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ABSTRACT: The invariance in the scores of student rating of instruction was studied across high and low achieving 

classrooms. Achievement levels were determined by the two criteria such as self-reported expected grades and end of 

semester grades. The data included 625 classrooms. The equality of (i) factorial structure, (ii) factor loadings, (iii) 

item intercepts, and (iv) error variances of the 7 item rating scale were studied across these groups. With respect to 

self-reported expected grades, high and low achieving classes produced invariant scale characteristics except strict 

invariance. On the other hand, with respect to end of semester grades, full equality in item intercepts and error 

variances were not achieved. It seems that comparing the rating results across the classrooms and courses 

independent of the achievement levels of the students may be misleading especially for the high-stake decisions since 

the origin of the scale is not the same across high and low achieving groups. 

Keywords: Student rating of instruction, invariance of student ratings, measurement equivalence, multi-group 

confirmatory factor analysis, validity of student ratings 

 

ÖZ: Bu çalışmada üniversite düzeyinde öğretimi değerlendirme anketi puanlarının üst ve alt başarı grupları 

arasındaki ölçme değişmezliği incelenmiştir. Başarı düzeyleri öğrencilerin not beklentileri ve dersin sene sonu başarı 

ortalaması şeklinde iki ölçüt ile belirlenmiştir. Çalışmanın verisi 625 dersten oluşmaktadır. Yedi maddelik anketin (i) 

faktör yapısı, (ii) faktör yükleri, (iii) madde ortalamaları ve (iv) hata varyanslarının değişmezliği iki başarı grubu 

arasında analiz edilmiştir. Öğrencilerin not beklentilerine göre, üst ve alt başarı grupları hata varyanslarının 

değişmezliği dışında değişmez ölçek özellikleri görülmüştür. Diğer yandan, sene sonu notlarına göre yapılan 

inceleme sonucunda, madde ortalamaları ve hata varyanslarında tam değişmezlik gözlemlenmemiştir. Çalışma 

sonuçları öğretim elemanı değerlendirme puanlarının sınıflar ve dersler arasında başarı düzeylerinden bağımsız 

olarak karşılaştırılmasının yanıltıcı sonuçlar doğurabileceğini göstermektedir. Üst ve alt başarı gruplarının ölçek 

başlangıç noktaları farklı olduğu için bu durum özellikle ciddi kararlar alınması aşamalarında daha önem 

kazanmaktadır. 

Anahtar Sözcükler: Öğretim elemanı değerlendirme anketi, puanların değişmezliği, ölçüm eşdeğerliği, çoklu grup 

faktör analizi, öğretim elemanı değerlendirme puanlarının geçerliği 

1. INTRODUCTION 

Student rating of instruction is a widely accepted approach in academic settings to elicit 

students’ opinions regarding the instructional effectiveness. The use of student rating of 

instruction dates back to 1920s (Remmers, 1928). Until 1960s, ratings were basically used by 

instructors to collect students’ opinions about the effectiveness of teaching, rather than 

providing institutional feedback for academic promotion. Starting in 1970s, student ratings 

became a critical instrument in higher education institutions for both formative and summative 
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assessment of instructors (Macfadyen et al., 2016; Morley, 2014). Although these ratings are 

basically used for monitoring instructional quality, they constitute an important source of 

information for high-stake decisions about the instructors such as promotion and granting tenure 

in the academic track (Ehie & Karathanos, 1994; Kulik, 2001; Nargundkar & Shrikhande, 

2014). In either cases, the student ratings are used for important decisions which require reliable 

and valid measurement results. In other word, scores obtained on student rating should not be 

contaminated by some extraneous factors such as students’ expectations and achievement levels 

in a particular course. Thus, in the present study, validity of student ratings was examined from 

the perspective of measurement invariance across achievement levels. 

1.1. Background 

The student ratings are generally interpreted in the same way across different courses and 

achievement strata by assuming that the rating results have the same scale characteristics which 

are independent of these factors. Even though student ratings tend to be reliable, they might not 

be explaining aspects of instructional quality in a valid way (Benton, Duchon, & Pallett, 2013; 

Morley, 2014; Zhao & Gallant, 2012). Thus, the questions about the results of students’ ratings 

are rather a serious validity issue. 

In general, it is suspected that students’ grades are somehow interfere with their ratings. 

The positive relationship between students’ expected and/or received grades and student ratings 

of instruction was reported in the literature (Harrison, Douglas, & Burdsal, 2004; Marsh & 

Roche, 1997; McKeachie, 1987; Maurer, 2006). The instructors can either receive high ratings 

from students by giving them high grades (Langbein, 2008; McPherson & Jewell, 2007) or 

students with low expected/received grades may discredit instructors with giving them lower 

ratings (Brockx, Spooren, & Mortelmans, 2011; Greenwald & Gillmore, 1997a; MacNell, 

Driscoll, & Hunt, 2015; Miles & House, 2015). On the other hand, instructors providing 

effective instruction may expect higher ratings from students (Marsh & Roche, 2000). Empirical 

studies provided contradictory results for these two situations. Some supported the relationships 

between easiness of the instruction and the rating results (Felton, Mitchell, & Stinson, 2004; 

Greenwald & Gillmore, 1997a), on the other hand some other studies reported correlation 

between learning and student ratings (Grammatikopoulos et. al., 2015). 

