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Common fixed point of four maps in b—metric
spaces

J. R. Roshan *, N. Shobkolaei’ , S. Sedghi* and M. Abbas®

Abstract

In this paper, some common fixed point results for four mappings satis-
fying generalized contractive condition in a b—metric space are proved.
Advantage of our work in comparison with studies done in the context
of b—metric is that, the b—metric function used in the theorems and
results are not necessarily continuous. So, our results extend and im-
prove several comparable results obtained previously. We also present
two examples that show the applicability and validity of our results.
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1. Introduction and preliminaries

Czerwik in [13] introduced the concept of a b—metric space. Since then, several
research papers have dealt with fixed point theory for single-valued and multivalued
operators in b—metric spaces (see, e.g., [2, 3,4, 5, 6, 7, 8,9, 12, 13, 14, 16, 17, 18, 20, 21,
26, 25]). Pacurar [26] obtained results on fixed point of sequences of almost contractions
in b—metric spaces. Recently, Hussain and Shah [17] studied KKM mappings in cone
b—metric spaces. Khamsi [20, 21] showed that each cone metric space over a normal cone
induces a b-metric structure ( see also [18]).

The aim of this paper is to present some common fixed point results for four mappings
satisfying generalized contractive condition in a b—metric space, where the b—metric is
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not necessarily continuous. Many authors in their work have used the b—metric spaces in
which b—metric function is continuous, but the techniques used here can be employed in
the setup of discontinuous b—metric spaces. From this point of view the results obtained
in this paper generalize and extend several comparable existing results in the framework
of b—metric spaces. On the other hand, many authors (see, e.g., [1, 22, 24, 27]) have used
the Cirié [10, 11] and Hardy-Rogers [15] type contractions in their works. In this paper
we focused on Ciri¢ and Hardy-Rogers type contractions and present some common fixed
point results in b-metric spaces.

Consistent with [13] and [25, p. 264], following definitions and results will be needed
in the sequel.
1.1. Definition. ([13]) Let X be a nonempty set and k > 1 a given real number. A
function d : X x X — R" is a b—metric iff for each z,y, z € X, following conditions are
satisfied:

(bl) d(z,y) =0iff x =y,

(b2) d(z,y) = d(y, ),

(b3) d(x, 2) < kld(z, ) + d(y, 2)]

A pair (X, d) is called a b—metric space.

It should be noted that the class of b—metric spaces is effectively larger than that of
metric spaces. Indeed, a b-metric is a metric if and only if k = 1.

Following is an example which shows that a b—metric need not be a metric (see, also
[25, p. 264]).
1.2. Example. Let (X,d) be a metric space and p(z,y) = (d(x,y))?, where p > 1 is a
real number. We show that p is a b—metric with £ = 2P~ : Obviously, conditions (i) and
(ii) of definition 1.1 are satisfied. If 1 < p < oo, then convexity of the function f(z) = z?
(z > 0) implies that (%£2)” < 1 (a” +b?), that is, (a +b)? < 277" (a” + b”) holds.

Thus for each z,y,z € X, we have

(d(z,y))" < (d(z,2) + d(z,y))"
2" ((d(x,2))" + (d(=z,9)") = 2" (p(x, 2) + p(2,9))-

p(z,y)

IN

So condition (iii) of definition 1.1 holds and p is a b—metric. Note that (X, p) is not
necessarily a metric space.

For example, if X = R be the set of real numbers and d(z,y) = | — y| a usual metric,
then p(z,y) = (x — y)? is a b—metric on R with k = 2, but not a metric on R, as the
triangle inequality for a metric does not hold.

Before stating our results, we present some definitions and propositions in a b—metric
space.

1.3. Definition. ([8]) Let (X,d) be a b—metric space. Then a sequence {z,} in X is
called:

(a) convergent if and only if there exists € X such that d(zn,z) — 0, as n — +o0.

