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On Existence and Asymptotic Behavior of Solutions of
Hadamard-Volterra Integral Equations
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Abstract
In this paper we provide sufficient condition guaranteeing existence and the asymptotic behavior of
solutions of a class of Hadamard–Volterra integral equations in the Banach space of continuous and
bounded functions on unbounded interval. The main tools used in our considerations are the concept of
measure of noncompactness in conjunction with the Darbo and Mönch fixed point theorems.
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1. Introduction
The theory of integral operators and integral equations is an important part of nonlinear analysis. It is caused

by the fact that this theory is frequently applicable in other branches of mathematics and mathematical physics,
engineering, economics, biology as well in describing problems connected with real world see [7, 10, 11, 19, 23].
Fractional calculus is a generalization of the ordinary differentiation and integration to arbitrary non-integer order,
it has developed up to the present day [7]. Differential and integral equations of fractional order are one of the most
useful mathematical tools in both pure and applied analysis, and various theoretical results have been obtained, see
[1–5, 17]. The paper is devoted to the study of a class of integral equations of Hadamard–Volterra type. That class
comprises a lot of particular cases of fractional integral equations which can be encountered in research papers
and monographs concerning the theory of integral equations and their applications to real world problems see
[8, 15, 21, 22, 24]. Consider the following integral equation

u(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 f(t, s, u(t, s))

st
dtds, (1.1)

where (t, s) ∈ J = [1,+∞)× [1, b], r1, r2 > 0, µ : J → R is a continuous and bounded function, f : J × R→ R is a
continuous function, and Γ(·) is the Euler gamma function.

Using the technique associated with measures of noncompactness and fixed point theorems we show that
Eq-(1.1) has solutions being continuous and bounded functions on the interval [1,+∞). Moreover, the choice of
suitable measures of noncompactness allows us to assert that those solutions are asymptotically stable in certain
sense which will be defined in the sequel.

2. Preliminaries
This section is devoted to collect some definitions and auxiliary results which will be needed in further

considerations. At the beginning we present some basic facts concerning measures of noncompactness. Assume
that (X, ‖·‖) is an infinite dimensional Banach space with zero element θ. Denote by B(x, r) the closed ball centered
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at x and radius r. We write Br to denote the ball B(θ, r). If A is a subset of X then the symbols A, ConvA stand for
the closure and closed convex hull of A, respectively. Moreover, we denote by MX the family of all nonempty and
bounded subsets of X and by NX its subfamily consisting of all relatively compact sets. We accept the following
definition of the concept of a measure of noncompactness.

Definition 2.1. [13, 15, 16, 18] A mapping ψ : MX → R+ is said to be a measure of noncompactness in X if it satisfies
the following conditions

1. The family ker ψ = {A ∈ MX/ ψ(A) = 0} is nonempty and ker ψ ⊂ NX .

2. A ⊂ B ⇒ ψ(A) ≤ ψ(B).

3. ψ(A) = ψ(A).

4. ψ(A) = ψ(Conv A).

5. ψ(λA+ (1− λ)B) ≤ λψ(A) + (1− λ)ψ(B) for λ ∈ [0, 1].

6. If (An) is a sequence of closed sets from MX such that An+1 ⊂ An (n = 0, 1, . . .) and if limn−→∞ ψ(An) = 0,
then the intersection set A∞ =

⋂∞
n=0An is nonempty.

The family ker ψ described in 1. is said to be the kernel of the measure of noncompactness ψ.

Remark 2.1. Observe that the intersection set A∞ from 6. is a member of the family ker ψ. In fact, since ψ(A∞) ≤
ψ(An) for any n, we infer that ψ(A∞) = 0.

In what follows we will work in the Banach spaceX = BC(J) consisting of all real functions defined, continuous
and bounded on J . This space is furnished with the standard norm

‖u‖ = sup{|u(x, y)|; (x, y) ∈ J}.

In order to define a measure of noncompactness in the space X , let us fix a nonempty bounded subset Y of the
space X . For u ∈ Y , T ≥ 1, ε1, ε2 > 0, (x1, y1), (x2, y2) ∈ [1, T ]× [1, b] such that |x2 − x1| ≤ ε1 and |y2 − y1| ≤ ε2.
We denote by ωT (u, ε1, ε2) the modulus of continuity of the function u on the interval [1, T ]× [1, b] i.e

ωT (u, ε1, ε2) = sup{|u(x2, y2)− u(x1, y1)|; (x1, y1), (x2, y2) ∈ [1, T ]× [1, b]}
ωT (Y, ε1, ε2) = sup{ωT (u, ε1, ε2); u ∈ Y }

ωT0 (Y ) = lim
ε1,ε2→0

ωT (Y, ε1, ε2)

ω0(Y ) = lim
T→∞

ωT0 (Y ).

