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Abstract
The paper deals with discrete forms of double inequalities related to convex functions of one variable.
Infinite convex combinations and sequences of convex combinations are included. The double inequality
form of the Jensen-Mercer inequality and its variants are especially studied.
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1. Introduction
The basic framework of convexity includes a bounded closed interval of real numbers, its convex combinations,

and corresponding convex function.
Let a and b be real numbers such that a < b. The closed interval or segment between points a and b can be

introduced as the set
[a, b] =

{
αa+ βb : α, β ∈ [0, 1], α+ β = 1

}
,

that is, as the set of all binomial convex combinations of points a and b. In this regard, each point x ∈ [a, b] can be
represented as the binomial convex combination

x =
b− x
b− a

a+
x− a
b− a

b,

which shows that α(x) = (b− x)/(b− a) and β(x) = (x− a)/(b− a).
A function f : [a, b]→ R is said to be convex if the inequality

f(αx+ βy) ≤ αf(x) + βf(y)

holds for every binomial convex combination αx+ βy of points x, y ∈ [a, b].

2. Convex Function and its Double Discrete Inequalities

Generally, a linear combination
∑n
i=1 λixi of points xi is said to be convex (affine) if coefficients λi ∈ [0, 1] and∑n

i=1 λi = 1 (
∑n
i=1 λi = 1).

Let
∑n
i=1 λixi be a convex combination of points xi ∈ [a, b]. If αa+ βb is the convex combination of endpoints a

and b such that

αa+ βb =

n∑
i=1

λixi, (2.1)
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then each convex function f : [a, b]→ R satisfies the double inequality

f(αa+ βb) ≤
n∑
i=1

λif(xi) ≤ αf(a) + βf(b). (2.2)

This fundamental inequality says that the convex function values, taken in the forms of convex combinations,
grow from the center to the ends. The left-hand side of the above inequality as f(

∑n
i=1 λixi) ≤

∑n
i=1 λif(xi) is

the discrete form of Jensen’s inequality (see [4]). The proof of the inequality in formula (2.2) can be found in [11,
Theorem 3.1].

Using the affine combination a + b −
∑n
i=1 λixi and the equality in formula (2.1), each convex function f :

[a, b]→ R satisfies the double inequality

f

(
a+ b−

n∑
i=1

λixi

)
≤ (1− α)f(a) + (1− β)f(b)

≤ f(a) + f(b)−
n∑
i=1

λif(xi).

(2.3)

The first and third members represent the Jensen-Mercer inequality obtained in [7], and its generalizations were
reached in [6], [8], [3], [10], [5] and others. The proof of the inequality in formula (2.3) can be taken from the proof
of Theorem 4.1.

Let [a, b] ⊆ [a1, b1], let
∑n
i=1 λixi be a convex combination of points xi ∈ [a, b], and let

∑m
j=1 κjyj be a convex

combination of points yj ∈ [a1, b1] \ (a, b). If the above convex combinations have the same center c = αa+ βb, that
is, if

n∑
i=1

λixi = αa+ βb =

m∑
j=1

κjyj , (2.4)

then each convex function f : [a1, b1]→ R satisfies the double inequality

n∑
i=1

λif(xi) ≤ αf(a) + βf(b) ≤
m∑
j=1

κjf(yj). (2.5)

The above inequality, even more clearly then the inequality in formula (2.2), shows the nature of growth of the
convex function values. The proof of this double inequality can be found in [9, Corollary 3.2].

3. Infinite Convex Combinations in Inequalities

In this section, we briefly recall the main results obtained in [12].

Definition 3.1. An infinite linear combination
∑∞
i=1 λixi of a real vector space points xi is said to be convex if

coefficients λi ∈ [0, 1] and their sum
∑∞
i=1 λi converges to number 1 in the field R. Thus

∑∞
i=1 λi = 1.

Infinite convex combinations are prone to convergence.

Theorem A. An infinite convex combination
∑∞
i=1 λixi of points xi ∈ [a, b] converges in [a, b].