If student ratings are influenced by students’ grades and expected achievement level, the 

scores reflect construct-irrelevant variance beside the instructional quality (Benton & Cashin 

2012; Messick, 1989; Zhao & Gallant, 2012). Thus, evaluating the rating results without 

considering students’ achievement level creates a serious validity problem. Technically, for 

different achievement strata the rating results could produce different metrics which are not 

directly comparable. This is rather a problem of the invariance of the scale characteristics across 

different groups of students which is a requirement for a valid interpretation of the measurement 

results (Dimitrov, 2010). It can be achieved if the scale has the ability to measure identical 

constructs with the same structure across different groups (Schoot, Lugtig, & Hox, 2012). Thus, 

within this framework the instrument should function in the same way across the groups and the 

construct has the same meaning for the students who belong to different groups (Dimitrov, 

2010). In other words, the weakness in invariance means that the observed ratings, which have 

the same true score across the groups, are not equal to each other (Meredith & Millsap, 1992). 

Among various methodologies, multi-group confirmatory factor analysis that involves 

checking the equality of (i) factorial structure, (ii) factor loadings, (iii) item intercepts, and (iv) 

error variances across different groups can be considered as evidence for invariance (Byrne, 

2004; Jöreskog, 1971). In this particular method, equivalence of factorial structure indicates that 

the relationships between items and latent variables are the same (items are grouped in the same 

factors in all groups), but strengths of these relationships may vary across groups. Equality of 

factor loadings means that one-unit change in an item score corresponds to the same change in 
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factor scores when equivalency of factor loadings holds (Wu, Li, & Zumbo, 2007). If equality 

of item intercepts is not achieved in the scores, differences in the intercepts create scores on 

different metrics for the same behavior of the same instructor or course across the groups (Baas, 

De Dreu, & Nijstad, 2011). Only when strong invariance holds between different groups, ratings 

provided by students become group independent and reflect students’ true scores regarding 

instructional effectiveness (Wilberg, 2007). Finally, strict invariance indicates that whether 

student ratings function with different reliability levels across groups (Vandenberg & Lance, 

2000). These four requirements are named as configural, weak, strong, and strict invariance 

levels, respectively (Wu, Li, & Zumbo, 2007). 

The lack of invariance on student ratings of instruction between different learning levels 

may have some implications depending on the level of invariance. For instance, student ratings 

suffering from the lack of configural and weak invariance may hinder the interpretation of the 

scores across different groups, since the item contents are interpreted differently by the students 

who belong to different groups. Configural invariance provides evidence of similar 

conceptualization of instructional effectiveness, while weak invariance indicates students in all 

groups give the same level of importance for each item. Thus, within-group differences can be 

compared but direct comparison between groups is not possible since scales are not the same. 

Strong invariance is an indicator of the fact that the same standards are held by student in 

different groups (van de Vijver & Tanzer, 2004; Vandenberg & Lance, 2000). A student will 

give the same ratings for the same instructional performance, regardless of his or her group. 

Equivalence in the item intercepts allows researchers to compare observed rating scores and 

factor means without favoring any group to be compared. Invariant error variances indicate that 

scores from different groups can be compared with equal precision level (Lubke et al., 2003). 

Thus, degree of invariance for different learning groups is expected to yield information about 

the fairness of the student rating of instruction. 

In evaluating the student ratings results, testing the measurement invariance is often 

neglected and as a consequence, any decision based on rating results may likely arise the 

question of fairness including instructor’s rankings of academic performance (Wolbring, 2012). 

On the other hand, complete invariance provides evidence that students rated the instruction 

independent of their achievement level (Schmitt & Kuljanin, 2008; van de Vijver & Tanzer, 

2004; Wu, Li, & Zumbo, 2007). 

Thus, the purpose of the present study is to examine the invariance levels of student 

ratings of instruction across groups which are defined with respect to two criteria such as 

students' expected grades and their end of semester grades through four levels of invariance 

requirements such as, configural, weak, strong, and strict. Despite the various correlational 

research studies in the literature, no specific study about the invariance properties of the student 

ratings of instruction was carried out before. Whereas the degree of invariance for different 

learning groups is expected to yield information about the fairness of the student ratings of 

instruction. Moreover, the results of the study will provide evidence to deal with the actual 

mean differences across the groups defined by different levels of achievement. 

