + a2 + a3 + a4 + a5)

k2
d(Sy, y).

Therefore, d(Sy, y) ≤ (a1 + a2 + a3 + a4 + a5)d(Sy, y). As a1 + a2 + a3 + a4 + a5 < 1, so
Sy = y.

Similarly, using continuouty of T , we obtain that lim
n→∞

T 2x2n+1 = Ty and lim
n→∞

Tgx2n+1 =

Ty. Since g and T are compatible, limn→∞ d(gTxn, T gxn) = 0, so by Lemma 1.10, we
have limn→∞ gTx2n = Ty.

From 2.8, it follows that

d(fx2n, gT2n+1) ≤ 1

k4
(a1d(Sx2n, T

2x2n+1) + a2d(fx2n, T
2x2n+1) + a3d(Sx2n, gTx2n+1)

+ a4d(fx2n, Sx2n) + a5d(gTx2n+1, T
2x2n+1)).

Taking upper limit as n→∞ and using Lemma 1.9 we get

d(y, Ty)

k2
≤ 1

k4
(k2a1d(y, Ty) + k2a2d(y, Ty) + k2a3d(y, Ty) + k2a4d(y, y) + k2a5d(Ty, Ty)

=
1

k2
(a1 + a2 + a3)d(y, Ty)

≤ (a1 + a2 + a3 + a4 + a5)

k2
d(y, Ty),

that is, d(y, Ty) ≤ (a1 + a2 + a3 + a4 + a5)d(y, Ty). Therefore, a1 + a2 + a3 + a4 + a5 < 1
implies that Ty = y. Again from 2.8, it follows that

d(fy, gx2n+1) ≤ 1

k4
(a1d(Sy, Tx2n+1) + a2d(fy, Tx2n+1) + a3d(Sy, gx2n+1)

+ a4d(fy, Sy) + a5d(gx2n+1, Tx2n+1)).

Taking upper limit as n→∞ and using Sy = y and Ty = y, we get

d(fy, y)

k2
≤ 1

k4
(k2a1d(Sy, y) + k2a2d(fy, y) + k2a3d(Sy, y) + k2a4d(fy, y) + k2a5d(y, y)

≤ a1 + a2 + a3 + a4 + a5
k2

d(fy, y).

Therefore, d(fy, y) ≤ (a1+a2+a3+a4+a5)d(fy, y). As a1+a2+a3+a4+a5 < 1, so fy = y.
Again, from 2.8 we have d(fy, gy) = 0, hence fy = gy. Thus, fy = gy = Sy = Ty = y.
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If there exists another common fixed point x in X for f , g, S and T , then

d(x, y) = d(fx, gy)

≤ 1

k4
(a1d(Sx, Sy) + a2d(fx, Ty) + a3d(Sx, gy) + a4d(fx, Sx) + a5d(gy, Ty))

=
1

k4
(a1 + a2 + a3)d(x, y)

≤ (a1 + a2 + a3 + a4 + a5)d(x, y),

Therefore, d(x, y) ≤ (a1 + a2 + a3 + a4 + a5)d(x, y). As a1 + a2 + a3 + a4 + a5 < 1, so
d(x, y) = 0, i.e., x = y. Therefore y is a unique common fixed point of f , g, S and T . 2
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