The inequality in formula (2.2) can be expanded to infinite convex combinations.

Theorem B. Let
∑∞
i=1 λixi be an infinite convex combination of points xi ∈ [a, b], and let αa+βb be the convex combination

that satisfies αa+ βb =
∑∞
i=1 λixi.

Then each convex function f : [a, b]→ R satisfies the double inequality

f(αa+ βb) ≤
∞∑
i=1

λif(xi) ≤ αf(a) + βf(b). (3.1)

The left-hand side of the above inequality as f(
∑∞
i=1 λixi) ≤

∑∞
i=1 λif(xi) is Jensen’s inequality for infinite

convex combinations.
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The inequality in formula (2.5) can also be exposed in the infinite form. Let [a, b] ⊆ [a1, b1], let
∑∞
i=1 λixi be

an infinite convex combination of points xi ∈ [a, b], and let
∑∞
i=1 κiyi be an infinite convex combination of points

yi ∈ [a1, b1] \ (a, b). If the above convex combinations have the same center c = αa+ βb, that is, if

∞∑
i=1

λixi = αa+ βb =

∞∑
i=1

κiyi, (3.2)

then each convex function f : [a1, b1]→ R satisfies the double inequality

∞∑
i=1

λif(xi) ≤ αf(a) + βf(b) ≤
∞∑
i=1

κif(yi). (3.3)

The double inequality in formula (2.2) can also be expanded to sequences of convex combinations. Because of
the possible convergence to the interval endpoints, we have to use a continuous convex function f in Theorem C.

Theorem C. Let (cn)∞n=1 be a convergent sequence of convex combinations cn =
∑mn

i=1 λnixni of points xni ∈ [a, b], and let
αa+ βb be the convex combination that satisfies αa+ βb = limn→∞ cn.

Then each continuous convex function f : [a, b]→ R satisfies the double inequality

f(αa+ βb) ≤ lim
n→∞

mn∑
i=1

λnif(xni) ≤ αf(a) + βf(b). (3.4)

4. Main Results
In this section, we investigate the double inequality form of the Jensen-Mercer inequality (see [7]) including

infinite convex combinations.

Lemma 4.1. Let
∑∞
i=1 λixi be an infinite convex combination of points xi ∈ [a, b]. Then the affine combination a + b −∑∞

i=1 λixi converges in [a, b].

Proof. We can write down
∑∞
i=1 λixi as the convex combination αa+ βb by Theorem A. Then it follows that

a+ b−
∞∑
i=1

λixi = a+ b− αa− βb = (1− α)a+ (1− β)b

belongs to [a, b] because the combination (1− α)a+ (1− β)b is convex.

We have the convenience to expand the inequality in formula (2.3).

Theorem 4.1. Let
∑∞
i=1 λixi be an infinite convex combination of points xi ∈ [a, b], and let αa+βb be the convex combination

that satisfies αa+ βb =
∑∞
i=1 λixi.

Then each convex function f : [a, b]→ R satisfies the double inequality

f

(
a+ b−

∞∑
i=1

λixi

)
≤ (1− α)f(a) + (1− β)f(b)

≤ f(a) + f(b)−
∞∑
i=1

λif(xi).

(4.1)

Proof. The point d = a+ b−
∑∞
i=1 λixi belongs to the interval [a, b] by Lemma 4.1. Applying the convexity of f to

the right side of the convex combinations equality

a+ b−
∞∑
i=1

λixi = (1− α)a+ (1− β)b,

we get the left-hand side (containing the first and second member) of the inequality in formula (4.1).
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Using the right-hand side (containing the second and third member) of the inequality in formula (3.1) as

−αf(a)− βf(b) ≤ −
∞∑
i=1

λif(xi),

we get
(1− α)f(a) + (1− β)f(b) = f(a) + f(b)− αf(a)− βf(b)

≤ f(a) + f(b)−
∞∑
i=1

λif(xi),

which is the right-hand side (containing the second and third member) of the inequality in formula (4.1).

