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Abstract 
 
In this paper, we first consider Nadler type contractions with the generalized Lipschitz constant 𝑘𝑘 
holding 𝑟𝑟(𝑘𝑘) < 1 instead of 𝑟𝑟(𝑠𝑠𝑘𝑘) < 1 where 𝑟𝑟(𝑘𝑘) is the spectral radius of 𝑘𝑘 and 𝑠𝑠 ≥ 1 is the 
coefficient of the underlying cone 𝑏𝑏-metric spaces over Banach algebras. Then, we prove the 
corresponding fixed point theorem for such mappings. Finally, we compare our result with one 
obtained by the case 𝑟𝑟(𝑠𝑠𝑘𝑘) < 1 by introducing some proper examples. 
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1. Introduction 
 
In 1922, Banach introduced the fixed point theorem for contraction mappings in metric 
spaces. Afterwards, many researchers studied its applications and generalizations. For 
example, in 1967, Nadler [1] extended Banach’s contraction principle to set-valued 
contraction mappings. Also, in 1998, Czerwik [2] introduced the notion of b-metric space as a 
generalization of the usual metric space and proved Banach’s contraction principle in such 
space. Then, by following the results obtained in [1] and [2], Suzuki [8] proved a theorem, 
which is a generalization of Nadler’s fixed point theorem, in b-metric space. 
 
On the other hand, the notion of Banach space-valued metric established by Huang and Zhang 
[3] had attracted attention of many authors from 2007 to 2010. However, in 2010, Du [4] 
showed that some fixed point theorems in this setting are equivalent to their counterparts in 
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the usual metric space. After that, in 2013, Liu and Xu [5] constructed the cone metric space 
over Banach algebra and gave some fixed point theorems by means of spectral radius and 
normal solid cones. Also they introduced an example to show that Banach’s contraction 
principle in cone metric spaces over Banach algebras is not equivalent to the usual one. In 
2014, Xu and Radenovic [12] obtained the results of [5] by removing the condition of 
normality for solid cone. In 2015, on Banach algebras, cone b-metric spaces were introduced 
by Huang and Radenovic [9]. Then, Wardowski [6] defined H-cone metric structure by 
combining Nadler type contraction with cone metric space on Banach space. Later, inspired 
by Wardowski and taking into account the results of [4], Ozavsar [7] established H-cone b-
metric space over Banach algebra. 
 
In this paper, following results of Suzuki [8] and Ozavsar [7], we generalize the main result of 
[7] by extending r(sk) ∈ (0,1) to r(k) ∈ (0,1) in H-cone b-metric with respect to a cone b-
metric space over Banach algebras. 
 

2. Preliminary 
 
A real Banach algebra A is a real Banach space together with an operation of multiplication 
satisfied the following properties (for all x, y, z ∈ A,α ∈ ℝ) 

 
1. (xy)z = x(yz),  
2. x(y + z) = xy + xz and (x + y)z = xz + yz, 
3. α(xy) = (αx)y = x(αy), 
4. ‖xy‖ ≤ ‖x‖‖y‖.  

 
Let A has a unit (i.e. multiplicative identity) e such that ex = xe = x for all x ∈ A. An element 
x ∈ A is said to be invertible if there is an inverse element y ∈ A such that xy = yx = e. The 
inverse of x is denoted by x−1. For more details, we refer the reader to Rudin [13]. Now let us 
recall the concepts of cone to obtain a partial ordered relation on A. A subset P of A is called a 
cone of A if 

 
1. P is non-empty closed and {θ, e} ⊂ P ; 
2. αP + βP ⊂ P for all non-negative real numbers α,β ; 
3. P2 = PP ⊂ P; 
4. P ∩ (−P) = {θ},  

 
where θ denotes the null of the Banach algebra A. For a given cone P ⊂ A, we can define a 
partial ordering ≼ with respect to P by x ≼ y if and only if y − x ∈ P. The notation x ≺ y will 
stand for x ≼ y and x ≠ y, while x ≪ y for stand for y − x ∈ intP, where intP denotes the 
interior of P. If intP ≠ ∅ then P is called a solid cone. If there exists a positive real number K 
such that for all x, y ∈ A 

  
θ ≼ x ≼ y implies ‖x‖ ≤ K‖y‖, 

 
then a cone P is called normal [3]. Now we shortly recall the spectral radius which is 
neccessary for the main result. Let A be a Banach algebra with a unit e. The spectral radius of 
x ∈ A as follows; 
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r(x) = lim
n→∞

‖xn‖
1
n. 

 
If r(x) < 1, then e − x is invertible (see [13]) and the inverse of e − x is given by  

  

(e − x)−1 = �
∞

i=0

xi. 