If (t, s) is a fixed number from J , let us denote Y (t, s) = {u(t, s); u ∈ Y } and

diam Y (t, s) = sup
{
|u(t, s)− v(t, s)|; u, v ∈ Y

}
.

Finally, consider the function ψ defined on the family MX by the formula

ψ(Y ) = ω0(Y ) + lim
t7−→∞

sup diam Y (t, s). (2.1)

It can be shown that the function ψ is a measure of noncompactness in the space X . The kernel ker ψ consists of
nonempty and bounded sets Y such that functions from Y are locally equicontinuous on J and the thickness of the
bundle formed by functions from Y tends to zero at infinity. This property will permit us to characterize solutions
of the integral equation considered in the next section.

Theorem 2.1. (Darbo)[14]
Let Ω be a nonempty, bounded, closed and convex subset of the Banach space E and let F : Ω −→ Ω be a continuous mapping.
Assume that there exists a constant k ∈ [0, 1) such that ψ(FA) ≤ kψ(A) for any nonempty subset A of Ω. Then F has a fixed
point in the set Ω.

Remark 2.2. Let us denote by Fix F the set of all fixed points of the operator F which belong to Ω. It can be shown
that the set Fix F belongs to the family ker ψ.
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Theorem 2.2. (Mönch)[18, 20]
Let D be a bounded, closed and convex subset of the Banach space E such that 0 ∈ D, and let F : D −→ D be a continuous
mapping. If the implication

V = ConvF (V ) or V = F (V ) ∪ {0} ⇒ ψ(V ) = 0,

holds for every subset V of D. Then F has a fixed point.

Now, let us assume that Ω is a nonempty subset of the space X and F is an operator on Ω with values in X .
Consider the following equation

u(x, y) = (Fu)(x, y); (x, y) ∈ J. (2.2)

Definition 2.2. [9, 10, 12] The solution u = u(x, y) of Eq. (2.2) is said to be globally attractive if for each solution
v = v(x, y) of Eq. (2.2) we have that

lim
x7−→∞

(
u(x, y)− v(x, y)

)
= 0.

In the case when this limit is uniform, i.e., when for each ε > 0 there exists T > 0 such that∣∣u(x, y)− v(x, y)
∣∣ < ε,

for x ≥ T , we will say that solutions of Eq. (2.2) are uniformly globally attractive.

3. Main results
In this section we give two results for Eq. (1.1). The first one relies on the Darbo’s fixed point theorem and the

second one on the Mönch’s fixed point theorem. Eq. (1.1) will be considered under the following assumptions :

• (H1) The function f is continuous and there exists b ∈ L1(J,R+) such that

|f(x, y, u1)− f(x, y, u2)| ≤ b(x, y)|u1 − u2|; (x, y) ∈ J ; u1, u2 ∈ R.

• (H2) there exist continuous and bounded functions h, g : J → R+ such that∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1
b(t, s)dtds ≤ h(x, y),

with
k :=

‖h‖
Γ(r1)Γ(r2)

< 1,

and ∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1
|f(t, s, 0)|dtds ≤ g(x, y).

Remark 3.1. In view of the assumption (H1) we infer that for each u ∈ R

|f(x, y, u)| ≤ b(x, y)|u|+ |f(x, y, 0)|.

Theorem 3.1. Under assumptions (H1)− (H2) Eq. (1.1) has at least one solution u = u(x, y) in the space X . Moreover,
solutions of Eq. (1.1) are globally attractive.

Proof. Consider the operator F defined on the space X by:

(Fu)(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 f(t, s, u(t, s))

st
dtds.

Observe that in view of our assumptions, for any function u ∈ X the function Fu is continuous on J . Next, let us
take an arbitrary function u ∈ X . Using our assumptions, for a fixed (x, y) ∈ J we have

|Fu(x, y)|

≤ |µ(x, y)|+ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 |f(t, s, u(t, s))|
st

dtds

≤ |µ(x, y)|+ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1
[b(t, s)‖u‖+ |f(t, s, 0)|] dtds

≤ |µ(x, y)|+ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1
b(t, s)‖u‖dtds

+

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1
|f(t, s, 0)|dtds.
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Hence we obtain

‖Fu‖ ≤ ‖µ‖+
‖h‖‖u‖

Γ(r1)Γ(r2)
+ ‖g‖.

Thus, we infer that the function Fu is bounded on J . Then Fu ∈ X .
Take

r =
‖µ‖+ ‖g‖

1− ‖h‖
Γ(r1)Γ(r2)

.