In this case, we write lim x, = x.
n—r oo

(b) Cauchy if and only if d(zn, zm) — 0, as n,m — +o0.
1.4. Proposition. (See, remark 2.1 in [8] ) In a b—metric space (X,d) the following
assertions hold:

(i) a convergent sequence has a unique limit,

(ii) each convergent sequence is Cauchy,

(iii) in general, a b—metric is not continuous.
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1.5. Definition. ([8]) Let (X, d) be a b—metric space. If Y is a nonempty subset of X,
then the closure Y of Y is the set of limits of all convergent sequences of points in Y, i.e.,

Y = {x € X : there exists a sequence {x,} in Y such that lim z, = ;t} .
n— oo

1.6. Definition. ([8]) Let (X,d) be a b—metric space. Then a subset Y C X is called
closed if and only if for each sequence {z,} in Y which converges to an element z, we
have x € Y (ie., Y =Y).
1.7. Definition. ([8]) The b—metric space (X, d) is complete if every Cauchy sequence
in X converges.

In general a b—metric function d for £ > 1 is not jointly continuous in all of its two
variables. Following is an example of a b—metric which is not continuous.

1.8. Example. ([16]) Let X = NU{oo} and D : X x X — R defined by

0, if m=n,
|i—l , if m,n are even or mn = oo,
D(m,n) = m._n .
5, if m and n are odd and m # n,
2, otherwise.

Then it is easy to see that for all m,n,p € X, we have

D(m,p) <3(D(m,n)+ D(n,p)).
Thus, (X, D) is a b—metric space with k = 3. If x,, = 2n, for each n € N, then

1

D(2n,0) = o — 0, as n — oo,

that is, £, — oo, but D(z2n,1) =2 -» D(c0,1), as n — oo.
As b—metric is not continuous in general, so we need the following simple lemma about

the b-convergent sequences.

1.9. Lemma. ([2]) Let (X, d) be a b—metric space with k > 1. Suppose that {z,} and
{yn} are b-convergent to = and y, respectively. Then, we have

1 . . 2

— < 5 < .

L2 d(z,y) < hnlrinoi d(Tn,yn) < Llibolip d(@n,yn) < k7d(z,y)

In particular, if © =y, then we have lim d(zn,yn) = 0. Moreover for each z € X we
n—oQ

have

%d(a@z) < liminf d(zn,2) < limsup d(zn,z) < kd(z,z).

n—oo n—> o0
Also, we present the following simple lemma needed in the proof of our main result.
1.10. Lemma. Let (X,d) be a b—metric space. If there exist two sequences {zn}
and {yn} such that lim d(zn,yn) = 0, whenever {z,} is a sequence in X such that
n—o0

lim z, =t for some ¢t € X then lim y, =t.
n— oo

n— oo
Proof. By a triangle inequality in a b—metric space, we have
d(yn, t) < k(d(yn, zn) + d(zn, t)).

Now, by taking the upper limit when n — co in the above inequality we get

limsup d(yn,t) < k( limsup d(xn,yn) + limsup d(zn,t)) = 0.

n—»00 n—>00 n—»o00
Hence lim y, =t.

n— oo
1.11. Definition. ([19]) Let (X, d) be a b—metric space. A pair {f, g} is said to be
compatible if and only if lim d(fgzn,gfz.) =0, whenever {z,} is a sequence in X such
n—o0

that lim fz, = lim gz, =t for some t € X.
n—oo n—oo
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2. Common fixed point results

2.1. Theorem. Suppose that f, g, S and T are self mappings on a complete b—metric
space (X, d) such that f(X) C T(X), g(X) C S(X). If

(d(Sz,gy) +d(fz, Ty))},

N | =

(1) d(fe,gy) < 75 max{d(Sz, Ty),d(fz, Sz), d(gy. Ty),

holds for each z,y € X with 0 < ¢ < 1, then f, g, S and T have a unique common fixed
point in X provided that S and T are continuous and and pairs {f, S} and {g, T} are
compatible.