2. METHOD 

2.1. Sample 

The data were collected in a private university in Turkey. There are approximately 13000 

students in the university both in undergraduate and graduate levels. Student ratings are 

collected for each class at the end of each semester before the final grades are given. Total 

49099 forms which were filled out in 2119 classes were used in the present study.  
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In the data set, within the same course or classroom there could be dependence among the 

students’ rating results which may create inflated Type I error rate in the statistical analyses. In 

order to avoid inflation in the Type I error rate, the means obtained in the item level for each 

classroom were used as the unit of analysis. Although using aggregated data are reported to 

have both advantages and disadvantages, class-level data were used in this study since principal 

use of students is mainly at that level rather than student-level. Decisions, high-stake or not, 

regarding courses and instructors were made based on aggregated student ratings at class level. 

A random sample of 625 classrooms with total 9230 students were used in the data analysis. 

Descriptive of classes were given in the Table 1 below. 

Table 1: Descriptives of class-related variables  

Variables M SD Minimum Maximum 

CGPA 2.39 0.59 0 4 

Credit 3.26 0.70 2 5 

Contact hours 2.94 0.64 1 6 

     Grade Level  n % 

  freshman 214 34.20% 

  sophomore 154 24.60% 

  junior 126 20.20% 

  senior 131 21.00% 

  
2.2. Instrument 

The student rating of instruction scale used in the university was developed by the 

rector’s office for the purpose of evaluating instructional performance. The students are required 

to fill out the scale about the effectiveness of the instruction at the end of the semester. It is used 

in providing feedback to the instructors and promoting the academics in the respective academic 

programs. The items in the scale were selected from a domain of item pool reflecting various 

aspects of the instruction. The item pool included the items of various rating scales used before 

for the research purposes as well as for evaluating the instructional effectiveness by other higher 

education institutions. This scale has been used by the university for many years and routine 

analyses by the rector’s office is carried out after each administration. Ethics Committee of the 

university granted permission for use of student ratings after excluding all information that 

could be used to identify courses and/or instructors. 

There are 9 items in the rating scale. Among them, one item was related to the frequency 

of using English in the classroom since the language of the instruction is in English in this 

particular university. Another item was about the frequency of canceling the class during the 

semester. Obviously, these two items were not compatible with the rest of the scale and did not 

reflect the instructional effectiveness per se. Furthermore, a preliminary exploratory factor 

analysis indicted that these two items were grouped into a separate factor. Thus, the seven items 

given in Table 2 were used in the analyses. The items were rated on the Likert type agreement 

scale such as strongly disagree (1), disagree (2), neutral (3), agree (4), and strongly agree (5). 

The scale scores have the Cronbach’s alpha reliability of .97 in the whole group. 
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Table 2: Items in the student ratings form with their abbreviations 

Items Abbreviations 

Course objectives and expectations from students were clearly stated. expectations 

Interest was stimulated in the subject by instructor. interest 

Participation was promoted in class. participation  

Instructor helped develop higher-order thinking skills. thinking 

Mutual respect was held in class by instructor. respect 

Instructor was effective in teaching. effective 

Exams, assignments, and projects required higher-order thinking abilities. assessment 

As is seen from the Table 2 the items of the scale reflect clearness of instructional 

objectives, instructor’s efforts in promoting student-centered instructional activities, instructor-

student’s relationships and emphasize on promoting higher-order thinking skills in the 

classroom and evaluation processes. 

2.2. Groups Defined by Learning 

In the present study two criteria were used for the levels of achievement. The first 

criterion is the students’ perception about their learning level. This was assessed by students’ 

agreement with the statement “I learned a lot in this course” which is used in the student ratings 

of instruction scale. 

Based on the 33
rd

 and 66
th
 percentile scores, three groups were defined following 

suggestions made by Gelman and Park (2008). The bottom and the top groups were selected for 

this study to define low and high achieving groups. Three hundred and eight classrooms with 

the means below the 33
rd

 percentile score were named as low achieving and 317 classrooms 

with means above the 66
th
 percentile score were named as high achieving classrooms. 

The second criterion is the students’ end of semester grades. In the university, a criterion 

referenced scoring is used over 4.00. Similarly, 33
rd

 and 66
th
 percentile scores were used to 

divide the group into two. Two hundred sixty-seven classrooms which were above the 66
th
 

percentile scores were named as high achieving classrooms and 358 classrooms which were 

below the 33
rd

 percentile score were named as low achieving classrooms. 

The reason of using two learning indicators in the present study is the inconclusive results 

reported in the literature. Some researchers argued that self-reported variables are free from the 

contamination due to grading leniency (Cruse, 1987; Machina, 1987; Sailor, Worthen, & Shin, 

1997). On the other hand, Grimes (2002) and Kennedy, Lawton, and Plumlee (2002) argued that 

students’ learning level may not be effectively assessed by self-reported technique due to the 

inability of students to effectively assess their own learning. Pollio and Beck (2000) claimed 

that there is no evidence supporting the relationship between grades and learning but some other 

researchers reported a significant relationship between student ratings of instruction and 

students’ perception of success (Clayson, 2009). No matter which achievement criterion was 

considered, in general the correlations between students ratings and achievement measures were 

reported from low to moderate in previous research studies (Bowman, 2010; Cole & Gonyea, 

2010; Pascarella, Seifert, & Blaich, 2010). 

