
MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES
7 (1) 71-77 (2019) c©MSAEN

Orthogonal Reverse Derivations on semiprime
Γ−semirings

B. Venkateswarlu *, M. Murali Krishna Rao and Y. Adi Narayana

Abstract
In this paper, we introduce the notion of reverse derivation and orthogonal reverse derivations on
Γ−semirings. Some characterizations of semi prime Γ−semirings are obtained by means of orthogonal
reverse derivations. And also obtained necessary and sufficient conditions for two reverse derivations to
be orthogonal.
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1. Introduction
Semiring, the best algebraic structure, which is a common generalization of rings and distributive lattices

was first introduced by American mathematician Vandiver [15] in 1934 but non trivial examples of semirings
have appeared in the earlier studies on the theory of commutative ideals of rings by German mathematician
Richard Dedekind in 19th century. Semiring is an universal algebra with two binary operations called addition
and multiplication, where one of them distributive over the other, bounded distributive lattices are commutative
semirings which are both additively idempotent and multiplicatively idempotent. A natural example of semiring is
the set of all natural numbers under usual addition and multiplication of numbers. In particular, if I is the unit
interval on the real line then (I,max,min) is a semiring in which 0 is the additive identity and 1 is the mutilative
identity. The theory of rings and the theory of semigroups have considerable impact on the development of the
theory of semirings. In structure, semirings lie between semigroups and rings. The study of rings shows that
multiplicative structure of ring is independent of additive structure whereas in semiring multiplicative structure of
semiring is not independent of additive structure of semiring. Additive and multiplicative structures of a semiring
play an important role in determining the structure of a semiring. Semiring, as the basic algebraic structure, was
used in the areas of theoretical computer science as well as in the solutions of graph theory and optimization
theory and in particular for studying automata, coding theory and formal languages. Semiring theory has many
applications in other branches. The notion of Γ−ring was introduced by Nobusawa [11] as a generalization of
ring in 1964. Sen [13] introduced the notion of Γ−semigroup in 1981. The notion of Ternary algebraic system
was introduced by Lehmer [5] in 1932, Lister [6] introduced ternary ring. Dutta & Kar [3] introduced the notion
of ternary semiring which is a generalization of ternary ring and semiring. In 1995, Murali Krishna Rao [7, 8]
introduced the notion of Γ−semiring which is a generalization of Γ−ring, ring, ternary semiring and semiring.
After the paper [7, 8] was published, many mathematicians obtained interesting results on Γ−semirings. Murali
Krishna Rao and Venkteswarlu [9] introduced the unity element in Γ−semiring and studied properties of Γ−incline
and field Γ−semiring.

Over the last few decades several authors have investigated the relationship between the commutativity of ring
R and the existence of certain specified derivations of R. The first result in this direction is due to Posner [12] in
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1957. In the year 1990, Bresar and Vukman [2] established that a prime ring must be a commutative if it admits a
non zero left derivation. The notion of derivation of ring is useful for characterization of rings.

The notion of derivation of prime Γ−semirings was introduced by Javed et al. [4]. Suganthameena et al. [14]
introduced the concept of orthogonal derivations on semirings. In this paper, we introduce the notion of reverse
derivation and orthogonal reverse derivations on Γ−semirings. Some characterizations of semi prime Γ−semirings
are obtained by means of orthogonal reverse derivations. And also obtained necessary and sufficient conditions for
two reverse derivations to be orthogonal.

2. Preliminaries
In this section, we recall some important definitions which are necessary for this paper.

Definition 2.1. Let (M,+) and (Γ,+) be commutative semigroups. Then we call M as a Γ−semiring if there exists a
mapping M × Γ×M → M is written (x, α, y) as xαy such that it satisfying the following axioms for all x, y, z ∈M
and α, β ∈ Γ

(i) xα(y + z) = xαy + xαz (ii) (x+ y)αz = xαz + yαz

(iii) x(α+ β)y = xαy + xβy (iv) xα(yβz) = (xαy)βz.

Every semiring R is a Γ−semiring with Γ = R and ternary operation xγy as the usual semiring multiplication.

We illustrate the definition of Γ−semiring by the following example

Example 2.2. Let S be a semiring and Mp,q(S) denote the additive abelian semigroup of all p × q matrices with
identity element whose entries are from S. Then Mp,q(S) is a Γ−semiring with Γ = Mp,q(S) ternary operation is
defined by xαz = x(αt)z as the usual matrix multiplication, where αt denotes the transpose of the matrix α, for all
x, y and α ∈Mp,q(S).