The middle member in formula (4.1) can be expressed using endpoints a and b, and the combination center
c =

∑∞
i=1 λixi as follows.

Corollary 4.1. Let
∑∞
i=1 λixi be an infinite convex combination of points xi ∈ [a, b], and let c =

∑∞
i=1 λixi be its center.

Then each convex function f : [a, b]→ R satisfies the double inequality

f

(
a+ b−

∞∑
i=1

λixi

)
≤ c− a

b− a
f(a) +

b− c
b− a

f(b)

≤ f(a) + f(b)−
∞∑
i=1

λif(xi).

(4.2)

Proof. Since c ∈ [a, b], it can be represented as the convex combination

c =
b− c
b− a

a+
c− a
b− a

b.

Using the coefficients

1− α =
c− a
b− a

, 1− β =
b− c
b− a

in formula (4.1), we obtain formula (4.2).

Theorem 4.1 can be generalized including an m-tuple of infinite convex combinations,
∑∞
i=1 λijxij for j =

1, . . . ,m.

Corollary 4.2. Let
∑∞
i=1 λijxij be infinite convex combinations of points xij ∈ [a, b], let αja+βjb be the convex combinations

that satisfy αja+ βjb =
∑∞
i=1 λijxij , and let γj be nonnegative coefficients that satisfy

∑m
j=1 γj = 1.

Then each convex function f : [a, b]→ R satisfies the double inequality

f

(
a+ b−

m∑
j=1

∞∑
i=1

γjλijxij

)
≤

(
1−

m∑
j=1

αjγj

)
f(a) +

(
1−

m∑
j=1

βjγj

)
f(b)

≤ f(a) + f(b)−
m∑
j=1

∞∑
i=1

γjλijf(xij).

(4.3)

Proof. The points dj = a+ b−
∑∞
i=1 λijxij for j = 1, . . . ,m belong to [a, b] by Lemma 4.1. Therefore, the point

d = a+ b−
m∑
j=1

∞∑
i=1

γjλijxij =

m∑
j=1

γj

(
a+ b−

∞∑
i=1

λijxij

)
=

m∑
j=1

γjdj

also belongs to [a, b] as the convex combination of points dj ∈ [a, b]. Applying the Jensen inequality to the convex
combination

d =

m∑
j=1

γj

(
a+ b−

∞∑
i=1

λijxij

)
,
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and using the double inequality in formula (4.1), we obtain the multiple inequality

f(d) ≤
m∑
j=1

γjf

(
a+ b−

∞∑
i=1

λijxij

)
≤

m∑
j=1

γj

(
(1− αj)f(a) + (1− βj)f(b)

)
≤

m∑
j=1

γj

(
f(a) + f(b)−

∞∑
i=1

λijf(xij)

)
.

Since
m∑
j=1

γj

(
(1−αj)f(a)+(1−βj)f(b)

)
=

(
1−

m∑
j=1

αjγj

)
f(a)+

(
1−

m∑
j=1

βjγj

)
f(b)

and
m∑
j=1

γj

(
f(a) + f(b)−

∞∑
i=1

λijf(xij)

)
= f(a) + f(b)−

m∑
j=1

∞∑
i=1

γjλijf(xij),

the above multiple inequality includes the double inequality in formula (4.3).

Note that the coefficients sum (
1−

m∑
j=1

αjγj

)
+

(
1−

m∑
j=1

βjγj

)
= 1.

In the investigation of means, the Hermite-Hadamard inequality (see [2] and [1]) is almost unavoidable. This
important inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2
(4.4)

can also be expressed using the affine combinations a + b − x and a + b −
∑∞
i=1 λixi. The midpoint (a + b)/2

dominates again, and it is as follows.

Corollary 4.3. Let
∑∞
i=1 λixi be an infinite convex combination of points xi ∈ [a, b] such that (a+ b)/2 =

∑∞
i=1 λixi.