We deduce that the operator F transforms the ball Br into itself.
Further, let (un) ⊂ Br such that un → u we get

|Fun(x, y)− Fu(x, y)|

≤ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 |f(t, s, un(x, y))− f(t, s, u(x, y))|
st

dtds

≤ ‖un − u‖
Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1
b(t, s)dtds.

Then

‖Fun − Fu‖ ≤
‖h‖‖un − u‖
Γ(r1)Γ(r2)

.

Then when n→∞we obtain Fun → Fu so F is continuous on Br.
Now, we take a nonempty Y ⊂ Br, for T ≥ 1, (x1, y1), (x2, y2) ∈ [1, T ]×[1, b] with |x2−x1| ≤ ε1 and |y2−y1| ≤ ε2;

for each ε1, ε2 > 0. Fix arbitrarily u in Y we have

|Fu(x2, y2)− Fu(x1, y1)|

=

∣∣∣∣ 1

Γ(r1)Γ(r2)

∫ x2

1

∫ y2

1

(
ln
x2
s

)r1−1 (
ln
y2
t

)r2−1 f(t, s, u(s, t))

st
dtds

− 1

Γ(r1)Γ(r2)

∫ x1

1

∫ y1

1

(
ln
x1
s

)r1−1 (
ln
y1
t

)r2−1 f(t, s, u(s, t))

st
dtds

∣∣∣∣
≤ 1

Γ(r1)Γ(r2)
sup

(x1,y1),(x2,y2)∈[1,T ]×[1,b]
|u(x2, y2)− u(x1, y1)|∫ x2

1

∫ y2

1

(
ln
x2
s

)r1−1 (
ln
y2
t

)r2−1
b(t, s)dtds

≤ ‖h‖
Γ(r1)Γ(r2)

sup
(x1,y1),(x2,y2)∈[1,T ]×[1,b]

|u(x2, y2)− u(x1, y1)|.

Thus
ω0(FY ) ≤ kω0(Y ). (3.1)

Further, for u, v ∈ Y and an arbitrary fixed (x, y) ∈ [1, T ]× [1, b] we obtain

|Fu(x, y)− Fv(x, y)|

=

∣∣∣∣ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 f(t, s, u(s, t))

st
dtds

− 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 f(t, s, v(s, t))

st
dtds

∣∣∣∣
≤ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1
|f(t, s, u(s, t))− f(t, s, v(s, t))|dtds

≤ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1
b(t, s)|u(s, t)− v(s, t)|dtds

≤ ‖h‖
Γ(r1)Γ(r2)

sup
u,v∈Y

|u(s, t)− v(s, t)|.
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Then
lim

x−→∞
sup diam (FY )(x, y) ≤ k lim

x−→∞
sup diam Y (x, y). (3.2)

Observe, that linking (3.1), (3.2) and the definition of the measure of noncompactness ψ given by the formula (2.1),
we obtain

ψ(FY ) ≤ kψ(Y ).

Finally, in view of the Darbo fixed point theorem we deduce that F has at least one fixed point in Br which is a
solution of Eq. (1.1). Moreover, taking into account the fact that the set Fix F ∈ ker ψ and the characterization of
sets belonging to ker ψ (Remark 2.2) we conclude that all solutions of Eq. (1.1) are globally attractive in the sense of
Definition 2.2.

Now we will formulate an other result by applying Mönch’s Theorem.

Theorem 3.2. Under assumptions (H1)− (H2) Eq. (1.1) has at least one solution u = u(x, y) in the space X . Moreover,
solutions of Eq. (1.1) are globally attractive.

Proof. We have F : Br → Br continuous, let Y ⊂ Br with Y = F (Y ) ∪ {0}. Then for all u in Y , there exist v in Y
such that u = Fv.
For T ≥ 1, (x1, y1), (x2, y2) ∈ [1, T ]× [1, b] such that |x2 − x1| ≤ ε1, |y2 − y1| ≤ ε2 , ε1, ε2 > 0 and u, v ∈ Y we get

∣∣u(x2, y2)− u(x1, y1)
∣∣

=

∣∣∣∣ 1

Γ(r1)Γ(r2)

∫ x2

1

∫ y2

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 f(t, s, v(s, t))

st
dtds

− 1

Γ(r1)Γ(r2)

∫ x1

1

∫ y1

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 f(t, s, v(s, t))

st
dtds

∣∣∣∣
≤

supv∈A|v(x2, y2)− v(x1, y1)|
Γ(r1)Γ(r2)

∫ x2

1

∫ y2

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1
b(t, s)dtds.

