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Abstract
It is known that a linear code can be represented by a binomial ideal. In this paper, we give standard
bases for the ideals in a localization of the multivariate polynomial ring in the case of the linear codes
over prime fields.
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1. Introduction
Coding theory is the mathematical foundation for data transmission through noisy communication channels. It

contains two main parts. The first part is to encode the message to reduce its sensitivity to noise during transmission.
The second part is to decode the received message by detecting and correcting the errors.

Bruno Buchberger introduced the theory of Groebner bases for polynomial ideals in 1965. The Groebner bases
theory can be used to solve some problems concerning the ideals by developing computations in multivariate
polynomial rings. In 1964, Hironaka [12] introduced the analogues of Groebner bases called standard bases for ideals
in the localization of the polynomial ring at the origin. In [6], standard bases for ideals generated by polynomials in
local rings can be determined by using the same method as Groebner bases.

Connection between linear codes and ideals in polynomial rings was presented in [2]. And it was proved that a
Groebner basis of the ideal associated to a binary linear code can be used for determining the minimum distance. A
generalization to linear codes over prime fields can be found in [15, 16]. In [15], it has been proved that a linear
code can be described by a binomial ideal and a Groebner basis with respect to lexicographic order for the binomial
ideal is determined .

The aim of this paper is to present the standard basis of the ideal of a linear code over a prime field in the
local ring of rational functions that are regular at a point of the affine variety associated to the ideal. The idea is to
generalize the method developed by N. Dück and K. H. Zimmermann in [9].

2. Preliminaries
Throughout this paper, n denotes a positive integer, K a commutative field and K[X] := K[X1, . . . , Xn] the

polynomial ring in n variables over K. We denote by 0 the zero element of Nn where N is the set of non negative
integers.
A monomial in K[X] is an algebraic expression of the form Xα1

1 · · ·Xαn
n which is denoted by Xα where α =

(α1, . . . , αn) ∈ Nn. The monomial Xα = Xα1
1 · · ·Xαn

n can be identified with the n-tuple of exponents α =
(α1, . . . , αn) ∈ Nnand vice versa, thus there exists a one-to-one correspondence between the monomials in K[X]
and the elements of Nn. The degree of the monomial Xα with α = (α1, . . . , αn) is | α |:= α1 + α2 + · · ·+ αn. Any
order > we establish on Nn will give us an order on the set of monomials in K[X] : if α > β according to this order,
we have Xα > Xβ . An order > in K[X] is compatible with multiplication if for all Xα, Xβ and Xγ in K[X] with
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Xα > Xβ then XαXγ > XβXγ . Now let > be an order on the set of monomials Xu where u ∈ Nn. We say that
> is a semigroup order in K[X] if > is a total order and it is compatible with the multiplication of monomials. A
monomial order on K[X] is a semigroup order such that 1 < Xi for i = 1, . . . , n. Usual monomial orders on K[X]
are the lexicographic order, the degree lexicographic order and the degree reverse lexicographic order.

Let f be a non-zero polynomial of K[X] such that f =

k∑
i=1

ciX
αi where ci ∈ K and αi ∈ Nn. Let us fix a monomial

order > on K[X]. A term in K[X] is a scalar times a monomial. The leading term of f , denoted by lt>(f), is the
largest involved term with respect to >. If lt>(f) = cmX

αm where 1 ≤ m ≤ k, then cm is called the leading
coefficient of f (lc>(f)) and Xαm is the leading monomial of f (lm>(f)). We denote by deg(f) the maximal degree
of all monomials occuring in f . The reduction of a polynomial f by a polynomial g, denoted by Red(f, g) is defined
by

Red(f, g) := f − q.g

where lt>(f) = q. lt>(g), for some term q = cXα. Let F = (f1, ..., fs) be a s-tuple of polynomials in K[X]. Each
polynomial f ∈ K[X] can be written in the form :

f = a1f1 + a2f2 + · · ·+ asfs + r

where a1, ..., as , r ∈ K[X] and either r = 0 or r is a K-linear combination of monomials, none of which is divisible
by any of lt>(f1), ..., lt>(fs). Moreover, if aifi 6= 0, then lt>(f) ≥ lt>(aifi), 1 ≤ i ≤ s. The polynomial r is called the
remainder of f on division by F . The remainder r is produced by the following algorithm called division algorithm
in K[X] (see [5]).

