E-ISSN:2602-277X

International Journal of Chemistry and Technology

http://dergipark.org.tr/ijct

Research Article

Annual Constant International Journal of Constant on Yorkmology

Investigation of theoretical properties of 1-Acetyl-3-(*p*-methylbenzyl)-4-(3-methyl-2-thienylmethyleneamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one molecule

Gül KOTAN^{1*}, Bedrettin SAVAŞ¹, Haydar YÜKSEK²

🕕 at end page

¹Kars Vocational School, Kafkas University, Kars, 36100, Turkey

²Department of Chemistry, Faculty of Science and Letters, Kafkas University, Kars, 36100, Turkey

Received: 24 October 2018; Revised: 25 December 2018; Accepted: 09 January 2019

*Corresponding author e-mail: gulkemer@hotmail.com

Citation: Kotan, G.; Savaş, B.; Yüksek, H. Int. J. Chem. Technol. 2019, 3 (1), 1-10.

ABSTRACT

In this study, firstly, 1-acetyl-3-(p-methylbenzyl)-4-(3methyl-2-thienylmethyleneamino)-4,5-dihydro-1H-1,2,4-triazol -5-one molecule was optimized by using the B3LYP/DFT631G (d) and HF/631G (d) basis sets. Then, the veda4f program was used in defining of IR data theoretically. IR (infrared) vibrational frequencie values with two different basis sets of molecule was calculated in gas phase and multiplied by adjustment scale factors. Infrared spectra of molecule according to these values obtained were formed. Furthermore, ¹H-NMR and ¹³C-NMR isotropic shift values were calculated by GIAO method. Experimental and theoretical values of analyzed molecule were inserted into the graphic according to equation of $\delta \exp = a + b$. δ calc. The standard error values were found via SigmaPlot program with regression coefficient of a and b constants. Finally, bond angles, bond lengths, mulliken atomic charges, HOMO-LUMO energy, ELUMO-EHOMO energy gap (ΔE), electronegativity (χ), electron affinity (A), global hardness (η), softness (σ), ionization potential (I), total energy of the molecule, dipole moment and thermodynamic properties were calculated with Gaussian 09W program.

Keywords: Gaussian G09W, Veda4f, HOMO-LUMO, GIAO

1. INTRODUCTION

Schiff bases are of the fundamental compounds for organic chemistry. These compounds include -C=N-(azomethine group). They are, generally, synthesized by condensation of active -C=O- and -NH₂ containing compounds.¹ Their derivatives of 1,2,4-triazoles have

1-Asetil-3-(*p*-metilbenzil)-4-(3-metil-2thienilmetilenamino)-4,5-dihidro-1*H*-1,2,4triazol-5-on molekülünün teorik özelliklerinin incelenmesi

ÖZ

Bu çalışmada, öncelikle, 1-Asetil-3-(p-metilbenzil)-4-(3metil-2-thienilmetilenamino)-4,5-dihidro-1H-1,2,4-triazol-5-on molekülü B3LYP/DFT631G (d) and HF/631G (d) temel setleri kullanılarak optimize edilmiştir. Sonra, Veda 4f programı teorik olarak IR verilerini belirlemede kullanılmıştır. Molekülün iki farklı temel seti ile IR (infrared) titreşim frekans değerleri gaz fazında hesaplanmış ve uygun skala faktörleri ile çarpılmıştır. Elde edilen bu değerlere göre molekülün infrared spektrumları çizilmiştir. Ayrıca, ¹H- ve ¹³C-NMR isotropik kayma değerleri GIAO metoduna ile hesaplanmıştır. Analiz edilen molekülün deneysel ve teorik değerleri $\delta \exp = a + b$. δ calc. eşitliğine göre grafiğe geçirilmiştir. Standart hata değerleri a ve b sabitlerinin regresyon katsayısı ile Sigmaplot programı kullanılarak bulunmuştur. Son olarak, bağ açıları, bağ uzunlukları, mulliken atomik yükleri, HOMO-LUMO enerjisi, E_{LUMO}-E_{HOMO} kapasitesi (Δ Eg), elektronegatiflik (γ), elektron yoğunluğu (A), global sertlik (η), yumuşaklık (σ), iyonizasyon potansiyeli (I), molekülün toplam enerjisi, dipol moment ve termodinamik özellikleri Gaussian 09W programı ile hesaplanmıştır.

Anahtar Kelimeler: Gaussian G09W, Veda4f, HOMO-LUMO, GIAO.

also been found to possess pharmacological activities.²⁻⁵ When heteroatoms such as sulfur, oxygen, nitrogen are added the structure of the Schiff base compounds, the biological activity increases.⁶ The most known biological activities of them were anti-viral activity,⁷ anti-fungal,⁸ anti-oxidant,⁹ anti-inflammmatory,¹⁰ anti-bacterial,¹¹ anti-tumor,¹² anti-cancer,^{13,14} trypano-

somal,¹⁵ anti-proliferative ¹⁶ and antibiotics.¹⁷ In the past years, by increases and trends in development of computational chemistry, theoretically properties of Schiff bases have been investigated. Quantum chemical calculations have been used commonly to theoretically estimate the structure, electronic properties, thermodynamics, spectroscopy of molecular systems. The aim of this study is to compare the calculated theoretical values with experimental values and to determine which of the DFT and HF methods close to experimental values.