A Γ−semiring M is said to have zero element if there exists an element 0 ∈M such that 0 + x = x = x+ 0 and
0αx = xα0 = 0, for all x ∈M,α ∈ Γ. A Γ−semiring M is said to be commutative Γ−semiring if xαy = yαx, for all
x, y ∈M and α ∈ Γ. An element a ∈M is said to be an idempotent of M if there exists α ∈ Γ such that a = aαa and
a+ a = a. Every element of M is an idempotent of M then M is said to be idempotent Γ−semiring M. An element
1 ∈M is said to be an unity if for each x ∈M there exists α ∈ Γ such that xα1 = 1αx = x.

A non-empty subset A of Γ−semiring M is called a Γ−subsemiring M if (A,+) is a subsemigroup of (M,+) and
aαb ∈ A for all a, b ∈ A and α ∈ Γ. A Γ−semiring M is said to be prime if aΓMΓb = 0 then a = 0 or b = 0, for all
a, b ∈M. A Γ−semiring M is said to be 2-torsion free if 2x = 0 then x = 0, for all x ∈M. AΓ−semirings M is said
to be semiprime if aΓMΓa = 0 then a = 0, for all a ∈M. Every prime Γ−semiring is obviously semiprime. We
write [x, y]α = xαy − yαx. For commutative Γ−semirings, [x, y]α = 0, for every x, y ∈M and α ∈ Γ. An additive
mapping d from M into M is called a derivation if d(xαy) = d(x)αy + xαd(y), for all x, y ∈M,α ∈ Γ.

3. Orthogonal reverse derivation of Γ−semirings

In this section, we introduce the notion of reverse derivation and orthogonal reverse derivations on Γ−semirings.
Some characterizations of semi prime Γ−semirings are obtained by means of orthogonal reverse derivations. And
also obtained necessary and sufficient conditions for two reverse derivations to be orthogonal.

Definition 3.1. Let M be a Γ−semiring. An additive mapping d from M into M is called a reverse derivation if
d(xαy) = d(y)αx+ yαd(x), for all x, y ∈M,α ∈ Γ.

If M is commutative then both derivation and reverse derivation are the same.

Definition 3.2. Let M be a Γ−semiring. An additive mapping d from M into M is called a jordan derivation if
d(xαx) = d(x)αx+ xαd(x), for all x ∈M,α ∈ Γ.

In general, the reverse derivation is not a derivation but it is a jordan derivation.

Examples 3.3.
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(i) Let S be a semiring and d : S → S be a reverse derivation. ConsiderM = M1×2(S) and Γ =

{
n

[
1
0

]
| n ∈ Z+

}
.

Then M is a Γ−semiring. Let M1 = {(x, y) | x, y ∈ S} ⊆M.

Now define a mappingD : M1 →M1 byD(x, y) = [d(x), d(y)], as (x1, y1)

(
n · 1

0

)
(x2, y2) = (x1nx2, y1ny2).

Therefore D is a reverse derivation on Γ−semiring M1.

(ii) Let S be a semiring and M =

{(
x y
0 0

)
| x, y ∈ S

}
and Γ =

{(
n 0
0 0

)
| n is an integer

}
.

Then M is a Γ−semiring. Now d : M →M is defined by d
(
x y
0 0

)
=

(
0 y
0 0

)
.

Therefore d is a derivation but not reverse derivation.

(iii) Let M be a semiring and M =




0 x y z
0 0 0 y
0 0 0 −x
0 0 0 0

 | x, y, z ∈ R
 and

Γ =




0 0 0 0
0 n 0 0
0 0 n 0
0 0 0 n

 | n is an integer

 . Then M is a Γ−semiring.

Let d : M →M is defined by d


0 x y z
0 0 0 y
0 0 0 −x
0 0 0 0

 =


0 0 0 −z
0 0 0 y
0 0 0 −x
0 0 0 0

 .

Therefore d is a reverse derivation but not derivation.

Definition 3.4. Let d and g be two reverse derivations on Γ−semiring M. If d(x)ΓMΓg(y) = 0 = g(x)ΓMΓd(y), for
all x, y ∈M then d and g are said to be orthogonal.

Note that a non-zero reverse derivation can’t be orthogonal on it self.