Proof. Let o € X. As f(X) C T(X), there exists z1 € X such that fxo = T'z1. Since
gr1 € S(X), we can choose z2 € X such that gz1 = Sza. In general, 2,41 and Topto
are chosen in X such that fzo, = TZon+1 and grant+1 = STan42. Define a sequence {yn}
in X such that y2, = fxan = Tx2n+1, and Yyont+1 = gTant1 = STant2, for all n > 0. Now,
we show that {y,} is a Cauchy sequence. Consider

d(y2na y2n+1) = d(fonv 9x2n+1)

< % max{d(st’fH T$2n+1), d(fm2n7 S’I2n)7 d(gl’2n+1, T:L‘gn+1)7

1
5 (d(S22n, gT2nr1) + d(f22n, Tr2n41))}

1
% masx{d(yzn—1,Y2n), d(an, Y2n—1), d(Y2n+1,y2n), 5 (d2n—1, y2ni1) +

+d(y2n, y2n))}

d n—1, n
- % max{ (d(y2n—1, Y2n), d(Y2n, Y2nt1), W}
k
< % max{d(yzn—1,Y2n), d(Y2n, Y2n+1), §(d(y2n—l» yon) + d(y2n, y2nt1)) }.

If d(y2n, Y2n+1) > d(y2n—1,Y2n) for some n, then from the above inequality we have
d(Y2n, Yont1) < %d(yzn,y2n+1),

a contradiction. Hence d(y2n,y2n+1) < d(y2n—1,y2n) for all n € N. Also, by the above
inequality we obtain

(2.2)  d(y2n,y2ns1) < %d(y?nfhy?n)-
Similarly,
(2.3)  d(yzn-1,y2n) < %d(yzn—myzn—l)-
From 2.2 and 2.3 we have

A(Yn,yn—1) < Ad(Yn—1,Yn2),

where A = — < 1 and n > 2. Hence, for all n > 2, we obtain

k

(2.4)  d(yn,yn—1) < - < X" d(y1, o).

q
3

So for all n > m, we have

d(Yn,Ym) < kd(Ym, Ym+1) + K d(Ymi1, Ymaz) + -+ K" d(Yn-1,Yn).



Now from (4), we have

A(Yns ym) < (RA™ +E2A™T 4o 4 BTN d(y1, o)
<IN L+ EX + (BA) + - --1d(y1, v0)

On taking limit as m,n — oo, we have d(yn,ym) — 0 as kA < 1. Therefore {y,} is a
Cauchy sequence. Since X is a complete b—metric space, there is some y in X such that

lim fzo, = hm Tront1 = hm GTon+1 = hm STonta = y.
n—oo

We show that y is a common fixed point of f, g, S and T
Since S is continuous, therefore hm S22onyo = Sy and hm Sfxon = Sy.
Since a pair {f, S} is compatlble hm d(fozn,szzn) = 0 So by lemma 1.10, we

have lim;,, o0 fST2n = Sy.
Putting © = Sza, and y = xan+1 in 2.1, we obtain

A(fSTon, grzns1) < b max{d(S*wan, Tront1),d(fSzan, S*T2n), (gTant1, TT2041),

L4

(25) S (S 20, g2 1) + d([S 20, Tz}

Taking the upper limit as n — oo in 2.5 and using lemma 1.9, we get
% < linggop d(fSx2n, gTant1)

IN

max{hm sup d(S’ Zon, TTon+1), limsup d(fSzan, S? Ton),

k4 n—s oo n—s oo

limsup d(gzan+1, TT2n+1),

n—oo
1

= (lim sup d(SQ:rQn,g:rQn+1) + limsup d(fSxon, TTont1))}-
2 n—roo n——>00
k2
S k4 m&X{k d(Sy7 )7 307 7(d(‘5’y7 y) + d(Sy7 y))}