In the present study, the correlation coefficient between end of semester grades and self-

reported learning scores is small but significant (.189; p<.001). Also, almost 50% of the 

classrooms were differently grouped with respect to two criteria. As a result, the researchers 

decided to analyze the invariance of ratings with respect to these two criteria. 

Table 3 indicates the mean and standard deviation of the items used in the invariance 

analysis across two grouping criteria. 
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Table 3: Mean and standard deviations of student ratings for the grouping variables 

 Items 

Self-reported End of semester grades 

M (SD) M (SD) 

Low Achieving High Achieving Low Achieving High Achieving 

expectations 3.33 (0.47) 3.88 (0.53) 3.54 (0.49) 3.70 (0.34) 

interest 2.96 (0.62) 3.78 (0.52) 3.26 (0.67) 3.54 (0.49) 

participation  2.95 (0.62) 3.77 (0.46) 3.22 (0.70) 3.56 (0.44) 

thinking 3.01 (0.59) 3.78 (0.42) 3.28 (0.64) 3.55 (0.47) 

respect 3.57 (0.47) 3.92 (0.46) 3.71 (0.42) 3.81 (0.33) 

effective 3.07 (0.48) 3.82 (0.58) 3.35 (0.63) 3.60 (0.43) 

assessment 2.98 (0.55) 3.71 (0.47) 3.25 (0.59) 3.49 (0.50) 

Cronbach’s Alpha .96 .88 .97 .97 

As is seen in Table 3 there are differences in the means of the items across the groups 

compared. High achieving groups have statistically higher means in all items (p < .05).  

2.3. A Priori Analyses 

Before carrying out the invariance analyses, the multivariate normality was tested in the 

data set. The test conducted by Lisrel 8.54 (Jöreskog & Sörbom, 1996) indicated significant 

departures from normality in each of the four groups (χ
2
Low achieving=441.30, p<.001, χ

2
high 

achieving=4622.35, p<.001 for self-reported learning, and χ
2

low achieving=1330.76, p<.001, χ
2
high 

achieving=1054.77, p<.001 for end of semester grades). Since the assumption of multivariate 

normality was violated in the data set, for the assessment of goodness of fit, Satorra-Bentler χ2 

(S-Bχ2), a scaled Chi-square statistic for non-normality, was used in the confirmatory factor 

analyses (Bryant & Satorra, 2012; Satorra & Bentler, 1988; Satorra & Bentler, 2001). 

Parameters were estimated by Robust Maximum Likelihood method (Finney & DiStefano, 

2006). The other goodness-of-fit indexes were also used in the analyses with the fit criteria of 

below .05 for Robust Root Mean Square Error of Approximation (RMSEA) and Standardized 

Root Mean Square Residual (SRMR) and above .90 for Robust Comparative Fit Index (CFI), 

Goodness-of-Fit (GFI), and Non-normed fit index (NNFI) (Hu & Bentler, 1999). 

The confirmatory factor analysis was carried out to test if there was a unidimensional trait 

being measured in 7-item scale. S-Bχ2 was found to be statistically significant (S-

Bχ2(14)=49.75, p<.001), as expected due to its sensitivity to sample size. In this very first 

analysis other estimated fit indexes were .05 for RMSEA with the confidence band of 

[90%CI=.04;.08], .01 for SRMR, .99 for CFI, .95 for GFI, and .98 for NNFI. All factor loadings 

of the seven items were in between .81 and .96 and they were significant at .05 level. Taken 

together, these findings illustrate that the seven-item scale seemed to measure a unidimensional 

construct. 

The last a priori analysis was testing the equality of covariance matrices across the 

groups. (Jöreskog, 1971; Vandenberg & Lance, 2000). This is a test of the null hypothesis that 

covariance matrices are invariant across groups on which invariance analyses are conducted. If 

the hypothesis is rejected, the groups are non-equivalent with respect to the covariance matrices 

which makes the invariance analysis justifiable. In this analysis the significant results were 

obtained for both comparisons: F(28, 1143932.521)=279.357, p<.001 for the end of semester 

grades, and F(28, 1350140.913)= 1087.833, p<.001 for the self-reported learning. The analyses 

indicated that the covariance matrices were not equivalent across the groups. This result justifies 

the further invariance analyses in the data set. 
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2.4. Invariance Analyses 

Before studying the invariance, the unidimensional baseline model was tested across the 

groups constituted by two learning criteria. Then multiple-group confirmatory factor analysis 

was employed as the method of assessment of invariance (Byrne, 2004; Byrne, Shavelson, & 

Muthen, 1989). In this analysis the nested models are hierarchically compared by conducting a 

series of sequential hypothesis testing. Since there is non-normality in the data set, parameters 

were again estimated by the use of Robust Maximum Likelihood estimation with S-Bχ2 scaling 

method. Analyses were carried out using Lisrel 8.54 (Jöreskog & Sörbom, 1996). 