 
From now on, we always suppose that 𝐴𝐴 is a real Banach algebra with unit e, P is a solid cone 
in A, and ≼ is a partial ordering with respect to P. 
 
Lemma 2.1 [12]  Let x, y be vectors in A. If x commutes with y, then the followings hold:   
 

1. r(xy) ≤ r(x)r(y),  
2. r(x + y) ≤ r(x) + r(y).  

 
Definition 2.2 [9] Let X be a nonempty set and 1 ≤ s be a constant. Let d be a mapping from 
X × X into A. Then (X, d) is said to be a cone b-metric space over A if the followings hold:  

  
1. θ ≼ d(x, y) and d(x, y) = θ if and only if x = y 
2. d(x, y) = d(y, x) 
3. d(x, y) ≼ s(d(x, z) + d(z, x))  

 
for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋. 

 
Definition 2.3 [9] Let (X, d) be a cone b-metric space over Banach algebra A, x ∈ X and {xn} 
be a sequence in X. Then: 

  
1. {xn} converges to x whenever for each c ∈ A with θ ≪ c there is a naturel number N 

such that d(xn, x) ≪ c for all n ≥ N. This is denoted by limn→∞xn = x or xn → x, n →
∞. 

2. {xn} is a Cauchy sequence whenever for each c ∈ A with θ ≪ c there is a naturel 
number N such that d(xn, xm) ≪ c for all n, m ≥ N. 

3. (X, d) said to be complete if every Cauchy sequence {xn} in X is convergent. 
 

Definition 2.4 [12] A sequence {un} ⊂ P is a c-sequence if for each θ ≪ c there exists n0 ∈ ℕ 
such that un ≪ c for n > n0.  

 
Lemma 2.5 [9]  If r(k) < 1, then {kn} is a c-sequence.  

 
Lemma 2.6 [12]  Let {un} be a sequence in P. Suppose that k ∈ P is an arbitrarily given 
vector and {un} is a c-sequence in P. Then {kun} is a c-sequence.  
 
Lemma 2.7 [14]  Let {xn} and {yn} be sequences in P. If {xn} and {yn} are c-sequences and 
α,β > 0, then {αxn + βyn} is a c-sequence.  
 
Lemma 2.8 [11]  If u ≼ v and v ≪ w, then u ≪ w.  
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Lemma 2.9 [12]  Let (X, d) be a complete cone b-metric space over A and {xn} ⊂ X is a 
sequence that converges to x ∈ X, then we have  

1. {d(xn, x)} is a c-sequence. 
2. {d(xn, xn+p)} is a c-sequence for any p ∈ ℕ.  

 
Lemma 2.10 [7]  Let k ∈ P such that r(k) < 1. Then 

  

�
n

i=p

ki ≼ kp(e − k)−1 

 
for all p ∈ ℕ.  
 
Definition 2.11 (see [6], [7]) Let (X, d) be a cone b-metric space over a Banach space E with 
solid cone P and let N(X) be a collection of nonempty subsets of X. A mapping H: N(X) ×
N(X) → E is called an H-cone metric over a Banach space E with respect to d if for any 
A1, A2 ∈ N(X) the following conditons hold: 
 

H1 H(A1, A2) = θ ⇒ A1 = A2, 
H2 H(A1, A2) = H(A2, A1), 
H3 for all ε ∈ E with θ ≪ ε and for all x ∈ A1, there exists at least one y ∈ A2 such that 

d(x, y) ≼ H(A1, A2) + ε, 
H4 one of the following holds: 
       i : for all ε ∈ E with θ ≪ ε there is at least one x ∈ A1 such that H(A1, A2) ≼
        d(x, y) + ε for all y ∈ A2, 

            ii : for all ε ∈ E with θ ≪ ε there is at least one x ∈ A2 such that H(A1, A2) ≼
              d(x, y) + ε for all y ∈ A1.  
  
Definition 2.12 [7] Let (X, d) be a cone b-metric space over Banach algebra A. A mapping 
H: N(X) × N(X) → A is called an H-cone b-metric over A with respect to the cone b-metric 
space d if it holds the conditions (H1-H4) given above.  
 
Lemma 2.13 [7] If a mapping H: N(X) × N(X) → A is an H-cone b-metric over A with respect 
to the cone b-metric space (X, d) over A, then (N(X), H) is a cone b-metric space over A. 
 

3. Main results 
 
Lemma 3.1 (see [8]) Let (X, d) be a cone b-metric space and f(n) = −[−log2n] which is a 
function from ℕ to ℕ ∪ {0}. Then, the following condition holds 
 

d(x0, xn) ≼ sf(n) �
n−1

i=0

d(xi, xi+1) 
 

   (1) 

 
for all (x0, . . . , xn) ∈ Xn+1.  
 