2. MATERIALS AND METHODS

2.1. Computational Details

The quantum chemical calculations provide support for spectroscopic studies and experimental structers.¹ Firstly, the density functional theoretical (DFT) and Hatree Fock (HF) calculations of compounds were optimized at the Becke-Lee-Parr hybrid exchange correlation three-parameter functional (B3LYP) level with standard 6-31G(d) basis set.²⁴ All calculations reported in this work were carried out with the Gaussian 09 program.²⁵ Then, from the most stable structure of the optimized molecule, electronegativity (χ), mulliken charges, the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), bond lengths, electron affinity (A), global hardness (η), softness (σ), ionization potential (I), chemical potential (Pi), Nucleophilic index (IP), electrophilic index(ω), total energy of the molecule, thermodynamics properties (thermal energies (E), thermal capacity (CV), entropy (S), dipole moments, E_{LUMO} - E_{HOMO} energy gap (ΔEg) were calculated with HF/631G (d) and DFT631G (d) basis sets. Moreover, IR data were calculated theoretically using the veda4f program.²⁶ Experimental data were obtained from the literature.²⁷ The calculated and the experimental data were compared with accuration of values found by regression analysis. Theoretical IR data are multiplied with chosen scala factors.²⁸ The data obtained according to DFT and HF method are formed using theoretical infrared spectrum. Finally, ¹H-NMR and ¹³C-NMR isotropic shift values were calculated with the method of gauge including atomic orbital GIAO²⁵ using the program package Gaussian G09. Experimental and theoretical parameters of investigated molecules were inserted into the graphic according to the equitation of δ exp = a + b. δ calc. The standard error and regression coefficient (a, b) were found by SigmaPlot program.

2.1.1. Optimized geometries

1-Acetyl-3-(*p*-methylbenzyl)-4-(3-methyl-2thienylmet- hyleneamino)-4,5-dihydro-1*H*-1,2,4-triazol-5-one was optimized by means of DFT(B3LYP)/HF

methods with 6-31G(d) basis set. The chemical formula

E-ISSN:2602-277X

and the optimized geometric structure of molecule is shown in Figures 1 and 2.

Figure 1. The chemical formula of the molecule.

Figure 2. The optimized structure of the molecule.

2.2. The **R**² values of the compound

The experimental and calculated results are summarized in Table 1. A linear correlation in the experimental and theoretical values (proton and carbon chemical shifts ratios) was observed and shown in Figure 3. There is such a relationship between R-values of target compound: DFT 6-31G(d) DMSO ¹H: 0.9978, ¹³C: 0,9974, HF 6-31G(d)DMSO: ¹H: 0,8212 ¹³C: 0,8387 (Table 2).

2.3. FT-IR study of molecule

Theoretical IR data were calculated from veda4f programme, and scala vibration values were obtained. Theoretical IR data were multiplied with appropriate scala factors respectively 0.9613, 0.8929 for DFT/ HF 631G(d) basis sets. The data was found positively. The structure was stable according to the obtained result. IR spectra were drawn with data obtained according to HF and DFT methods. Theoretical IR values were compared with experimental IR values and listed in Table 3.

E-ISSN:2602-277X

No	Exp.	DFT/dmso	Differ/DFT	HF/dmso	Differ/HF	No	Exp.	DFT/dmso	Differ/DFT	HF/dmso	Differ/HF
C1	148,59	154,34	-5,75	146,83	1,76	H19	9,73	10,34	-0,61	9,57	0,16
C2	149,21	156,68	-7,47	150,19	-0,98	H20	6,90	7,35	-0,45	6,84	0,06
C3	149,47	148,59	0,88	146,09	3,38	H21	7,42	7,73	-0,31	7,45	-0,03
C4	143,88	143,55	0,33	126,60	17,28	H22	4,05	4,37	-0,32	3,48	0,57
C5	148,87	150,89	-2,02	143,76	5,11	H23	4,05	4,27	-0,22	3,60	0,45
C6	132,07	133,76	-1,69	123,56	8,51	H24	7,11	7,59	-0,48	7,58	-0,47
C7	135,41	140,55	-5,14	133,51	1,90	H25	7,32	7,62	-0,30	7,11	0,21
C8	31,55	43,35	-11,80	27,56	3,99	H26	7,32	7,67	-0,35	7,34	-0,02
C9	126,25	133,66	-7,41	126,40	-0,15	H27	7,11	7,70	-0,59	7,58	-0,47
C10	131,02	134,25	-3,23	127,38	3,64	H28	2,29	2,93	-0,64	2,14	0,15
C11	129,25	132,85	-3,60	124,78	4,47	H29	2,29	2,48	-0,19	1,69	0,60
C12	137,04	141,85	-4,81	134,32	2,72	H30	2,29	2,75	-0,46	2,19	0,10
C13	129,36	132,97	-3,61	125,52	3,84	H31	2,37	2,69	-0,32	2,07	0,30
C14	129,79	133,96	-4,17	126,61	3,18	H32	2,37	2,76	-0,39	2,04	0,33
C15	21,04	31,80	-10,76	18,23	2,81	H33	2,37	2,75	-0,38	1,99	0,38
C16	14,13	24,96	-10,83	12,46	1,67	H34	2,62	3,03	-0,41	2,35	0,27
C17	166,46	167,50	-1,04	160,67	5,79	H35	2,62	3,05	-0,43	2,36	0,26
C18	23,55	35,12	-11,57	22,90	0,65	H36	2,62	2,31	0,31	1,82	0,80