Analyses started with a baseline model including no constraint about invariance across 

groups and proceed with increasingly restrictive constraints on the baseline model. If new 

constraint produced a poorer fit as indicated by a significant change in S-Bχ2 between two 

models, then new invariance level was said not to be held. Thus, a non-significant change in S-

Bχ2 between two consecutive invariance levels justified the existence of invariance between 

two consecutive models. The measurement invariance was studied through the following steps: 

invariance of (i) factor patterns (configural), (ii) factor loadings (weak), (iii) intercepts (strong), 

and (iv) variances of residuals of observed variables (strict) (Dimitrov, 2010; Meredith, 1993; 

Schmitt & Kuljanin, 2008; Schoot, Lugtig, & Hox, 2012; Vandenberg & Lance, 2000; Wu, Li, 

& Zumbo, 2007). Configural invariance was checked by hypothesizing a baseline model which 

fits into all groups with no constraint in factor loadings and intercepts. All parameters were free 

to vary. Then factor loadings were fixed across groups for testing weak invariance. For setting 

the metric of the latent variable the loading of one of the items was fixed to 1 (Stark, 

Chernyshenko, & Drasgow, 2006). This item was selected through an iterative approach. The 

item which demonstrated the least invariance was selected and fixed to 1. For strong or scalar 

invariance, a new set of constraints into the model was added to fix item intercepts across 

groups. One of the factor intercepts was fixed to zero again for identification purposes. And 

finally, strict invariance was tested by fixing error variances across groups. When invariance is 

not observed at any level, partial invariance was sought for by freeing 20% of the fixed 

parameters at a respective invariance level (Byrne, Shavelson, & Muthén, 1989; Levine et al., 

2003). As suggested by Byrne (2010) in order to determine the non-invariant items all factor 

loadings were tested separately. Modification indexes which could produce changes of 

magnitude .20 or greater based on estimations by Lisrel were also considered. 

In the following hierarchical invariance analyses only S-Bχ2 difference test was 

interpreted to determine if invariance holds at a specific level. Beside S-Bχ
2
 difference test, 

some other fit indexes were also considered to assess goodness-of-fit of the invariance models. 

These indexes were RMSEA, SRMR, CFI, GFI and NNFI. Criteria were the same as in the 

confirmatory factor analysis. 
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3. FINDINGS 

3.1. Baseline Model 

 

Figure 1. Path diagram of the model tested 

Table 4 indicates the fit statistics of the one dimensional models with seven observed 

variables. No additional modification was made in the models such as adding a covariance 

between items or freeing item error variances. As it is evidenced by the indexes, the one-

dimensional model gave fit in all the groups compared.  

Table 4: Fit indexes for the baseline model in subgroups 

Grouping Variable Groups S-Bχ2 df p 
RMSEA 

[90%CI] 
SRMR CFI GFI NNFI 

Self-Reported Learning 
Low Achieving 11.80 10 .30 .02[.00-.06] .05 .97 .93 .99 

High Achieving 9.41 10 .49 .01[.00-.06] .04 .98 .97 .98 

End of semester Grades 
Low Achieving 4.83 10 .90 .01[.00-.02] .01 .99 .98 .99 

High Achieving 0.73 10 1.00 .01[.00-.03] .01 .99 .94 .97 

Table 5 presents the standardized factor loadings estimated by LISREL. All factor 

loadings were significant at .05 Alpha level. 
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Table 5: Standardized factor loadings for the baseline model in subgroups 

Items 
Self-Reported Learning End of semester Grades 

Low Achieving High Achieving Low Achieving High Achieving 

expectations 0.88 0.64 0.92 0.91 

interest 0.95 0.84 0.96 0.95 

participation 0.90 0.82 0.94 0.92 

thinking 0.95 0.86 0.96 0.96 

respect 0.67 0.46 0.74 0.69 

effective 0.96 0.72 0.96 0.97 

assessment 0.77 0.66 0.84 0.90 

The factor loadings were higher for the learner groups defined by end of semester grades. 

Furthermore, it was observed that the factor loadings for low achieving students based on self-

reported learning criterion were higher than high achieving students. 

3.2. Invariance Analysis for Self-Reported Learning Level 

Table 6 presents the results of invariance test and fit indexes for the groups constituted 

with respect to self-reported achievement criterion. 