Input : f1, . . . , fs, f
Output : r
r := 0
p := f
WHILE p 6= 0 DO

i := 1
divisionoccurred:= false
WHILE i ≤ s AND divisionoccurred = false DO

IF lt>(fi) divides lt>(p) THEN
p := Red(p , fi)
divisionoccurred:= true

ELSE
i := i+ 1

IF divisionoccurred = false THEN
r := r + lt>(p)
p := p− lt>(p)

The division algorithm terminates after a finite number of steps.
Let I ⊂ K[X] be a non-zero ideal and > a monomial order. The ideal generated by the set of lt>(f) where f ∈ I is
called the leading ideal of I , denoted by lt>(I), i.e

lt>(I) := 〈lt>(f) | f ∈ I〉.

For a finite subset G = {g1, ..., gs} of the ideal I , we denote by lt>(G) the ideal generated by the lt>(gi), for
i = 1, . . . , s, i.e

lt>(G) := 〈lt>(g1), . . . , lt>(gs)〉.

A finite subset G = {g1, ..., gs} of an ideal I is called a Groebner basis of I if lt>(G) = lt>(I). A Groebner basis G for
the polynomial ideal I is called a minimal Groebner basis of I if for all g ∈ G, lc>(g) = 1 and lt>(g) 6∈ lt>(G− {g}).
The reduced Groebner basis for the ideal I is a Groebner basis G satisfying :

(1) lc>(g) = 1 for all g ∈ G,
(2) no monomial of g lies in lt>(G− {g}), for all g ∈ G.

A Groebner basis can be determined by using Buchberger’s algorithm. Let f, g ∈ K[X] be non-zero polynomials.
Fix a monomial order > and let Xγ be the least common multiple of the leading monomial of f and the leading
monomial of g. The S-polynomial of f and g, denoted by spoly(f, g) is
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spoly(f, g) :=
Xγ

lt>(f)
· f − Xγ

lt>(g)
· g

If I is a polynomial ideal, then a basis G = {g1, . . . , gs} for I is a Groebner basis for I if and only if for all pairs i 6= j,
the remainder on division of spoly(gi, gj) by G is zero.

3. Localization
Let K be a commutative field and p = (p1, . . . , pn) an n-tuple of Kn. K(X) := K(X1, . . . , Xn) denotes the field of

rationnal functions containing K[X]. We define a local ring in K(X) by the set Op :=
{
f

g
| f, g ∈ K[X], g(p) 6= 0

}
.

We say also that we localize at the maximal ideal 〈X1 − p1, . . . , Xn − pn〉 ⊂ K[X]. Let mp be the ideal generated by
X1 − p1, . . . , Xn − pn in Op. Then each element in Op \mp is a unit in Op.
A local order in K[X] = K[X1, . . . , Xn] is a semigroup order such that 1 > Xi for all 1 ≤ i ≤ n. For instance, for two
n-tuples of Nn α = (α1, . . . , αn) and β = (β1, . . . , βn), we define the negative degree lexicographic order by α > β if
| α |<| β | or | α |=| β | and there exists an integer i ∈ {1, . . . , n} such that α1 = β1, . . . , αi−1 = βi−1, αi > βi.
Let > be a local order on the set of monomials of K[X] and let
S> := {1 + g ∈ K[X] | g = 0 or lt>(g) < 1}. S> is a multiplicative part of K[X] and we remark that S> =
K[X] \ 〈X1, . . . , Xn〉. Define the localization of K[X] in view of the order > by the ring ([6, 13])

Loc>(K[X]) := S−1> K[X] =

{
f

(1 + g)
| f ∈ K[X], 1 + g ∈ S>

}
. (3.1)

We have Loc>(K[X]) = Op=0. Under the local order, there is a difficulty for the successive reductions, because we
may have an infinite strictly decreasing sequence of terms. For example, consider the polynomials of one variable
X , f = X and g = X −X2, and we divide f by g by using the division algorithm, so that we successively reduce by
X −X2. This gives the reductions:

f1 := Red(f, g) = X2

f2 := Red(f1, g) = X3

...

fn := Red(fn−1, g) = Xn+1,

and so on.
Mora introduced a method to solve this problem. The following result can be found in [6].