2
= k4k d(Sy,y) = gd(Sy,y)-

Consequently, d(Sy,y) < qd(Sy,y). As0< g<1,s0oSy=uy.
Using continuity of 7', we obtain lim T2x2n+1 =Ty and lim Tgxaon+1 = Ty.
n— oo

n— oo
Since g and T are compatible, lim, o d(¢TTn, Tgxn) = 0. So, by lemma 1.10, we
have lim, oo gTx2, = TYy.
Putting ¢ = z2,, and y = T'x2,+1 in 2.1, we obtain

d(fr2n, gTxan+1) < 154 max{d(Sz2n, T°2n41), d(fT2n, ST2n), d(gTT2n+1, T T2n41),
1
(2.6) 5 (d(Sz2n, gTx2n41) + d(f2m, T?w2n+1))}-
Taking upper limit as n — oo in 2.6 and using lemma 1.9, we obtain
d(y, T ) k?
% < limsup d(fr2n, gTT2n+1) < % max{k*d(y, Ty),0,0, < (d(y, Ty) +d(y, Ty))}
n— oo
qd(y, Ty)

k27
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which implies that Ty = y. Also, we can apply condition 2.1 to obtain

d(fy, gwant1) < %max{d(Sy,vaan),d(fy,Sy)7d(g$2n+17T$2n+1),

27) S5y, 973n 1) + d(fy, Twan 1))},

Taking upper limit n — oo in 2.7, and using Sy = Ty = y, we have

d(fy.v) % max{k*d(Sy,y), k*d(fy, Sy), k*d(y,y), %(d(sy, y) +d(fy,y)}

= k%d(fy,y)

k2

IN

which implies that d(fy,y) =0 and fy =y as 0 < g < 1.
Finally, from condition 2.1, and the fact Sy =Ty = fy = y, we have

d(fy, gy)

% max{d(Sy, Ty), d(fy, Sy), d(gy, Ty), %(d(Sy, gy) +d(fy, Ty))}

%d(%gy) < qd(y, 9y),

d(y, gy)

IN

which implies that d(y, gy) =0 and gy = y. Hence Sy =Ty = fy =gy = y.
If there exists another common fixed point  in X for f, g, S and T, then

d(z,y) =d(fz, gy)

< L max{d(Sz, Ty), d(fz, 52), d(gy, Ty), 3 (A(Sz, gy) + d(fz, Ty))}

= % max{d(m, y)v d(m, 1‘), d(y7 y)7 %(d(ma y) + d(l’, y))}

q

which further implies that d(z,y) = 0 and hence, x = y. Thus, y is a unique common
fixed point of f, g, S and T. U

Now, we give two examples to support our result.
2.2. Example. Let X = [0,00) be endowed with b—metric d(z,y) = |z —y|* =
(z —y)?, where k = 2. Define f, g, S and T on X by

fl@)=In(1+7), g(x) =1+ %),
S(x) =€ -1, T(zx)=e**—1.

Obviously, f(X) = T(X) = g(X) = S(X) = [0,00). We show that the pair {f, S} is
compatible: Let {z,} be a sequence in X such that for some t € X, lim d(fzn,,t) =0
n—o0
and lim d(Szn,t) = 0. That is, lim |fz, —t| = lim |Sz, —t| = 0. Since f and S are
n—oo n—o0 n—oo

continuous, we have

lim d(fSzn,Sfra) = (lim [fSzn —Sfrn|)* = (Ift - St))*

(ln(1—|—£)—65t+1)2.

But (|ln(1 + i) — Ot 4 1|)2 =0 <=t = 0, so the pair {f, S} is compatible. Similarly
{g,T} is compatible.



For each =,y € X, the mean value theorem gives

d(fz,gy) = (fr— gy)2 = [In(1 + 2) —In(1+ %)]2
T Y2 1 5
< (Z - g) < 2702(5337434)
1 S5z 4y\2 1
< (e =€) = 55pd(Sz, Ty)
< 4max{d(S:c Ty),d(fz,Sx),d(gy, Ty), ( (S, gy) + d(fz, Ty))},

2
1
where 25 < g < 1land k=2. Thus, f, g, S and T satisfy all conditions of Theorem 2.1.