Table 6: Fit indexes for invariance analyses for self-reported learning 

Invariance 

Model 
S-Bχ2 df p ΔS-Bχ2 Δdf p 

RMSEA 

[90% CI] 
SRMR CFI GFI NNFI 

Configural 9.48 28 .99 - - - .00[.00;.02] .04 .98 .94 .97 

Weak 17.46 34 .99 6.52 6 .37 .00[.00;.01] .03 .94 .87 .96 

Strong 18.60 40 1.00 10.54 6 .99 .00[.00;.02] .04 .96 .88 .96 

Non-significant value for S-Bχ2 index provides supporting evidence for configural 

invariance. Also goodness-of-fit indexes confirmed the fit between model and the data. As was 

explained before in the second level of invariance, a new constraint was added into the model to 

fix the factor loadings across the groups. The S-Bχ2 difference test result indicated that the 

weak invariance was also confirmed in the model. In the consecutive two steps, the item 

intercepts and error variances were fixed in the model. As is seen by the S-Bχ2, test result and 

fit indexes strong invariance was also observed. However, the model for strict invariance did not 

produce acceptable fit indexes (RMSEA=.11 [90%CI=.04;.08], SRMR=.10, CFI=0.86, 

GFI=.87, and NNFI=.88). Thus, the two learner groups defined by self-reported learning can 

directly be compared, but not with the same reliability level. 

3.3. Invariance Analysis for End of Semester Grades 

Table 7 presents the results of invariance test and fit indexes for the groups constituted 

with respect to end of semester grades achievement criterion. 

Table 7: Fit indexes for invariance analyses for end of semester grades 

Invariance 

Model 
S-Bχ2 df p ΔS-Bχ2 Δdf p 

RMSEA 

[90% CI] 
SRMR CFI GFI NNFI 

Configural 30.73 28 .32 - -  .02[.00;.05] .02 .99 .92 .98 

Weak 45.43 34 .09 14.70 6 <.001 .03[.00;.06] .03 .98 .90 .98 

Weak-P1 35.01 33 .37 4.28 5 .40 .01[.00;.05] .02 .99 .92 .98 

Strong 47.78 39 .02 12.77 6 <.001 .03[.00;.05] .03 .98 .92 .98 
1 The item assessment was freed. 
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Configural invariance level was achieved with respect to S-Bχ2 difference test. 

Goodness-of-fit indexes indicated that one-dimensional factor structure was found to be 

invariant across learner groups. On the other hand, weak invariance was not fully observed. 

Freeing the factor loading of the item assessment provided a partial weak invariance. However, 

item intercepts were not invariant, as evidenced by significant S-Bχ2 changes after new 

constraints were added even though goodness-of-fit indexes indicated a good fit. Freeing some 

parameters did not yield an improvement in the fit of model imposing strong invariance. 

Equality of error variances was not checked since factor intercepts were variant. 

In Table 8 item intercept differences between high and low achieving groups are 

presented. 

Table 8: Item intercepts differences based on end-of-semester grades 

Items 

Item Intercepts 

Low 

Achieving 

High 

Achieving 
Difference* 

expectations 0.00 0.00 0.00 

interest -0.10 -0.25 -0.15 

participation -0.10 -0.32 -0.22 

thinking -0.10 -0.25 -0.15 

respect 0.82 0.61 -0.21 

effective -0.13 -0.14 -0.01 

* The intercept of the item assessment was not calculated since it was freed. 

As is seen from Table 8 all the items in the high achieving group had lower intercept 

except item assessment. In this particular analysis only the configural invariance was fully 

achieved where the unidimensional factor structure can be defensible across high and low 

achieving groups, while weak invariance was observed after the item assessment was removed. 

The differences in the intercept imply that the origin of the scale across the two groups 

compared are different in favor of low achieving students. 

4. DISCUSSION and RESULTS 

Test scores which are invariant across different groups of students is one of the most 

important requirements for validity. In the student rating of instruction, achievement level of 

students is the extraneous variable that may invalidate the results since there is a general belief 

that higher scorers may rate the instruction in a more positive way (Brockx, Spooren, & 

Mortelmans, 2011; Marsh & Roche, 2000). 

In practice, when rating results are used without justifying the invariance, the scores of 

ratings could be biased against instructors or classes. Within invariance framework, the 

instrument should function in the same way across the groups and the construct has the same 

meaning for the subjects who belong to different groups (Dimitrov, 2010). The weakness in 

invariance can depict itself as non-equivalent metrics across the instructors or courses where 

observed score differences can not correspond to the same true score differences (Meredith & 

Millsap, 1992). Thus, any interpretation depending on observed scores could be favoring some 

instructors or classrooms depending on the level of invariance achieved in the scale scores. 

In the present study, with respect to self-reported expected grades and end of semester 

grades, the means of observed scores in the item level are higher for the groups expecting high 

scores and receiving higher end of semester grades. Interestingly, the mean differences observed 

between two groups are greater for the self-reported expected grades than the end of semester 
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grades. On the other hand, the invariance analyses carried out with respect to self-reported 

expected grades proved that the scale has strong invariance characteristics regardless of the 

level of expected grades. Only the strict invariance was not achieved where the amount of errors 

are different across groups expecting high and low scores. Thus, with respect to self-reported 

expected grades, any difference in the observed scores across groups expecting high and low 

scores are true differences. This means that as students expect to get higher grades in the course 

they tend to rate the instructor relatively in a more positive way. This could be a problem if 

students take courses with some contemplation about the leniency in grading. High score 

expectation will cause students rate the instruction in a more positive way. In the institutional 

context, if the rating results are primarily used for instructional evaluation or promotion, there 

will be bias in rating results in favor of instructors who have lenient grading policy. From 

administrative point of view, there is a need to have some precautions especially if the results 

are basically used for instructors’ promotion. In practice, students expected grades can be 

statistically controlled over the rating scores in order to remove this unintended effect in the 

rating results. 