Proof. Since the proof is very similar to one of Lemma 5 given in [8], we omit it. 
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Theorem 3.2  Let (X, d) be a complete cone b-metric space over Banach algebra A and P be 
solid cone in A. Let k ∈ intP with r(k) < 1. Suppose that the mapping T: X → N(X) satisfies 
the following condition: 
 

H(Tx, Ty) ≼ kd(x, y) (2) 
 
for all x, y ∈ X . Then, T has at least one fixed point in X. 

 
Proof. Let {εn} be sequence in A such that for all n ∈ ℕ  
  

θ ≪ εn and εn ≼ k2n. (3) 
 
Let x0 ∈ X and x1 ∈ Tx0. If H(Tx1, Tx0) = θ then Tx1 = Tx0 and x1 ∈ Tx1 which means that 
T has a fixed point. Let H(Tx1, Tx0) ≠ θ. By (H3), there is a x2 ∈ Tx1 such that 
 

 d(x2, x1) ≼ H(Tx1, Tx0) + ε1. 
 
So, by the induction, we get a sequence {xn} with xn+1 ∈ Txn satisfying  

  
d(xn+1, xn) ≼ H(Txn, Txn−1) + εn, n = 1,2, …. (4) 

 
From (2), (3) and (4), we obtain the following inequalities:  

  
d(xn+1, xn) ≼ H(Txn, Txn−1) + εn ≼ kd(xn, xn−1) + εn 
≼ k(H(Txn−1, Txn−2) + εn−1) + εn 
≼ k2d(xn−1, xn−2) + kεn−1 + εn 
… 

≼ knd(x1, x0) + �
n

i=1

kn−iεi 

≼ knd(x1, x0) + �
n

i=1

kn−ik2i 

≼ knd(x1, x0) + kn(�
n

i=1

ki). 

 
Hence, by using Lemma 2.10, we get 
  

d(xn+1, xn) ≼ knd(x1, x0) + knk(e − k)−1 = knλ (5) 
 
where λ = d(x1, x0) + k(e − k)−1. Now, we will show that {xn} is a Cauchy sequence by 
using the function f defined in Lemma 3.1. Considering the item (1) in Lemma 2.1, we can 
choose ℓ ∈ ℕ such that r(sk2ℓ) < 1. For n, m ∈ ℕ with n < m ≤ n + 2ℓ, by Lemma 3.1 and 
(5), we get  

 

d(xn, xm) ≼ sf(m−n) �
m−1

i=n

d(xi, xi+1) 

15 



≼ sℓ �
m−1

i=n

kiλ ≼ sℓ(�
∞

i=n

ki)λ 

 
= sℓknC  (6) 

 
where C = (e − k)−1λ. Let hn = sℓknC. By Lemmas 2.5, 2.6 and 2.7, it is obvious that the 
sequence {hn} is a c-sequence. So, for each θ ≪ c, there exists N0 ∈ ℕ such that d(xn, xm) ≼
hn ≪ c for n > N0. On the other hand, for n, m ∈ ℕ with n + 2ℓ < m, considering γ = [(m −
n)/2ℓ] together with (cbm3), we have  

 

d(xn, xm) ≼�
γ−1

i=0

si+1d(xn+i2ℓ , xn+(i+1)2ℓ) + sγd(xn+γ2ℓ , xm). 
 

(7) 

  
Since n + (i + 1)2ℓ − (n + i2ℓ) = 2ℓ and m − (n + γ2ℓ) < 2ℓ, by using (6), the following 
inequalities satisfy; 

  
d(xn+i2ℓ , xn+(i+1)2ℓ) ≼ sℓkn+i2ℓC  

d(xn+γ2ℓ , xm) ≼ sℓkn+γ2ℓC. (8) 
 
Thus, by inserting (8) to (7), we obtain  
 

d(xn, xm) ≼�
γ−1

i=0

si+1+ℓkn+i2ℓC + sγ+ℓkn+γ2ℓC 

≼ sℓ+1(�
γ

i=0

sikn+i2ℓ)C = sℓ+1(�
γ

i=0

(sk2ℓ)i)knC 

≼ sℓ+1(e − sk2ℓ)−1knC. 
 