Example 3.5. Let d1 and d2 be reverse derivations on Γ1−semiring M1 and Γ2−semiring M2 respectively. Consider
M = M1 ×M2 and Γ = Γ1 × Γ2. Now we define (a, b) + (c, d) = (a+ c, b+ d) and (a, b)(α, β)(c, d) = (aαc, bβd),
for all a, b ∈M1, c, d ∈M2, α ∈ Γ1, β ∈ Γ2. Then M is a Γ−semiring.
Now define d and g on M by d(a, b) = (d1(a), 0) and g(a, b) = (0, d2(b)). Then d and g are reverse derivations on M.
And also it is clear that d and g are orthogonal reverse derivation on M.

Theorem 3.6. Let M be a 2−torsion free semiprime Γ−semiring. For a and b are two elements of M, the following are
equivalent

(i) aΓxΓb = 0.

(ii) bΓxΓa = 0.

(iii) aΓxΓb+ bΓxΓa = 0, for all x ∈M.

If one of these conditions are fulfilled then aΓb = bΓa = 0.

Proof. Let a and b be two elements of 2−torsion free semiprime Γ−semiring M.

(i)⇒(ii) : Assume aΓxΓb = 0, for all x ∈M.
Pre and post multiplying by bΓxΓ and ΓxΓa then
(b ΓxΓa)ΓxΓ (bΓxΓa) = 0.
Therefore bΓxΓa = 0, since M is a semiprime, for all x ∈M.

(ii)⇒(i) : Suppose bΓxΓa = 0, for all x ∈M.
Pre and post multiplying by aΓxΓ and ΓxΓb then
(aΓxΓb)ΓxΓ(aΓxΓb) = 0. Therefore aΓxΓb = 0, for all x ∈M.
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(ii)⇒(iii) : Suppose bΓxΓa = 0, for all x ∈M. Then aΓxΓb = 0, for all x ∈M.
There fore aΓxΓb+ bΓxΓa = 0, for all x ∈M.

(iii)⇒(i): Suppose aΓxΓb+ bΓxΓa = 0, for all x ∈M · · · (1)
Pre multiplying by bΓxΓ then bΓxΓaΓxΓb+ bΓxΓbΓxΓa = 0.
Again pre multiplying by aΓxΓ then
(aΓxΓb)ΓxΓ(aΓxΓb) + (aΓxΓb)ΓxΓ(bΓxΓa) = 0 · · · (2)
Post multiplying (1) by ΓxΓa then aΓxΓbΓxΓa+ bΓxΓaΓxΓa = 0.
Again post multiplying by ΓxΓb then
(aΓxΓb)ΓxΓ(aΓxΓb) + (bΓxΓa)ΓxΓ(aΓxΓb) = 0 · · · (3)
Adding (2) and (3) then using (1), we get 2(aΓxΓb)ΓxΓ(aΓxΓb) = 0, for all x ∈M.
Since M is a 2−torsion free and semiprime then aΓxΓb = 0, for all x ∈M.

Let aΓxΓb = 0, for all x ∈M.
Pre and post multiplying by bΓ and Γa respectively then bΓaΓxΓbΓa = 0. Since M is a semiprime, bΓa = 0.
Similarly, from bΓxΓa = 0, we can show that bΓa = 0.

Theorem 3.7. Let M be a 2−torsion free semi prime Γ−semiring. If additive mappings d and g of M into itself satisfy
d(x)ΓMΓg(x) = 0, for all x ∈M then d(x)ΓMΓg(y) = 0, for all x, y ∈M.

Proof. Suppose d(x)ΓmΓg(x) = 0, for all x,m ∈M · · · (1). Let y ∈M.

0 = d(x+ y)ΓmΓg(x+ y)

= d(x)ΓmΓg(x) + d(x)ΓmΓg(y) + d(y)ΓmΓg(x) + d(y)ΓmΓg(y)

= d(x)ΓmΓg(y) + d(y)ΓmΓg(x).

Pre multiplying by d(x)ΓmΓg(y)ΓsΓ, where s ∈M,

0 = [d(x)ΓmΓg(y)]ΓsΓ[d(x)ΓmΓg(y)] + d(x)ΓmΓ[g(y)ΓsΓd(y)]ΓmΓg(x), for all s ∈M · · · (2).

But from (1), 0 = d(x)ΓsΓg(x), for all s ∈M
⇒ 0 = g(x)ΓsΓd(x), by Theorem 3.6, for all x, s ∈M.

Now from (2), 0 = d(x)ΓmΓg(y)ΓsΓd(x)ΓmΓg(y)

⇒ 0 = d(x)ΓmΓg(y), since M is a semiprime, for all x, y,m ∈M.