For the end of semester grades the situation is quite different. In this particular analysis, 

only the configural invariance was fully achieved in the scale. This means that high and low 

scorers have a unidimensional conception of the instructional effectiveness as articulated in the 

items’ content. However, the lack of complete weak invariance implies that the comparison 

across the groups may be problematic if all the items are considered. The item assessment 

creates the problem in this level. Removing this item solves the problem in weak invariance. 

Moreover, in this analysis, having no strong invariance clearly indicates that the scale metrics 

are different across high and low achievers. In the present study, the intercepts in the high 

achieving classrooms are lower than the low achieving classrooms, except for the item 

assessment. Differences in intercepts across different groups indicate that for the same instructor 

or classroom practice different achievement groups may have different perceptions and as a 

consequence of it, the ratings of these groups are different (Baas, De Dreu, & Nijstad, 2011). In 

other words, the same degree of instructional effectiveness is rated differently by the students 

from two scoring groups. Low achieving students rated the same instructional performance 

more positively than the high achievers. It seems that the scores across these two groups 

produce biased results in favor of the low scorers. On the contrary, high achieving groups with 

lower intercepts are not as generous as the low achieving groups in their ratings with the 

exception of the item assessment. Thus, the observed mean difference found across different 

scorer groups do not indicate true difference (Nimmer & Stone, 1991; Rodabaugh & Kravitz, 

1994; Sailor, Worthen, & Shin, 1997). The observed scores will be higher for the high 

achievers, but the non-equivalent intercepts point out the different true scores for these two 

achievement groups. 

The invariance analyses indicated that there was also the lack of equality in residuals for 

both learning indicators. It points out the differences in the precision of measurement across the 

groups compared (Schmitt & Kuljanin, 2008). 

In the literature, the bias in student ratings is attributed to students’ perceptions about the 

meaning of the items used in the rating scale and their maturity level (Dimitrov 2010; Schoot, 

Lugtig, & Hox, 2012). Different than the high achieving students, the low achieving students 

may be assessing the content of the items differently for themselves. Having relatively scarce 

ratings among high achievers could be explained by their higher expectations from the 

instruction. Moreover, this particular group could be more critical in line with the on-going 

processes during the instruction and as a consequence of this, they underrate the instruction. 

Usually the school administrators do not compare the high achieving groups with low achieving 

ones but, because of the instructor’s grading policy, work load in the course, difficulty of the 

subject matter taught etc. students’ achievement may be low in some courses. Thus, in the 
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administration level this factor should be seriously considered before making important 

decisions about the instructors since the inequality of item intercepts creates bias in ratings 

(Greenwald & Gillmore, 1997a, 1997b; Wilhelm, 2004). Some researchers suggest using peer 

ratings and review of course material by peers more than the students ratings of instruction 

(Ackerman, Gross, & Vigneron, 2009; Benton, Duchon, & Pallett, 2013). On the other hand, 

Wolbring (2012) argues that ratings provided by students can only be used to assess instructors’ 

effectiveness rather than promotion. Similarly, Zabaleta (2007) suggests that student rating 

should be removed as a component in assessing instructional effectiveness due to the strong 

relationship with the students’ grades. 

If student rating of instruction is still worthwhile for the administrators, the bias due to the 

student achievement levels can be corrected in the overall rating scores. In general as a most 

practical precaution is statistical control which can be used for removing the influence of 

students’ end of semester grades from the rating results (Ellis, Becker, & Kimmel,1993; Soh, 

2014; Wolbring, 2012) The correcting the rating results and removing the effect of extraneous 

variables are all promising but it is quite clear that student rating of instruction should be 

primarily used for improving the educational practices and quality of teaching rather than 

promotion. 

This study has some limitations. First of all, the analyses are valid only for one institution. 

Even though the data are large enough, the results cannot be generalized to all the student rating 

of instruction scales. Replications are strongly recommended for the other institutional settings. 

Second limitation comes from the scale itself. The university administration generally wants to 

have shorter scales which are easy to administer. On the other hand, student rating of instruction 

has various aspects that are possible to cover only through longer and multidimensional 

assessment tools. Thus, a study could be designed for the purpose of exploring the issue of 

invariance by the use of professionally developed multidimensional scales. This study rather 

investigates the invariance issue by using an existing scale rather than exploring all the possible 

problems that may be encountered in evaluating the instructional effectiveness. 