Table 1. ¹³C and ¹H-NMR (DMSO) isotropic chemical shifts (δ/ppm)

Table 2. The correlation values for chemical shifts of the molecule

		¹³ C				1	Н	
	R	S. error	а	b	R	S. error	а	b
DFT	0.9974	3,0761	2,6820	0,01859	0,9978	2,6352	2,1076	0,0158
HF	0,8387	1,5023	0,9695	0,15994	0,8212	1,5816	0,9775	0,1756

Figure 3. The correlation graphs for B3LYP/HF 631G(d) chemical shifts of the molecule.

2.4. Molecular geometry

The molecular geometric parameters such as bond lengths, bond angles, Mulliken atomic charges were calculated by using the HF and DFT/B3LYP methods with 6-31G(d) basis sets, dipole moments, total energies, and the obtained data are precondition in Tables 4-8. According to these results, the N37-N38, N37-C1, C2-O41, N38-C2, N39-C1, N39-C2 bond lengths in the triazole ring are calculated with DFT/HF 6-31G(d) methods 1.39/1.38, 1.29/1.26,

1.22/1.19, 1.39/1.37, 1.39/1.38, 1.40/1.37 Å (Table 4). In the literature, the N=C, N-N, C=O bond lengths are measured as 1.280, 1.404, 1.212 Å.^{29, 30} The calculated C9-C10, C10-C11, C11-C12, C12-C13, C13-C14 bond lengths of benzene rings in this compound are [1.39/1.38 Å], [1.39/1.38 Å], [1.40/1.38 Å], [1.39/1.39 Å] and [1.39/1.38 Å], respectively. The Ar(C)-Ar(C) bond lengths of benzene rings are generally observed at 1.34-1.53 Å in the literatüre.^{31,32} The calculated C-H bond lengths of the compound are about 1.09, and the C-H bond lengths in the literature is 1.09 Å.^{31,32} Also, the calculated N38-C2 bond length in 1,2,4-triazole-5-one ring is [1.39/1.37 Å]. It has been recorded to have bond

E-ISSN:2602-277X

length between single bonded N-N and double bonded N=N due to resonance. The same bond length in the literature is recorded between 1.29-1.47 Å.^{31,32} When compared with the bond lengths in the literature, the results show that the molecular structure is very well. The Mulliken atomic charges³³ were calculated by using the Hartree Fock (HF) and DFT/B3LYP methods with 6-

Table 3	Significant	vibrational	frequencies	(cm^{-1})
I ubic of	Significant	viorational	nequeneres	(em)

31G(d) basis sets. The electronegative oxygen (O) and nitrogen (N) atoms have negative atomic charge values. The carbon atoms surrounded by electronegative atoms have positive atomic charge values. The C1 atom surrounded by two electronegative atoms (N37, N39) and C2 atom which is surrounded by three electronegative atoms (N38, N39, O41) have the highest positive charges values. All hydrogen atoms of the compound have positive atomic charge values (Table 6).