Then each convex function f : [a, b]→ R satisfies the double inequality

f

(
a+ b−

∞∑
i=1

λixi

)
≤ 1

b− a

∫ b

a

f(a+ b− x) dx

≤ f(a) + f(b)−
∞∑
i=1

λif(xi).

(4.5)

Proof. In our case, the midpoint also coincides with the affine combination because

a+ b

2
= a+ b−

∞∑
i=1

λixi.

As regards the integral, we have ∫ b

a

f(x) dx =

∫ b

a

f(a+ b− x) dx

because the mapping x 7→ a+ b− x is a bijection on the interval [a, b].
Applying the right-hand side (containing the second and third member) of the inequality in formula (3.1) to the

convex combinations equality
1

2
a+

1

2
b =

∞∑
i=1

λixi,
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we get
∞∑
i=1

λif(xi) ≤
1

2
f(a) +

1

2
f(b) =

f(a) + f(b)

2
,

and so
f(a) + f(b)

2
= f(a) + f(b)− f(a) + f(b)

2

≤ f(a) + f(b)−
∞∑
i=1

λif(xi).

By using the substitutions suggested in the above calculations, formula (4.4) passes into formula (4.5).

Let [a, b] ⊆ [a1, b1], let xi ∈ [a, b], and let yi ∈ [a1, b1] \ (a, b). The double equality

xi + (a+ b− xi)
2

=
a+ b

2
=
yi + (a+ b− yi)

2

shows that a+ b− xi ∈ [a, b], and that a+ b− yi ∈ [a1, b1] \ (a, b). It follows that

∞∑
i=1

λixi = αa+ βb =

∞∑
i=1

κiyi

if and only if
∞∑
i=1

λi(a+ b− xi) = (1− α)a+ (1− β)b =
∞∑
i=1

κi(a+ b− yi). (4.6)

So, the combinations
∑∞
i=1 λixi and

∑∞
i=1 κiyi have the same center if and only if the combinations

∑∞
i=1 λi(a+b−xi)

and
∑∞
i=1 κi(a+ b− yi) have the same center.

If
∑∞
i=1 λixi is an infinite convex combination of points xi ∈ [a, b], then using the Jensen inequality for infinite

convex combinations, and inequalities

f(a+ b− xi) ≤ f(a) + f(b)− f(xi),

we can prove that a convex function f : [a, b]→ R satisfies the double inequality

f

(
a+ b−

∞∑
i=1

λixi

)
≤

∞∑
i=1

λif(a+ b− xi)

≤ f(a) + f(b)−
∞∑
i=1

λif(xi).

(4.7)

If
∑∞
i=1 κiyi is an infinite convex combination of points yi ∈ [a1, b1] \ (a, b) such that

∑∞
i=1 κiyi ∈ [a1, b1] \ (a, b),

then using the Jensen inequality for infinite convex combinations, and inequalities

f(a+ b− yi) ≥ f(a) + f(b)− f(yi),

we can prove that a convex function f : [a1, b1]→ R satisfies the double inequality

f(a) + f(b)−
∞∑
i=1

κif(yi) ≤ f

(
a+ b−

∞∑
i=1

κiyi

)
≤

∞∑
i=1

κif(a+ b− yi).
(4.8)

Theorem 4.2. Let [a, b] ⊆ [a1, b1], let
∑∞
i=1 λixi be an infinite convex combination of points xi ∈ [a, b], let

∑∞
i=1 κiyi be an

infinite convex combination of points yi ∈ [a1, b1] \ (a, b) such that it has the same center as the above, and let αa+ βb be the
convex combination such that

∑∞
i=1 λixi = αa+ βb =

∑∞
i=1 κiyi.
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Then each convex function f : [a1, b1]→ R satisfies the following three double inequalities

f(a) + f(b)−
∞∑
i=1

κif(yi) ≤ (1− α)f(a) + (1− β)f(b)

≤ f(a) + f(b)−
∞∑
i=1

λif(xi)

(4.9)

∞∑
i=1

λif(a+ b− xi) ≤ (1− α)f(a) + (1− β)f(b)