Moreover 0 is the unique common fixed point of f, g, S and T.
2.3. Example. Let X = [0,1] be endowed with b—metric d(z,y) = |z —y|> =
(z— y)27 where k = 2. Define f, g, S and T on X by

f@)=(3)" 9@ =(3)"

S(x)=($)*, T(z)=(5)"
Obviously, f(X) C T(X) and g(X) C S(X). Furthermore, the pairs {f, S} and {g,T}
are compatible.
For each z,y € X, we have

d(fa,gy) = (Fz—gy)*=((5)° = () = (5 + D5 = (D
< (gp + (S Ty) = 18d(S2,Ty)
< Lwmax{d(Sz,Ty),d(fz, 5z),d(gy, Ty), ((S-'v gy) +d(fz,Ty))},

k
where 15 < ¢ <1and k= 2. Thus, f, g, S and T satisfy all conditions of Theorem 2.1.
Moreover 0 is the unique common fixed point of f, g, S and 7.

Now, we get the special cases of Theorem 2.1 as follows:
2.4. Corollary. Let (X,d) be a complete b—metric space and f,g : X — X two
mappings such that

L. gy) + d(fz, 0},

d(fz,gy) < k%maX{d(w,y),d(fx,w),d(gy,y), 5

holds for all z,y € X with 0 < ¢ < 1. Then, there exists a unique point y € X such that fy = gy = y.
Proof. If we take S =T = Ix ( identity mapping on X), then Theorem 2.1 gives that f

and g have a unique common fixed point.

2.5. Corollary. Let (X,d) be a complete b—metric space and S,T : X — X continuous

mappings such that

d(Sz,y) + d(z, Ty)

2 }7
holds for all z,y € X with 0 < ¢ < 1. Then, S and T have a unique common fixed point.
Proof. 1If we take f and g as identity maps on X, then Theorem 2.1 gives that .S and T
have a unique common fixed point.
2.6. Corollary. Let (X,d) be a complete b—metric space and f : X — X a mapping

such that
d(f, fy) < & max{d(z,y), d(fz, ), d(fy, ), 3 (d(z, fo) + d(f, )},

holds for all x,y € X, with 0 < ¢ < 1. Then f has a unique fixed point in X.
Proof. Take S and T as identity maps on X and f = g and then apply Theorem 2.1.

d(z,y) < gmax{d(Sz, Ty),d(z, Sz), d(y, Ty),
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2.7. Theorem. Let {f, S} and{g,T} be compatible self mappings on a complete
b—metric space (X, d) satisfying

(2.8)
d(fz,gy) < ki(ald(S%Ty)Jr@d(fw,Ty)+a3d(5$7gy)+a4d(fw7Sw)+a5d(gy,Ty)),

for all z,y € X, where a; > 0 (i = 1,2,3,4,5) are real constants with a1 + aas + Bas +
as+as < 1, where a+ 3 =2, for a, f € NU{0}. If f(X) C T(X) and g(X) C S(X) and
S and T are continuous, then f, g, S and T have a unique common fixed point.

Proof.  Let zo in X. Since f(X) C T(X), Choose z1,x2 € X such that Tz; = fzo, and
Sxzo = gx1. This can be done as f(X) C T(X) and g(X) C S(X). In general, xon+1 € X
is chosen such that Tx2n,+1 = fr2, and xap+2 € X such that Szont2 = gront1; n =
07 1,2, tec Denote Yan = T.’B2n+1 = fIIIQn, and Yan4+1 = S:I'Qn+2 = gT2n+1, fOI‘ all n 2 0
Now, we show that {y»} is a Cauchy sequence. For this, consider

d(y2n, yon+1) = d(f2n, gT2n+1)

(ald(Sl’Qn, Txont1) + a2d(fron, Tront1) + asd(Sx2n, gTon+1)
4d(fxon, Sxon) + asd(grant1, TTant1))
(

a1d(Y2n—1,Y2n) + a2d(Y2n, y2n) + a3d(Y2n—1, Y2n+1)

?g\ﬁgw\y

4d(Y2n, Yon—1) + asd(Yon+1,Y2n))

Q

+
<

(a1d(y2n—1,Y2n) + kazd(y2n—1,Y2n) + kasd(yz2n, Y2n+t1)