Vibration Types	scaled dft	scaled hf	Vibration Types	scaled	scaled
				dft	hf
τ CCCN(19), τ NCCN(15), τ CNNC(39)	10	4	δ HCH(11), τ HCCC(51), τ CCCC(10)	835	854
τ HCCC(70)	15	7	δ HCH(21), τ HCCN(59)	845	887
τ CCCC(17), τ CCNN(31), τ NCCN(29)	21	18	$v NN(12), v NC(15), \delta NNC(19)$	855	892
δ CCN(41), δ CNN(30), δ CCC(12)	28	24	$v NN(27), \delta HNN(10), \tau HCCN(28)$	960	1005
τ HCCN(68), τ CNNC(17)	37	25	$v CC(16), \delta HCS(34), \delta HCC(31)$	976	1012
$\tau \text{CNCN}(20), \tau \text{CCCC}(14)$	40	34	$v CC(11), v NC(20), v NN(16), \delta CNN(15)$	977	1016
$\tau \text{CNNC}(11), \tau \text{CCCN}(17), \tau \text{CNNC}(24)$	50	53	0 HCS(13), 0 HCC(14), 0 CCC(13)	980	1022
δ CNN(12), δ CCC(17), δ NNC(22)	/1	00 97	v NC(39)	1011	1029
0 CCN(10), 0 CCC(19)	11	8/	V INN(22), O CININ(24)	1022	1038
$\sigma CCC(11), \tau CCCC(15), \tau NNCN(11)$	90	108	O HNN(05)	1024	1048
$\tau UCCN(12), \tau UCCC(19), \tau NCCN(50)$	120	123	1 HCC(02)	1034	1049
$\delta CCN(28), \delta CCC(24)$	133	145	v CC(12), 0 HCS(14), 0 HCC(10), 0 HCH(25)	1040	1052
$\tau CCCC(10) = \tau CCNN(20) = \tau SCCC(21)$	134	107	δ HCH(56)	1005	1071
$\delta OCN(18) = \delta CNN(10) = \delta NNC(13) = \delta CCC(15)$	145	1/4	$v CC(16) = NC(12) - \delta HCH(12)$	1075	1080
$\delta CCC(24)$	103	202	δ HCH(77) τ HCCN(22)	1111	1000
τ HNNC(59) τ ONNC(10)	200	202	$v CC(25) = \delta HCH(19)$	1120	1105
$\tau CCC(17)$, $\tau CCNN(12)$, $\tau SCCC(49)$	219	210	v CC(25), 0 HeII(17)	112)	1110
$v CC(21) \delta SCC(29)$	230	215	$v OC(10), v CC(10) = \delta CNN(27) w NC(21)$	11/7	140
$v \operatorname{NC}(12) = \delta \operatorname{OCN}(37) = \delta \operatorname{NNC}(10) = \delta \operatorname{CCN}(13)$	230	250	$v SC(44) \delta SCC(26)$	1147	1146
$v NN(10) v CC(21) \delta CNN(29)$	252	256	τ HCCS(82) τ SCCC(10)	1152	1155
τ HCCS(15), τ CCCN(30), τ SCCC(10)	305	303	$v CC(12) \delta HCS(10) \delta CCC(17) \tau HCCC(17)$	1177	1178
τ HNNC(12) τ NCNN(54) τ CNNC(11)	312	304	τ HCNN(93)	1179	1189
v SC(22), δ CCC(17)	328	327	δ HCH(12), δ NNC(15), τ HCCN(36)	1201	1197
$v CC(10), v SC(14), \delta CCC(24), \delta SCC(16)$	337	349	$v CC(10)$, $\tau HCCC(35)$	1236	1203
τ HCCS(80)	358	379	δ HCH(11), τ HCCC(51), τ CCCC(10)	1244	1210
$\tau ONNC(81)$	386	382	δ HCH(21), τ HCCN(59)	1265	1254
$v NN(18), \delta NNC(10)$	397	405	$v NN(12), v NC(15), \delta NNC(19)$	1269	1256
$v OC(10), v NC(21), v CC(10), \delta CNN(27)$	407	429	$v NN(27), \delta HNN(10), \tau HCCN(28)$	1273	1265
v SC(44), δ SCC(26)	428	431	v CC(12), δ HCS(10),δ CCC(17), τ HCCC(17)	1280	1282
τ HCCS(82), τ SCCC(10)	432	434	τ HCNN(93)	1251	1298
ν CC(12), δ HCS(10), δ CCC(17), τ HCCC(17)	446	449	δ HCH(12), δ NNC(15), τ HCCN(36)	1313	1326
τ HCNN(93)	453	461	$v CC(10), \tau HCCC(35)$	1331	1368
δ HCH(12), δ NNC(15), τ HCCN(36)	458	469	δ HCH(11), τ HCCC(51), τ CCCC(10)	1352	1395
ν CC(10), τ HCCC(35)	479	484	τ HCCN(22)	1377	1400
δ HCH(11), τ HCCC(51), τ CCCC(10)	497	493	δ HCH(24), τ HCCC(28)	1388	1414
δ HCH(21), τ HCCN(59)	512	522	δ HCH(58), τ HCCC(14)	1415	1437
ν NN(12), ν NC(15), δ NNC(19)	528	543	δ HCH(75), τ HCCC(22)	1420	1441
ν NN(27), δ HNN(10), τ HCCN(28)	554	567	δ HCH(79), τ HCCC(22)	1423	1451
ν CC(16), δ HCS(34), δ HCC(31)	591	591	δ HCC(10), δ HCC(10)	1436	1453
ν CC(11), ν NC(20), ν NN(16), δ CNN(15)	601	601	δ HCH(38)	1448	1460
δ HCS(13), δ HCC(14), δ CCC(13)	608	617	ν CC(65), δ HCC(10)	1467	1488
v NC(39)	635	643	ν NC(11), δ HCN(17)	1469	1490
ν NN(22), δ CNN(24)	638	663	v NC(52)	1473	1495
δ HNN(65)	672	686	ν CC(53), δ HCC(10)	1555	1590
τ HCCC(62)	674	691	v OC(10)	1564	1590
ν CC(12), δ HCS(14),δ HCC(10), δ HCH(23)	678	701	v NC(10,)v OC(72)	1566	1610
ν CC(14), δ HCH(56)	695	717	v CH(83)	1570	1617
δ HCH(56)	699	734	v CH(92)	1591	1623
ν CC(16), ν NC(12), δ HCH(12)	707	742	v CH(100)	1593	1632
δ HCH(77), τ HCCN(22)	711	745	v CH(100)	1595	1679
ν CC(25), δ HCH(19)	726	760	v CH(82)	1612	1716
v SC(44), ð SCC(26)	745	774	v CH(92)	1754	1774
τ HCCS(82), τ SCCC(10)	751	776	v CH(54)	1760	1803
ν CC(12), δ HCS(10),δ CCC(17), τ HCCC(17)	771	792	v CH(50)	2941	2886
τ HCNN(93)	775	802	v CH(83)	3004	2951
δ HCH(12), δ NNC(15), τ HCCN(36)	792	806	v CH(92)	3016	2956
ν CC(10), τ HCCC(35)	793	835	v CH(100)	3056	3006