Hence the theorem.

Theorem 3.8. Let M be a 2−torsion free semiprime Γ−semiring, d and g be reverse derivations of M into itself. Then d and
g are orthogonal if and only if d(x)αg(y) + g(x)αd(y) = 0, for all x, y ∈M,α ∈ Γ.

Proof. Suppose d(x)αg(y) + g(x)αd(y) = 0, for all x, y ∈M,α ∈ Γ.
Replace y by xβy, where β ∈ Γ, then we obtain

0 = d(x)αg(xβy) + g(x)αd(xβy)

⇒ 0 = d(x)α[g(y)βx+ yβg(x)] + g(x)α[d(y)βx+ yβd(x)]

⇒ 0 = d(x)αg(y)βx+ d(x)αyβg(x) + g(x)αd(y)βx+ g(x)αyβd(x).

⇒ 0 = {d(x)αg(y) + g(x)αd(y)}βx+ d(x)αyβg(x) + g(x)αyβd(x).

⇒ 0 = 0 + d(x)αyβg(x) + g(x)αyβd(x).

By Theorem 3.6, d(x)αyβg(x) = 0 = g(x)αyβd(x), for all x, y ∈M,α, β ∈M.
By Theorem 3.7, d(x)αyβg(z) = 0 = g(x)αyβd(z), for all x, y, z ∈M,α, β ∈M.
Thus d and g are orthogonal.

Conversely assume that d and g are orthogonal. Then d(x)ΓmΓg(y) = g(x)ΓmΓd(y) = 0, for all x, y,m ∈M.
By Theorem 3.6, d(x)Γg(y) = 0 = g(x)Γd(y)⇒ d(x)Γg(y) + g(x)Γd(y) = 0, for all x, y ∈M.
Hence the theorem.
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Remark 3.9. Suppose d and g are reverse derivations of Γ−semiring on M. Then for x, y ∈M,α ∈ Γ,

(i) dg(xαy) = d(g(xαy)) = d(g(y)αx+ yαg(x)) = d(g(y)αx) + d(yαg(x))

= d(x)αg(y) + xαdg(y) + dg(x)αy + g(x)αd(y)

ii) gd(xαy) = g(d(xαy)) = g(d(y)αx+ yαd(x)) = g(d(y)αx) + g(yαd(x))

= g(x)αd(y) + xαgd(y) + gd(x)αy + d(x)αg(y).

Theorem 3.10. Let M be a 2−torsion free semi prime Γ−semiring. Suppose d and g are reverse derivations of M into M.
Then d and g are orthogonal if and only if dg = 0.

Proof. Let M be a 2−torsion free semiprime Γ−semiring and d and g be two reverse derivations of M into M.
Suppose dg = 0. Let x, y ∈M,α ∈ Γ. From Remark 3.9 and dg = 0, we get dg(xαy) = d(x)αg(y) + g(x)αd(y) = 0.
By Theorem 3.8, d and g are orthogonal.

Conversely suppose that d and g are orthogonal. Then

0 = d(x)αyβg(z), for all x, y, z ∈M,α, β ∈ Γ.

⇒ 0 = d[d(x)αyβg(z)]

⇒ 0 = dg(z)βyαd(x) + g(z)βd(y)αd(x) + yβg(z)αd[d(x)].

Since d and g are orthogonal, then second and third summands are zero.
Therefore, we obtain, dg(z)βyαd(x) = 0, for all x, y, z ∈M,α, β ∈ Γ.
Now x replace by g(z) then dg(z)βyαdg(z) = 0. Since M is a semi prime, we get dg(z) = 0, for allz ∈M.
Hence dg = 0.

Corollary 3.11. Let M be a 2−torsion free semi prime Γ−semiring. Suppose d and g are reverse derivations of M into M.
Then d and g are orthogonal if and only if gd = 0.

Theorem 3.12. Let M be a 2−torsion free semiprime Γ−semiring and d and g be reverse derivations of M into M. Then d
and g are orthogonal if and only if dg + gd = 0.

Proof. Let M be a 2−torsion free semiprime Γ−semiring and d and g be reverse derivations of M into M.
Let x, y ∈M,α ∈ Γ.

Suppose 0 = dg + gd.

⇒ 0 = (dg + gd)(xαy) = dg(xαy) + gd(xαy)

⇒ 0 = 2d(x)αg(y) + 2g(x)αd(y)

⇒ 0 = d(x)αg(y) + g(x)αd(y), since M is a 2−torsion free.