≤
∞∑
i=1

κif(a+ b− yi)
(4.10)

∞∑
i=1

(
λif(a+ b− xi)− κif(yi)

)
≤ (1− 2α)f(a) + (1− 2β)f(b)

≤
∞∑
i=1

(
κif(a+ b− yi)− λif(xi)

) (4.11)

Proof. The inequality in formula (4.9) can easily be derived by rearranging the inequality in formula (3.3).
As regards formula (4.10), since a+ b− xi ∈ [a, b] and a+ b− yi ∈ [a1, b1] \ (a, b), we may apply formula (3.3) to

the double equality in formula (4.6), and thus obtain formula (4.10).
The inequality in formula (4.11) can be obtained by arranging the sum of the inequalities in formula (4.9) and

formula (4.10).

Theorem C can also be adapted to the double inequality form of the Jensen-Mercer inequality. As noted in
Section 3, because of the possible convergence to the interval endpoints, we must use a continuous convex function.

Theorem 4.3. Let (cn)∞n=1 be a convergent sequence of convex combinations cn =
∑mn

i=1 λnixni of points xni ∈ [a, b], and
let αa+ βb be the convex combination that satisfies αa+ βb = limn→∞ cn.

Then each continuous convex function f : [a, b]→ R satisfies the double inequality

f

(
a+ b− lim

n→∞

mn∑
i=1

λnixni

)
≤ (1− α)f(a) + (1− β)f(b)

≤ f(a) + f(b)− lim
n→∞

mn∑
i=1

λnif(xni).

(4.12)

Proof. Applying the inequality in formula (2.3) to the convex combinations equalities

αna+ βnb =

mn∑
i=1

λnixni,

we get

f

(
a+ b−

mn∑
i=1

λnixni

)
≤ (1− αn)f(a) + (1− βn)f(b)

≤ f(a) + f(b)−
mn∑
i=1

λnif(xni).

By letting n tend to infinity, and utilizing the continuity of f via

lim
n→∞

f

(
a+ b−

mn∑
i=1

λnixni

)
= f

(
a+ b− lim

n→∞

mn∑
i=1

λnixni

)
,

the above inequality approaches the inequality in formula (4.12).
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5. Applications to Quasi-Arithmetic Means

Due to Lemma 4.1, we can consider the quasi-arithmetic means related to infinite convex combinations. Let
ϕ : [a, b] → R be a strictly monotone continuous function, let (xi)∞i=1 be a sequence of points xi ∈ [a, b], and let
(λi)

∞
i=1 be a sequence of nonnegative coefficients such that

∑∞
i=1 λi = 1. The discrete quasi-arithmetic mean with

the function ϕ of points xi respecting coefficients λi can be defined as the number

Mϕ(xi;λi) = ϕ−1
(
ϕ(a) + ϕ(b)−

∞∑
i=1

λiϕ(xi)

)
. (5.1)

The number Mϕ(xi;λi) belongs to the interval [a, b] because the affine combination ϕ(a) + ϕ(b) −
∑∞
i=1 λiϕ(xi)

converges in the image of ϕ by Lemma 4.1 (the image of ϕ is the bounded closed interval).
The framework of quasi-arithmetic means includes a pair of strictly monotone continuous functions ϕ,ψ :

[a, b]→ R and the following correlative notion. The function ψ is said to be ϕ-convex (ϕ-concave) if the composition
ψ ◦ ϕ−1 is convex (concave). Giving attention to infinite convex combinations, the basic lemma on quasi-arithmetic
means applies as follows.

Lemma 5.1. Let ϕ,ψ : [a, b] → R be strictly monotone continuous functions, and let
∑∞
i=1 λixi be an infinite convex

combination of points xi ∈ [a, b].
If either ψ is increasing and ϕ-convex or ψ is decreasing and ϕ-concave, then

Mϕ(xi;λi) ≤Mψ(xi;λi). (5.2)

If either ψ is decreasing and ϕ-convex or ψ is increasing and ϕ-concave, then the reverse inequality is valid in formula
(5.2).