E-ISSN:2602-277X

Figure 4. Theoretical IR spectrums simulated with DFT/631G(d)(a) ,HF/ 631G(d)(b).

Table 4. Bond	legths (A^0) theoretical data	
Table 4. Bond	legths (A^0) theoretical data	

Bond Lengths	B3LYP	HF	Bond Lengths	B3LYP	HF
C(1)-C(8)	1,500	1,496	C(12)-C(15)	1,511	1,511
C(1)-N(37)	1,294	1,265	C(15)-H(28)	1,098	1,083
C(1)-N(39)	1,392	1,380	C(15)-H(29)	1,095	1,086
N(37)-N(38)	1,393	1,382	C(15)-H(30)	1,094	1,085
N(38)-C(2)	1,398	1,373	C(17)-O(42)	1,207	1,183
N(38)-C(17)	1,428	1,408	C(17)-C(18)	1,510	1,506
C(2)-N(39)	1,402	1,375	C(18)-H(34)	1,093	1,081
C(2)-O(41)	1,223	1,199	C(18)-H(35)	1,093	1,081
N(39)-N(40)	1,374	1,368	C(18)-H(36)	1,090	1,079
N(40)-C(3)	1,293	1,261	C(3)-H(19)	1,086	1,071
C(8)-H(22)	1,096	1,082	C(3)-C(4)	1,442	1,457
C(8)-H(23)	1,097	1,081	C(4)-C(5)	1,387	1,358
C(8)-C(9)	1,513	1,520	C(5)-C(6)	1,429	1,438
C(9)-C(10)	1,399	1,383	C(5)-C(16)	1,505	1,506
C(10)-H(24)	1,087	1,075	C(6)-H(20)	1,085	1,085
C(10)-C(11)	1,392	1,388	C(6)-C(7)	1,367	1,343
C(10)-H(25)	1,087	1,076	C(7)-H(21)	1,082	1,071
C(11)-C(12)	1,401	1,385	C(7)-S(43)	1,729	1,719
C(12)-C(13)	1,399	1,393	C(4)-S(43)	1,755	1,741
C(13)-H(26)	1,087	1,076	C(16)-H(31)	1,092	1,080
C(13)-C(14)	1,394	1,380	C(16)-H(32)	1,097	1,085
C(14)-H(27)	1,087	1,076	C(16)-H(33)	1,096	1,085