In view of our assumptions, we have

sup
u∈A
|u(x2, y2)− u(x1, y1)| ≤ ‖h‖

Γ(r1)Γ(r2)
sup
v∈A
|v(x2, y2)− v(x1, y1)|,

lim
ε1,ε2→0

sup
u∈A

∣∣u(x2, y2)− u(x1, y1)
∣∣ ≤ ‖h‖

Γ(r1)Γ(r2)
lim

ε1,ε2→0
sup
v∈A
|v(x2, y2)− v(x1, y1)|

lim
T→∞

lim
ε1,ε2→0

sup
u∈A

∣∣u(x2, y2)− u(x1, y1)
∣∣ ≤ ‖h‖

Γ(r1)Γ(r2)
lim
T→∞

lim
ε1,ε2→0

sup
v∈A
|v(x2, y2)− v(x1, y1)|.

Then
ω0(Y ) ≤ kω0(Y ). (3.3)

Next, let u, v, w, z ∈ Y such that u = Fv and w = Fz, for x, y ∈ J we have

|u(x, y)− w(x, y)|

≤ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1
|f(t, s, v(s, t))− f(t, s, z(s, t))|dtds

≤ ‖h‖
Γ(r1)Γ(r2)

|v(x, y)− z(x, y)|.

Thus

diam Y (x, y) ≤ ‖h‖
Γ(r1)Γ(r2)

diam Y (x, y).

Then
lim

x−→∞
sup diam (Y )(x, y) ≤ k lim

x−→∞
sup diam Y (x, y). (3.4)

From the estimates (3.3) and (3.4) we infer that

ψ(Y ) ≤ kψ(Y ).

Hence k < 1, we obtain ψ(Y ) = 0. Combining the above result and Theorem 2.2 we complete the proof.
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4. Example

We consider the following Hadamard–Volterra integral equation

u(x, y) =
x+ 1

y2ex
+

1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 e−t + s

t2s3 + 1

√
u2(t, s) + e−t

dtds

st
(4.1)

where (x, y) ∈ J = [1,+∞)× [1, b], b > 1 and r1, r2 > 0.
Set

µ(x, y) =
x+ 1

y2ex
, f(t, s, u(t, s)) =

e−t + s

t2s3 + 1

√
u2(t, s) + e−t; (t, s) ∈ J.

It is clear that equation (4.1) can be written as equation (1.1). Let us show that conditions (H1)− (H3) hold.

|f(t, s, u1(t, s))− f(t, s, u2(t, s))| ≤ e−t + s

t2s3 + 1

∣∣∣∣√u22(t, s) + e−t −
√
u21(t, s) + e−t

∣∣∣∣
≤ e−t + s

t2s3 + 1

∣∣∣∣√u22(t, s)−
√
u21(t, s)

∣∣∣∣
≤ e−t + s

t2s3 + 1

∣∣u2(t, s)− u1(t, s)
∣∣.

Take

b(t, s) =
e−t + s

t2s3 + 1
, f(t, s, 0) =

e−t + s

t2s3 + 1
e−

1
2 t.

We have ∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1 e−t + s

t2s3 + 1
dtds

≤ (lnx)r1(ln y)r2
∫ x

1

∫ y

1

e−t + s

t2s3
dtds

= (lnx)r1(ln y)r2
∫ x

1

∫ y

1

(
e−t

s3
+

1

t2s2

)
dtds

= (lnx)r1(ln y)r2
[(
−e−y + e−1

)(
− 1

2x2
+

1

2

)
+

(
−1

y
+ 1

)(
− 1

x
+ 1

)]
= h(x, y),

and ∫ x

1

∫ y

1

(
ln
x

s

)r1−1 (
ln
y

t

)r2−1
|f(t, s, 0)|dtds

≤ (lnx)r1(ln y)r2
∫ x

1

∫ y

1

e−t + s

t2s3 + 1
e−

1
2 tdtds

≤ (lnx)r1(ln y)r2
∫ x

1

∫ y

1

e−t + s

t2s3
e−

1
2 tdtds

= (lnx)r1(ln y)r2
∫ x

1

∫ y

1

(
e−

3
2 t

s3
+
e−

1
2 t

s2

)
dtds

= (lnx)r1(ln y)r2
[(
−2

3
e−

3
2y +

2

3
e−

3
2

)(
− 1

2x2
+

1

2

)
+

(
− 1

x
+ 1

)(
−2e−

1
2y + 2e−

1
2

)]
= g(x, y).

It is clear that h(x, y), g(x, y) are bounded functions on J . And we have also

k =
‖h‖

Γ(r1)Γ(r2)
=

1

2e
+ 1

Γ(r1)Γ(r2)
< 1,

for an arbitrary r1, r2. Then from Theorem 3.1 the Eq. (4.1) has at least solution in X and solutions of Eq. (4.1) are
globally attractive.
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