In sum, any comparison using student rating requires a serious consideration of 

students’ expected achievement level and end of the semester grades. Thus, the results of the 

present study indicate that the student rating of instruction should be used sparingly in making 

important decisions. 
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Extended Abstract 

Student rating of instruction is a widely accepted approach in academic settings to elicit students’ 

opinions regarding the instructional effectiveness. The use of student rating of instruction dates back to 

1920s (Remmers, 1928). Until 1960s, ratings were basically used by instructors to collect students’ 

opinions about the effectiveness of teaching, rather than providing institutional feedback for academic 

promotion. Starting in 1970s, student ratings became a critical instrument in higher education institutions 

for both formative and summative assessment of instructors (Macfadyen et al., 2016; Morley, 2014). 

Although these ratings are basically used for monitoring instructional quality, they constitute an important 

source of information for high-stake decisions about the instructors such as promotion and granting tenure 

in the academic track (Ehie & Karathanos, 1994; Kulik, 2001; Nargundkar & Shrikhande, 2014). In either 

cases, the student ratings are used for important decisions which require reliable and valid measurement 

results. In other word, scores obtained on student rating should not be contaminated by some extraneous 

factors such as students’ expectations and achievement levels in a particular course. Thus, in the present 

study, validity of student ratings was examined from the perspective of measurement invariance across 

achievement levels. 

The data were collected in a private university in Turkey. In order to avoid inflation in the Type I 

error rate, the means obtained in the item level for each classroom were used as the unit of analysis. 

Decisions, high-stake or not, regarding courses and instructors were made based on aggregated student 

ratings at class level. A random sample of 625 classrooms with total 9230 students were used in the data 

analysis. The items were rated on the Likert type agreement scale such as strongly disagree (1), disagree 

(2), neutral (3), agree (4), and strongly agree (5). The scale scores have the Cronbach’s alpha reliability of 

.97 in the whole group. 
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Based on the 33rd and 66th percentile scores, three groups were defined based on self-reported 

learning criterion. The bottom and the top groups were selected for this study to define low and high 

achieving groups. Three hundred and eight classrooms with the means below the 33rd percentile score 

were named as low achieving and 317 classrooms with means above the 66th percentile score were 

named as high achieving classrooms. The second criterion is the students’ end of semester grades. 

Similarly, 33rd and 66th percentile scores were used to divide the group into two. Two hundred sixty-

seven classrooms which were above the 66th percentile scores were named as high achieving classrooms 

and 358 classrooms which were below the 33rd percentile score were named as low achieving 

classrooms. 

Analyses started with a baseline model including no constraint about invariance across groups and 

proceed with increasingly restrictive constraints on the baseline model. The measurement invariance was 

studied through the following steps: invariance of (i) factor patterns (configural), (ii) factor loadings 

(weak), (iii) intercepts (strong), and (iv) variances of residuals of observed variables (strict). 

For self-reported learning, non-significant value for S-Bχ2 index provides supporting evidence for 

configural invariance. Also goodness-of-fit indexes confirmed the fit between model and the data. As was 

explained before in the second level of invariance, a new constraint was added into the model to fix the 

factor loadings across the groups. The S-Bχ2 difference test result indicated that the weak invariance was 

also confirmed in the model. In the consecutive two steps, the item intercepts and error variances were 

fixed in the model. Strong invariance was also observed. However, the model for strict invariance did not 

produce acceptable fit indexes. 

For end of semester grades, configural invariance level was achieved with respect to S-Bχ2 

difference test. Goodness-of-fit indexes indicated that one-dimensional factor structure was found to be 

invariant across learner groups. On the other hand, weak invariance was not fully observed. Freeing the 

factor loading of the item assessment provided a partial weak invariance. However, item intercepts were 

not invariant, as evidenced by significant S-Bχ2 changes after new constraints were added even though 

goodness-of-fit indexes indicated a good fit. Equality of error variances was not checked since factor 

intercepts were variant.  

In the present study, with respect to self-reported expected grades and end of semester grades, only 

the strict invariance was not achieved where the amount of errors are different across groups expecting 

high and low scores. Thus, with respect to self-reported expected grades, any difference in the observed 

scores across groups expecting high and low scores are true differences. This means that as students 

expect to get higher grades in the course they tend to rate the instructor relatively in a more positive way. 

This could be a problem if students take courses with some contemplation about the leniency in grading. 

High score expectation will cause students rate the instruction in a more positive way. In the institutional 

context, if the rating results are primarily used for instructional evaluation or promotion, there will be bias 

in rating results in favor of instructors who have lenient grading policy. From administrative point of 

view, there is a need to have some precautions especially if the results are basically used for instructors’ 

promotion. In practice, students expected grades can be statistically controlled over the rating scores in 

order to remove this unintended effect in the rating results.  

For the end of semester grades, only the configural invariance was fully achieved in the scale. This 

means that high and low scorers have a unidimensional conception of the instructional effectiveness as 

articulated in the items’ content. However, the lack of complete weak invariance implies that the 

comparison across the groups may be problematic if all the items are considered.  

Differences in intercepts across different groups indicate that for the same instructor or classroom 

practice different achievement groups may have different perceptions and as a consequence of it, the 

ratings of these groups are different (Baas, De Dreu, & Nijstad, 2011). 