E-ISSN:2602-277X

bond angles	B3LYP	HF	bond angles	B3LYP	HF	
N(37)-C(1)-N(39)	111,89	111,65	C(12)-C(15)-H(29)	111,43	111,10	
N(37)-N(38)-C(2)	112,37	111,69	C(12)-C(15)-H(30)	111,42	111,15	
N(37)-N(38)-C(17)	119,03	119,29	H(28)-C(15)-H(29)	107,12	107,81	
C(17)-N(38)-C(2)	128,58	129,01	H(28)-C(15)-H(30)	107,35	107,85	
N(38)-C(2)-O(41)	129,81	129,35	H(29)-C(15)-H(30)	107,93	107,41	
O(41)-C(2)-N(39)	127,99	127,85	N(38)-C(2)-N(39)	102,18	102,79	
N(37)-C(1)-C(8)	126,34	124,46	N(38)-N(37)-C(1)	105,21	105,66	
N(39)-C(1)-C(8)	121,76	123,85	C(2)-N(39)-N(40)	130,57	130,07	
C(1)-C(8)-H(22)	107,90	106,26	C(1)-N(39)-N(40)	121,08	121,29	
C(1)-C(8)-H(23)	107,78	109,11	N(39)-N(40)-C(3)	118,94	119,69	
C(1)-C(8)-C(9)	113,96	112,53	N(40)-C(3)-H(19)	122,03	122,53	
H(22)-C(8)-H(23)	105,15	108,17	H(19)-C(3)-C(4)	118,17	117,65	
H(22)-C(8)-C(9)	110,75	110,31	C(3)-C(4)-C(5)	127,41	126,86	
H(23)-C(8)-C(9)	110,84	110,27	C(3)-C(4)-S(43)	120,97	121,21	
C(9)-C(10)-H(24)	119,62	119,88	C(4)-C(5)-C(6)	111,71	111,64	
C(9)-C(10)-C(11)	120,79	120,70	C(4)-C(5)-C(16)	125,96	127,17	
H(24)-C(10)-C(11)	119,58	119,41	H(31)-C(16)-H(32)	107,62	107,86	
C(10)-C(11)-H(25)	119,43	119,14	H(31)-C(16)-H(33)	107,63	107,75	
H(25)-C(11)-C(12)	119,46	119,74	H(32)-C(16)-H(33)	107,05	107,46	
C(10)-C(11)-C(12)	121,10	121,11	C(16)-C(5)-C(6)	122,32	121,17	
C(11)-C(12)-C(13)	117,88	117,94	C(5)-C(6)-C(7)	113,401	113,09	
C(12)-C(13)-H(26)	119,47	119,57	H(20)-C(6)-C(7)	123,46	123,82	
C(12)-C(13)-C(14)	121,08	121,09	C(6)-C(7)-S(43)	112,31	112,40	
H(26)-C(13)-C(14)	119,43	119,32	C(6)-C(7)-H(21)	127,73	127,31	
C(13)-C(14)-H(27)	119,54	119,68	H(21)-C(7)-S(43)	119,95	120,28	
H(27)-C(14)-C(9)	119,63	119,62	C(4)-S(43)-C(7)	90,97	90,93	
C(12)-C(15)-H(28)	111,35	111,31				

 Table 5. Bond angles (⁰) theoretical data

Table 6. The calculated mulliken charges data of the molecule

	DFT	HF		DFT	HF
C1	0,566	0,657	H23	0,187	0,225
C2	0,860	1,116	H24	0,125	0,219
C3	0,085	0,130	H25	0,123	0,198
C4	-0,230	-0,327	H26	0,122	0,200
C5	0,172	0,077	H27	0,124	0,225
C6	0,130	-0,183	H28	0,163	0,174
C7	-0,337	-0,407	H29	0,161	0,179
C8	-0,441	-0,405	H30	0,157	0,178
C9	0,184	0,003	H31	0,175	0,190
C10	-0,160	-0,212	H32	0,173	0,190
C11	-0,177	-0,232	H33	0,172	0,191
C12	0,181	0,042	H34	0,191	0,211
C13	-0,179	-0,219	H35	0,191	0,213
C14	-0,169	-0,205	H36	0,180	0,210
C15	-0,531	-0,508	N37	-0,310	-0,302
C16	-0,535	-0,514	N38	-0,445	-0,684
C17	0,579	0,753	N39	-0,437	-0,650
C18	-0,521	-0,571	N40	-0,318	-0,312
H19	0,218	0,290	O41	-0,542	-0,514
H20	0,144	0,214	O42	-0,421	-0,649
H21	0,180	0,240	S43	0,283	0,337
H22	0,187	0,232			

Table 7. The calculated dipole moments data of the molecule

Dipol Moment	B3LYP	HF
μ_{x}	0.4376	0.4753
$\mu_{\rm y}$	-2.9185	-3.3217
μ _z	2.1723	0.1502
μ_{Toplam}	3.6644	3.3589

E-ISSN:2602-277X

 Table 8. The calculated total energy data B3LYP/HF of the molecule

Enerji	B3LYP	HF
(a.u.)	-1464.3804	-1457.1220

2.5. Electronic properties of molecule

The HOMO-LUMO energy gap in compound is 4.21; 10.68 e.v. All these parameters such as global chemical potential (μ), global hardness (η), the electronegativity (χ), ionization potential (I), chemical potential (Pi), Nucleophilic index (IP), electrophilic index (ω) have been determined for the target compound using 6-31G (d) basis set (Table 9).

Figure 5. HOMO-LUMO energy gap.

E-ISSN:2602-277X

		Hatree	eV	kcal/mol	kJ/mol
	LUMO	0,07637	2,07808	47,9224	200,509
	HOMO	-0,31677	-8,61953	-198,774	-831,68
А	Electron affinity	-0,07637	-2,07808	-47,9224	-200,509
Ι	Ionization potential	0,31677	8,61953	198,774	831,68
ΔE	Energy gap	0,39314	10,6976	246,697	1032,19
χ	Electronegativity	0,1202	3,27073	75,4259	315,585
Pi	Chemical potential	-0,1202	-3,27073	-75,4259	-315,585
ω	Electrophilic index	0,001420026	0,03864	0,89107	3,72828
IP	Nucleophilic index	-0,02362771	-0,64293	-14,8265	-62,0346
S	Molecular softness	5,0872	138,428	3192,26	13356,6
η	Molecular hardness	0,19657	5,34881	123,348	516,095

Table 9. The electronic structure parameters of the molecule (HF 631G(d))

2.6. Investigation of thermodynamics properties of compound

Thermodynamic parameters are shown in Table 10. Thermodynamic parameters of molecule were calculated 233.044 K and 1 atm of pressure. Also, the standard thermodynamic functions of enthalpy H^0 , heat capacity CV^0 and entropy S^0 were obtained at the B3LYP/DFT/HF631G(d) level.