Theorem 3.1 (Mora normal form algorithm).
Given non-zero polynomials f, f1, . . . , fs ∈ K[X] and let > be a local order. There is an algorithm which gives the polynomials
u, a1, . . . , as, h ∈ K[X] such that

uf = a1f1 + · · ·+ asfs + h (3.2)

where lt>(u) = 1 (u = 1+ g is unit in Loc>(K[X])), lt>(f) ≥ lt>(ai) · lt>(fi) for all i with ai 6= 0 and h = 0 or lt>(h) is
not divisible by any of lt>(fi). We denote h by NF (f | G) with G = {f1, . . . , fs} and we say that h is the weak normal form
of f on division by G.

For f ∈ K[X], we define ecart(f) := deg(f)− deg(lt>(f)). The remainder h in (3.2) is produced by the following
algorithm called Mora’s division algorithm
h := f ; L := {f1, . . . , fs}; M := {g ∈ L | lt>(g) divides lt>(h)}

WHILE (h 6= 0 AND M 6= ∅) DO
SELECT g ∈M with ecart(g) minimal
IF ecart(g) > ecart(h) THEN

L := L ∪ {h}
h := Red(h, g)

IF h 6= 0 THEN

M := {g ∈ L | lt>(g) divides lt>(h)}
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4. Linear codes and binomial ideals
Let Fp be the finite field with p elements where p is a prime number. A linear code C of length n and dimension

k over Fp is the image of a linear, injective mapping

ψ : Fkp −→ Fnp

where k ≤ n. The elements x = (x1, ..., xn) ∈ C are called the codewords. The weight of a word x = (x1, ..., xn) ∈ Fnp
is defined by wt(x) := card{i | xi 6= 0, 1 ≤ i ≤ n}. The minimum distance of the linear code C is d := min{d(x, y) |
x, y ∈ C, x 6= y} or d := min{wt(x) | x ∈ C, x 6= 0}where d(x, y) := card({i | xi 6= yi}). We define the support of an
element x ∈ C by supp(x) := {i | xi 6= 0}. A linear code C of length n and dimension k is called an [n, k] − code.
Moreover, if the minimum distance is d, we say that C is an [n, k, d]− code.
Let C be an [n, k]− code, ei = (ζi1, ..., ζik) where i = 1, ..., k the canonical basis of Fkp and
ψ(ei) = (gi1, ..., gin) . The generating matrix of C is the matrix of dimension k × n defined by G = (gij) where
gij ∈ Fp. The linear code C is represented as follows C = {xG | x ∈ Fkp}. We will say that G is in standard form if
G = (Ik |M) where Ik is the k × k identity matrix.
Let C be an [n, k]− code over Fp. Define the ideal associated with C as ([2, 8, 10, 16])

IC := 〈Xc −Xc′ | c− c′ ∈ C〉+ 〈Xp
i − 1 | 1 ≤ i ≤ n〉 (4.1)

where each word c ∈ Fnp is considered as an integral vector in the monomial Xc. Let C be an [n, k]− code over Fp
and

G = (gij) = (Ik |M) (4.2)

a generating matrix in standard form . Let mi be the vector of length n over Fp defined by

mi = (0, . . . , 0, p− gi,k+1, . . . , p− gi,n) (4.3)

for 1 ≤ i ≤ k. We have Xmi = X
p−gi,k+1

k+1 X
p−gi,k+2

k+2 . . . X
p−gi,n
n =

∏
j∈supp(mi)

X
p−gi,j
j . In particular, if supp(mi) is the

empty set, then Xmi = 1.