Let gn = sℓ+1(e − sk2ℓ)−1knC. By Lemmas 2.5, 2.6 and 2.7, it is clear that the sequence {gn} 
is a c-sequence. So, for each θ ≪ c, there exists N1 ∈ ℕ such that d(xn, xm) ≼ gn ≪ c for n >
N1. Thus, for N = max{N0, N1}, d(xn, xm) ≪ c whenever m > n > N. So, {xn} is a Cauchy 
sequence. The completeness of X implies that there is a x ∈ X such that {xn} converges to x. 
Therefore, since {d(xn, x)} is a c-sequence according to Lemma 2.9, for each c ∈ intP, there 
exists n0 ∈ ℕ such that d(xn, x) ≪ c

3s
 for n ≥ n0. Also, since xn ∈ Txn−1 for n ≥ 1, we obtain 

from (H3) that for all n ∈ ℕ there is yn ∈ Tx such that  
  

d(xn, yn) ≼ H(Txn−1, Tx) + εn ≼ kd(xn−1, x) + k2n. 
 
By Lemmas 2.5, 2.6, 2.7 and 2.9, {kd(xn−1, x) + k2n} is a c-sequence. Hence, for c ∈ intP, 
there is n1 ∈ ℕ such that  
 

d(xn, yn) ≼ kd(xn−1, x) + k2n ≪
2c
3s

 
 
for n ≥ n1. Consequently, for n ≥ max{n0, n1}, we have  
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d(yn, x) ≼ s(d(yn, xn) + d(xn, x)) ≪
c
3

+
2c
3

= c, 
 
which implies by Lemma 2.8 that 
 

d(yn, x) ≪ c. 
 
Finally, we see that yn → x, n → ∞, meaning that since Tx is closed, we have x ∈ Tx. 
 
Example 3.3 Let X = [0,1], A = Cℝ1 [X] and define a norm on A by ‖f‖ = ‖f‖∞ + ‖f′‖∞. 
Define multiplication in A as the usual pointwise multiplication. Then A becomes a real 
Banach algebra with the multiplicative unit e = 1. The set P = {f ∈ A|f(t) ≥ 0 for all t ∈ X} 
is a non-normal cone (see [10]). Consider a mapping d: X × X → A defined by d(x, y)(t) =
|x − y|2et. We can easily show that (X, d) is a cone b-metric space with s = 2 on the Banach 
algebra A. Let N(X) = {[0, x]|x ∈ X}. Define a mapping H([0, x], [0, y])(t) = |x − y|2et. It is 
easily seen that (N(X), H) is an H-cone b-metric space over A. Now let us define T: X → N(X) 
by Tx = [0,√3sin x

2
]. T holds the contraction condition (2) with k ∈ intP defined by k(t) = 3

4
 

as follows; 
  

H(Tx, Ty)(t) = �√3sin
x
2
− √3sin

y
2
�
2

et ≤
3
4

|x − y|2et = k(t)d(x, y)(t). 
 

Clearly, 𝑟𝑟(𝑠𝑠𝑘𝑘) ∉ (0,1), but 𝑟𝑟(𝑘𝑘) ∈ (0,1). As seen, Theorem 3.2 of [7] can not be applied to 
this mapping, while 𝑇𝑇 has a fixed point with respect to Theorem 3.2. 
 
Example 3.4 See that A = ℝ2 equipped with the pointwise multiplication and the usual norm 
is a Banach algebra. Let P = {(x, y) ∈ ℝ2|0 ≤ x, y}, X = ℝ2 and p ∈ ℝ with 1 < p. We define 
a mapping d: X × X → A as d((x1, y1), (x2, y2)) = (|x1 − x2|p, |y1 − y2|p). Then, by using 
the inequality (a + b)p ≤ 2p(ap + bp) for all a, b ≥ 0 and the properties of the cone P, we 
can show that (X, d) is a cone b-metric with coefficient s = 2p over A. Consider a closed 
subset a ⊗ b of X defined by a ⊗ b = {(x, y) ∈ X|0 ≤ x ≤ a, 0 ≤ y ≤ b} for 0 ≤ a, b and 
N(X) = {a ⊗ b|0 ≤ a, b}. Then it is clear that a mapping H: N(X) × N(X) → A given by 
H(a1 ⊗ b1, a2 ⊗ b2) = (|a1 − a2|p, |b1 − b2|p) is H-cone b-metric space over A. Now let us 
define T: X → N(X) as T(x, y) = �cosx

2
� ⊗ �cosy

2
�. Then, one can easily show that  

  
H(T(x1, y1), T(x2, y2)) ≼ kd((x1, y1), (x2, y2)) 

  
where k = (1

s
, 1
s
) ∈ intP. Thus T satisfies the condition of Theorem 3.2, it has a fixed point.  

 
Note that the main theorem of [7] is not applicable to the example given above because of 
r(sk) = 1. 
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