=l

+ aad(Yon, Y2n—1) + asd(Y2n+1, Y2n))-

Hence,
1
d(y2n, Yont1) < F(ald(y2n717y2n) + kasd(y2n—1, Yan) + kazd(yan, Yont1) +
+asd(Yon, Yoan—1) + asd(Yz2n, Y2nt1))
1
(2.9) < (a1d(y2n—1,y2n) + azd(Yan—1,Y2n)

L3
+  a3d(Yan, Yont1) + aad(Yon, Yan—1) + asd(Yzn, Y2n+1))-

Now, we prove that d(yan,y2n+1) < d(yan—1,%y2n), for each n € N. If d(yon—1,%2n) <
d(y2n, Y2n+1), for some n € N then from the above inequality we have

1
d(yan, yont+1) < g(md(yzn, Yon+1) + 2a3d(y2n, Y2n+1) + 64d(Y2n, Y2n+1) + a5d(Y2n, Y2n+1))
1
= 13 (a1 + 2a3 + a4 + as5)d(Y2n, Y2n+1)
< d(y2n, Y2n+1),

a contradiction. So, we have d(y2n, Y2n+1) < d(Y2n—1,Y2n), for each n € N. Thus

1
(2.10)  d(yzn,y2nt+1) < ﬁ(m +2a3 + a4 + as)d(Y2n—1,Yon)-
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Also, we have

d(Y2n, yon—1) = d(fT2n, gTan—1)

(a1d(Sz2n, Txon—1) + a2d(fxon, TTon—1) + a3d(Sx2n, gTon—1)
4d(fxon, STon) + asd(gT2n—1,TT2n—1))

k%(ald(yM—h Yan—2) + a2d(Yan, Yon—2) + azd(yY2n—1, Y2n—1)

+ asd(y2n, Y2n—1) + asd(y2n—1,y2n—2))

< —(a1d(yen—1,Y2n—2) + kazd(y2n, y2n—1) + kazd(y2n—1, y2n—2)
+ aad(yzn, yan—1) + asd(Yan—1,Y2n—2)).

Hence,

1
(2.11)d(y2n, y2n-1) < E(ald(y2nfl7y2n72)+a2d(y2nyy2n—l)

+  a2d(Yan—1,Y2n—2) + a1d(Yon, Y2n—1) + asd(Yon—1, Y2n—2)).
Similarly, if d(y2n—1,Y2n—2) < d(y2n, Y2n—1), for some n € N then from 2.11 we obtain
1
d(y2n, yan—1) < ﬁ(ald(y%m Yon—1) + 2a2d(Y2n, Y2n—1) + aad(Yon, Y2n—1) + asd(Yan, Y2n—1))
1
< E(al + 2a2 + a4 + a5)d(Y2n, Y2n—1)
< d(y2n7 y2’ﬂ*1)7
a contradiction. So, we have d(yan, y2n—-1) < d(y2n—1,y2n—2) for each n € N. Now from
2.11 we get
1
k3
Now, from 2.10 and 2.12 we have
d(ynvynfl) < Ad(ynflayvﬂwQ)a n =2,
where \ = max{ ¢ t2eafaates a1f2astaitas} Ag k> 1,50 A € (0,1). Now for n > 2,

we have

(2.13)  d(yn,yn—1) < ... < X" d(y1,m0).

(2.12)  d(yz2n,y2n—1) < —=(a1 + 2a2 + as + as)d(Y2n—1, Y2n—2)-

For n > m, we have

A(Yn, ym) < kd(Ym, Ym+1) + k2d(ym+17ym+2) +...+ k"im*ld(ynfl, Yn)-
Hence from 2.13 and kX < 1, we have

A(Yn, ym) < (X + BN 4 4 BTN TN d(y, o)

<IN L+ KX+ (BA)? + -+ ]d(y1, yo)
EA™

< d
S T d )
k™

= 1_k>\d(y1,yo)—>0, as m — oo.