Proof. We prove the case that ψ is increasing and ϕ-convex. Using the inequality of the first and third member in
formula (4.1) with the affine combination ϕ(a) + ϕ(b)−

∑∞
i=1 λiϕ(xi) and the convex function f = ψ ◦ ϕ−1, we get

(
ψ ◦ ϕ−1

)(
ϕ(a) + ϕ(b)−

∞∑
i=1

λiϕ(xi)

)
≤ ψ(a) + ψ(b)−

∞∑
i=1

λiψ(xi).

Acting with the increasing function ψ−1 to the above inequality, we obtain the inequality in formula (5.2).

By using the definition in formula (5.1), the power means can be represented by power functions ϕ(x) = xr

for r 6= 0, and by the limit function in that representation as r approaches 0. Let 0 < a < b, and let
∑∞
i=1 λixi be

an infinite convex combination of points xi ∈ [a, b]. If r 6= 0, the power mean with order r of points xi respecting
coefficients λi is the expression

Mr(xi;λi) =

(
ar + br −

∞∑
i=1

λix
r
i

)1/r

. (5.3)

Letting r tend to 0, the above expression goes to the indeterminate limit form 1∞. As usual, taking the logarithm-
antilogarithm and using l’Hôpital’s rule, we get

M0(xi;λi) = limr→0Mr(xi;λi)

= exp

(
ln a+ ln b−

∞∑
i=1

λi lnxi

)
= ab

∞∏
i=1

x−λi
i .

(5.4)

According to the middle expression on the right side of the above formula, the power mean with order 0 of points
xi respecting coefficients λi is represented by the logarithmic function ϕ(x) = lnx in formula (5.1).

If r and s are real numbers such that r < s, then the inequality

Mr(xi;λi) ≤Ms(xi;λi) (5.5)
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holds. It can be proved by applying formula (5.2) to each of the following five cases.
The case r < s < 0. We use the functions ϕ(x) = xr and ψ(x) = xs. Since 0 < s/r < 1, the function

f(x) = (ψ ◦ ϕ−1)(x) = xs/r is concave. Thus ψ is decreasing and ϕ-concave.
The case r < s = 0. We use the functions ϕ(x) = xr and ψ(x) = lnx. Since 1/r < 0, the function f(x) =

(ψ ◦ ϕ−1)(x) = (1/r) lnx is convex. Thus ψ is increasing and ϕ-convex.
The case r < 0 < s. We use the functions ϕ(x) = xr and ψ(x) = xs. Since s/r < 0, the function f(x) =

(ψ ◦ ϕ−1)(x) = xs/r is convex. Thus ψ is increasing and ϕ-convex.
The case 0 = r < s. We use the functions ϕ(x) = lnx and ψ(x) = xs. The function f(x) = (ψ ◦ ϕ−1)(x) = esx is

convex. Thus ψ is increasing and ϕ-convex.
The case 0 < r < s. We use the functions ϕ(x) = xr and ψ(x) = xs. Since s/r > 1, the function f(x) =

(ψ ◦ ϕ−1)(x) = xs/r is convex. Thus ψ is increasing and ϕ-convex.
Applying the inequality in formula (5.5) to the harmonic mean M−1(xi;λi), geometric mean M0(xi;λi) and

arithmetic mean M1(xi;λi), we gain the version of the best known mean inequality, which includes infinite convex
combinations.

Corollary 5.1. Let 0 < a < b, and let
∑∞
i=1 λixi be an infinite convex combination of points xi ∈ [a, b].

According to the definition in (5.3)-(5.4), the harmonic-geometric-arithmetic mean inequality of points xi respecting
coefficients λi stands as (

a−1 + b−1 −
∞∑
i=1

λix
−1
i

)−1
≤ ab

∞∏
i=1

x−λi
i ≤ a+ b−

∞∑
i=1

λixi. (5.6)
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