Rotational temperatures (Kelvin)	DFT	HF
A	0.01331	0.00948
В	0.00501	0.00772
С	0.00375	0.00477
Rotational constants (GHZ)		
А	0.27733	0.19759
В	0.10443	0.16088
	0.07804	0.09934
Thermal Energies E (kcal/mol)		
Translational	0.889	0.889
Rotational	0.889	0.889
Vibrational	223.632	239.054
Total	225.410	240.831
Thermal Capacity CV (cal/mol-K)		
Translational	2.981	2.981
Rotational	2.981	2.981
Vibrational	82.425	76.126
Total	88.386	82.088
Entropy S (cal/mol-K)		
Translational	43.487	43.487
Rotational	36.207	35.875
Vibrational	99.970	90.736
Total	179.664	170.098
Zero-point correction (Hartree/Particle)	0.334969	0.361125
Thermal correction to Energy	0.359213	0.383789
Thermal correction to Enthalpy	0.360157	0.384733
Thermal correction to Gibbs Free Energy	0.274793	0.303914
Sum of electronic and zero-point Energies	-1464.045482	-1456.760883
Sum of electronic and thermal Energies	-1464.021237	-1456.738219
Sum of electronic and thermal Enthalpies	-1464.020293	-1456.737275
Sum of electronic and thermal Free Energies	-1464.105658	- 1456.818094
Zero-point vibrational energy (Kcal/mol)	210.19598	226.60957

Table 10. The calculated thermodynamic parameters of the molecule

Kotan and co-workers

E-ISSN:2602-277X

The MEP of the molecule

The Electron Density of the molecule

The total density of the molecule

The Electrostatic Potential of the molecule

3. CONCLUSIONS

Spectroscopic parameters such as ¹³C and ¹H-NMR, IR and geometrical parameters were calculated by HF and DFT methods with the 6-31G(d) basis sets of the program package Gaussian G09W. These calculations were compared with the experimental findings. The chemical shifts in the calculations ¹³C/¹H-NMR and IR values were found that this data approximately fitted to the experimental data. Experimental and theoretical ¹³C and ¹H chemical shifts ratios between according to R^2 and a, b values linear a correlation were observed. In addition, Theoretical infrared vibration values were determined with Veda4f program and important results. Furthermore, total energy of the molecule, global hardness (η), bond lengths, softness (σ), LUMO-HOMO, E_{LUMO} - E_{HOMO} energy gap (ΔEg), mulliken charges, thermodynamics properties, dipole moments, ionization potential (I), electron affinity (A), electronegativity (χ) were calculated with B3LYP/ HF/DFT631G (d) basis sets.

Conflict of interest

Authors declare that there is no a conflict of interest with any person, institute, company, etc.

REFERENCES

1. Das, K.; Datta, A.; Nandi, S.; Mane, S.B.; Mondal, S.; Massera, C.; Sinha, C.; Hung, C.H.; Askun, T.; Çelikboyun, P.; Cantürk, Z.; Garribba, E.; Akitsu, T.; *Inorg.Chem. Front.* **2015**, 749-762.

2. Zahid, H.C.; Sajjad, H.S.; Moulay, H.Y.; Taibi, B.H. *Eur. J. Med. Chem.* **2010**, 45, 2739-274.

3. Balram, S.; Mahendra, S.R.; Rambabu, S.; Anil B.; Sanjay, S. *Eur. J. Med. Chem.* **2010**, 45, pp. 2938-2942.

4. Wang, B. L.; Shi, Y. X.; Ma, Y.; Liu, X. H.; Li, Y. H.; Song, H.B.; Li, B.J.; Li. Z. M. J. Agric. Food Chem. **2010**, 58, 5515-5522.

5. Hu, G. Q.; Wang, G. Q.; Duan, N. N.; Wen, X. Y.; Cao, T. Y.; Xie, S. Q.; Huang, W.L. *Acta Pharm. Sin. B.*, **2012**, 3, 312-317.

6. Young, D. W. *Heterocyclic Chemistry*, Frst ed., Longman group Ltd., London, 1975.

7. Kumar, K. S.; Ganguly, S.; Veerasamy, R.; De Clercq, E. *Eur. J. Med. Chem.* **2010**, 45 (11), 5474-5479.

8. Patel, R. V.; Park, S. W. *Eur.* J. Med. Chem. 2014, 71, 24-30.

9. Shanty, A. A.; Philip, J. E.; Sneha, E. J.; Kurup, M. R. P.; Balachandran, S.; Mohanan, P. V. *Bioorg. Chem.* **2017**, 70, 67-73.