So {yn} is a Cauchy sequence. Let y € X be such that lim fxo, = lm Txo,41 =
n— o0 n—r0o0

lim gzony1 = lim Szani2 = y. Since S is continuous, so lim S%zoni2 = Sy and
n— o0 n—oo n—oo



622

lim S fz2, = Sy. Using compatibility of a pair {f, S}, we have lim d(fSzn,Sfz,) =0.
n—oo n—r00

So, by Lemma 1.10, we obtain lim fSx2, = Sy. From 2.8, we have
n— oo

d(fSxan, grant1) < (ald(52$2n, Txont1) + a2d(fSxon, TTons1) + a3d(521’2n, gTon+1)

+

7zl

4d(fSzan, 52$2n) + asd(gzan+t1, TTont1)).

S

Taking the upper limit as n — co, and using Lemma 1.9 we get

d(Sy,y)

k2

1
Kkt

1
71 (K a1d(Sy,y) + K a2d(Sy, y) + K asd(Sy, )

1
= ﬁ(al + a2 + a3)d(Sy, y)
(a1 + a2 + a3 + as + as)
k2

IN

(k*a1d(Sy,y) + k*a2d(Sy, y) + k*asd(Sy,y) + k*asd(Sy, Sy) + k*asd(y,y))

IN

< d(Sy,y).

Therefore, d(Sy,y) < (a1 + a2 + as + as + a5)d(Sy, y). As a1 + a2 + a3+ as +as < 1, so
Sy =y.
Similarly, using continuouty of T, we obtain that lim T2zg,+1 = Ty and lim Tgzenii =
—00 n—oo

Ty. Since g and T are compatible, lim,— o d(gT%n, Tgzs) = 0, so by Lemma 1.10, we
have lim, oo gTx2, = Ty.
From 2.8, it follows that

1
d(fron, gTons1) < ﬁ(ald(stny T?22n+41) + a2d(fran, T?2n41) + azd(Sw2n, gTT2011)
+ aad(f22n, Ston) + asd(gTx2n+1, T 22n41)).

Taking upper limit as n — oo and using Lemma 1.9 we get

d(y, T 1
@Ty) < (P ad(y, Ty) + Kaxd(y, Ty) + K asd(y, Ty) + k*axd(y, y) + kK asd(Ty, Ty)
1
= jzlar+ax+as)d(y, Ty)
(a1 + a2 + as + a4 + as)

<

2 d(y, Ty),

that is, d(y, Ty) < (a1 + a2 + a3+ asa + as)d(y, Ty). Therefore, a1 + a2 +az+as+as < 1
implies that Ty = y. Again from 2.8, it follows that

1
d(fy, grant1) < ﬁ(ald(sy, Twont1) + a2d(fy, Txant1) + a3d(Sy, gTani1)
+ a4d(fy, Sy) + asd(grant1, TTant1)).

Taking upper limit as n — oo and using Sy =y and Ty = y, we get

d 1
Ups) < Laid(Sy,9) + Fazd(Fy,9) + Kasd(Sy, ) + Kasd(fy,9) + Fasd(y,y)

k2 -
< al+a2+zz+a4+a5d(fy,y)-

Therefore, d(fy, y) < (a1+az+asz+astas)d(fy,y). As artaztaztastas < 1,50 fy =y.
Again, from 2.8 we have d(fy, gy) = 0, hence fy = gy. Thus, fy=gy=Sy=Ty =y.
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If there exists another common fixed point x in X for f, g, S and T, then
d(z,y) = d(fz, gy)

1
ﬁ(ald(Sw, Sy) + a2d(fx, Ty) + a3d(Sz, gy) + asd(fz, Sz) + asd(gy, Ty))

1
= (e + a2 +a3)d(z,y)
< (a1 + a2 + as + a4 + as)d(z, y),

IN

Therefore, d(z,y) < (a1 + a2 + a3 + as + as)d(z,y). As a1 + a2 + a3+ as + as < 1, so
d(z,y) =0, i.e., z = y. Therefore y is a unique common fixed point of f, g, S and 7. O
Acknowledgement: The authors are grateful to the editor and referees for their
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