By Theorem 3.8, d and g are orthogonal. The proof of the converse follows from Theorem 3.10 and Corollary 3.11

Theorem 3.13. Let M be a 2−torsion free semiprime Γ−semiring. Suppose d and g are reverse derivations of M into M.
Then d and g are orthogonal if and only if dg is a derivation.

Proof. Let M be a 2−torsion free semiprime Γ−semiring. Suppose d and g are reverse derivations of M into
M. Suppose that d and g are orthogonal. Let x, y ∈ M and α ∈ Γ. From Remark 3.9 and Theorem 3.8, we get
dg(xαy) = dg(x)αy + xαdg(y). Hence dg is a derivation.

Conversely suppose that dg is a derivation. Let x, y ∈M and α ∈ Γ. Now dg(xαy) = dg(x)αy + xαdg(y).
Therefore Remark 3.9 and comparing then we get 0 = d(x)αg(y) + g(x)αg(y).
Therefore, by Theorem 3.8, d and g orthogonal.

Corollary 3.14. Let M be a 2−torsion free semiprime Γ−semiring. Suppose that d and g are reverse derivations of M into
itself. Then d and g are orthogonal if and only if gd is a derivation.

Corollary 3.15. Let M be 2−torsion free semiprime Γ−semiring. Suppose d and g are reverse derivations on M. Then the
following are equivalent.

(i). d and g are orthogonal
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(ii). dg = 0

(iii). gd = 0

(iv). dg + gd = 0

(v). dg is derivation

(vi). gd is derivation

The proof of the following corollary from Theorem 3.6 and Corollary 3.15.

Corollary 3.16. Let d and g be reverse derivations on 2−torsion free semiprime Γ−semiring M. Suppose d and g are
orthogonal on M. Then either d = 0 or g = 0.

Theorem 3.17. Let M be a 2−torsion free semiprime Γ−semiring. If d is a reverse derivation of M into M such that d2 is a
derivation then d = 0.

Proof. Suppose d2 is a derivations 2−torsion free semiprime Γ−semiring M and x, y ∈M,α ∈ Γ.

Now d2(xαy) = d(d(xαy))

⇒ d2(x)αy + xαd2(y) = d[d(y)αy + yαd(x)]

= d(x)αd(y) + xαd2(y) + d2(x)αy + d(x)αd(y)

⇒ 2d(x)αd(y) = 0

⇒ d(x)αd(y) = 0, since M is a 2-torsion free, for all x, y ∈M,α ∈ Γ · · · (1)

Replace x by zβx in (1), z ∈M,β ∈ Γ, we get

0 = d(zβx)αd(y) = [d(x)βz + xβd(z)]αd(y)

⇒ 0 = (d(x)βz)αd(y) + xβ(d(z)αd(y))

⇒ 0 = (d(x)βz)αd(y), from (1) · · · (2)

Replace y by x+ y in (2), we get,
0 = (d(x)βz)αd(x+ y) = d(x)βzαd(x) + d(x)βzαd(y)

⇒ 0 = d(x)βzαd(x), from (2), for all x, z ∈M,α, β ∈ Γ.

⇒ 0 = d(x), since M is a semiprime, for all x ∈M.

This completes the proof.

Theorem 3.18. Let M be a 2−torsion free semiprime Γ−semiring. Suppose d and g are reverse derivations on M. If d2 = g2

then the following are holds

(i). (d+ g) and (d− g) are orthogonal.

(ii). either d = −g or d = g.

Proof. Let M be a 2−torsion free semiprime Γ−semiring. Suppose d andg are reverse derivations on M
and d2 = g2.

(i).

[(d+ g)(d− g) + (d− g)(d+ g)](x) = (d+ g)(d(x)− g(x)) + (d− g)(d(x) + g(x))

= d(d(x))− dg(x) + gd(x)− g(g(x)) + d(d(x) + d(g(x)− gd(x)− g(g(x)) = 0.

By Theorem 3.12, d+ g and d− g are orthogonal.

(ii). From (i), d+ g and d− g are orthogonal. By Theorem 3.16, d+ g = 0 or d− g = 0.
Then d = −g or d = g.

The proof of the following corollary from Theorems 3.8 and 3.18.

Corollary 3.19. Let M be a 2-torsion free semiprime Γ−semiring and d and g are reverse derivations on M. If d(x)αd(x) =
g(x)αg(x), for all x ∈M then d+ g and d− g are orthogonal.
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