10. Pontiki, E.; Hadjipavlou-Litina, D.; Chaviara, A. J. *Enzym. Inhib. Med. Chem.* **2008**, 23 (6), 1011-1017.

11. Mari, S. K.; Bantwal, S. H.; Nalilu, S. K. *Eur. J. Med. Chem.*, **2008**, 43, 309-314.

12. Boraei, A. T. A.; Gomaa, M. S.; Ashry, S. H.; Duerkop, A. *Eur. J. Med. Chem.*, **2017**, 125, 360-371.

13. Bensaber, S. M.; Allafe, H.; Ermeli, N. B.; Mohamed, S. B.; Zetrini, A. A.; Alsabri, S. G.; Erhuma, M.; Hermann, A.; Jaeda, M. I.; Gbaj, A. M. *Med. Chem. Res.* **2014**, 23 (12), 5120-5134.

14. Sinha, A., Banerjee, K., Banerjee, A., Das, S., Choudhuri, S. K. *J. Organomet. Chem.* **2014**, 772, 34-41.

15. Papadopoulou, M. V.; Bloomer, W. D.; Rosenzweig, H.S.; Chatelain, E.; Kaiser, M.; Wilki nson, S. R.; MaKenzie, C.; Ioset, J. R. J. Med. Chem. **2012**, 55, 5554-5565.

16. Li, Y. H.; Zhang, B.; Yang, H. K.; Li, Q.; Diao, P. C.; You, W. W.; Zhao, P. L. *Eur. J. Med. Chem.* **2017**, 125, 1098-1106.

17. Xia, Z. P.; Wang, X. D.; Wang, P. F.; Zhou, Y.; Zhang, J. W.; Zhang, L.; Zhou, J.; Zhou, S. S.; Ouyang, H.; Lin, X.Y.; Mustapa, M.; Reyinbaike, A. ; Zhu, H. L. *Eur. J. Med. Chem.*, **2014**, 80, 92-100.

18. Yüksek, H.; Gürsoy, Ö.; Çakmak, İ.; Alkan, M. *Magn. Reson. Chem.* **2005**, 43, 585-587.

19. Yüksek, H.; Çakmak, İ.; Sadi, S.; Alkan, M. Baykara, H. Int. J. Mol. Sci. 2005, 6, 219-229.

20. Yüksek, H.; Alkan, M.; Bahçeci, Ş.; Çakmak, İ.; Ocak, Z.; Baykara, H.; Aktaş, Ö.; Ağyel, E. *J. Mol. Struc.* **2008**, 873, 142-148.

21. Yüksek, H.; Alkan, M.; Çakmak, İ.; Ocak, Z.; Bahçeci, Ş.; Calapoğlu, M.; Elmastaş, M.; Kolomuç, A.; Aksu, H. *Int. J. Mol. Sci.* **2008**, 9, 12-32.

22. Gökçe, H.; Bahçeli, S.; Akyıldırım, O.; Yüksek, H.; Gürsoy-Kol, Ö. *Lett. Org. Chem.* **2013**, 10 (6), 395-441.

23. Gökçe, H.; Akyıldırım, O.; Bahçeli, S.; Yüksek, H.; Gürsoy-Kol, Ö. *J. Mol. Struc.* **2013**, 1056-1057, 273-284.

24. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X. et al. Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT. **2009**. 200.

25. Wolinski, K.; Hilton, J. F. Pulay, P. J. Am. Chem. Soc. **1990**, 112, 512.

26. Jamróz, M. H. Vibrational Energy Distribution Analysis: VEDA 4 program, Warsaw, 2004.

27. Gürsoy-Kol, Ö.; Yüksek, H.; İslamoğlu, F. *J. Chem. Soc. Pakistan* **2013**, 35(4), 1179-1190.

28. Merrick, J. P.; Moran, D.; Radom, L. J. Phys. Chem. **2007**, 111 (45), 11683-11700.

29. Ocak, N.; Çoruh, U.; Kahveci, B.; Şaşmaz, S.; Vazquez-Lopez, E. M.; Erdönmez, A. *Acta Cryst. Sec. E.* **2003**, 59(6), 750-752.

30. Ustabas, R.; Çoruh, U.; Sancak, K.; Ünver, Y.; Vazquez-Lopez, E.M. *Acta Cryst. Sec. E.* **2007**, 63, 2982-3051.

31. Fessenden, R. J.; Fessenden, J. S. Organic Chemistry, Third Edition, Brooks, Cole Publishing Company, California, 1986.

32. İkizler, A. A. Organik Kimyaya Giriş, Dördüncü Baskı, KTÜ Basımevi, Trabzon, Türkiye, 1996, 398 (in Turkish).

33. Mulliken, R S. J. Chem Phys. 1955, 23, 1833-1840.

ORCID

D <u>https://orcid.org/0000-0002-4507-9029</u> (G. Kotan)

ID <u>https://orcid.org/0000-0002-6620-5493</u> (B. Savaş)

D <u>https://orcid.org/0000-0003-1289-1800</u> (H. Yüksek)