Theorem 4.1. Let us take the lexicographic order on K[X] with
X1 > X2 > · · · > Xn. The code ideal IC has the reduced Groebner basis

G = {Xi −Xmi | 1 ≤ i ≤ k} ∪ {Xp
i − 1 | k + 1 ≤ i ≤ n}. (4.4)

Proof. A proof can be found in [15].

5. Standard bases
In this section, we will describe the analogues of Groebner bases called standard bases for the ideals in local

rings by Mora’s division algorithm. Given any local order > on monomials in K[X], there is a natural extension

of > to Loc>(K[X]), which we will also denote by >. For any h =
f

1 + g
∈ Loc>(K[X]) as in (3.1), we define

lm>(h) := lm>(f), lc>(h) := lc>(f) and lt>(h) := lt>(f). We fix a local order > on Loc>(K[X]) and let I be an
ideal in Loc>(K[X]). A standard basis of I is a subset {f1, . . . , fr} of I such that lt>(I) = 〈lt>(f1), . . . , lt>(fr)〉
where lt>(I) is the ideal generated by the set of lt>(f) with f ∈ I .

Proposition 5.1 (Product criterion). [11]
Let f, g ∈ K[X1, . . . , Xn] be polynomials such that
lcm(lm>(f), lm>(g)) = lm>(f) · lm>(g), then

NF

(
spoly(f, g) | {f, g}

)
= 0 (5.1)

where NF (− | −) is defined as in Theorem 3.1.

We will consider the ideals of the local ring Loc>(K[X]) which are generated by polynomials of K[X]. A more
general result of the following theorem can be found in [11].
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Theorem 5.1 (Buchberger criterion).
Let I ⊂ Loc>(K[X]) be an ideal, G = {g1, . . . , gs} a set of polynomials of I and > a local order. Let NF (− | −) be the weak
normal form as in Theorem 3.1. Then the following are equivalent:

i) G is a standard basis of I .

ii) G generates I and NF
(
spoly(gi, gj) | G

)
= 0 for i, j = 1, . . . , s.

iii) G generates I and NF
(
spoly(gi, gj) | Gij

)
= 0 for a suitable subset Gij ⊂ G and i, j = 1, . . . , s.

Let C be an [n, k]− code, the point (1, . . . , 1) is a zero of the code ideal IC in the affine space over Fp. Rather than
localizing at the maximal ideal 〈X1 − 1, . . . , Xn − 1〉, we change coordinates to translate the point to the origin.
Denote I ′C the corresponding ideal, and I := I ′C Loc>(Fp[X]) the ideal of Loc>(Fp[X]) generated by I ′C .

Lemma 5.1. Let p a prime number, we have

I ′C =

〈
(Xi + 1) + (p− 1)

∏
j∈supp(mi)

(Xj + 1)p−gi,j | 1 ≤ i ≤ k

〉
+

〈
(Xi + 1)p + p − 1 | k + 1 ≤ i ≤ n

〉
where gi,j is

defined in (4.2) and mi in (4.3).

Proof. The ideal IC defined in (4.1) has the reduced Groebner basis (4.4) by the Theorem 4.1 with respect to
the lexicographic order on K[X]. This is an ideal basis of IC in K[X]. The translation is made via the ring map
Xi 7−→ Xi + 1. Since K[X] ⊂ Loc>(K[X]), then the claim for the translated ideal follows.

Now we present our main result.

Theorem 5.2. Let C be an [n, k]− code over Fp with p a prime number. Under the negative degree lexicographic order > on
Fp[X], the ideal I = I ′C Loc>(Fp[X]) in Loc>(Fp[X]) has the standard basis

S =

{
Xi −

∑
0≤tl≤p−gi,jl (1≤l≤σi)
(t1,...,tσi ) 6=(0,...,0)

σi∏
h=1

(
p− gi,jh

th

)
Xth
jh
| 1 ≤ i ≤ k

}
∪
{
Xp
i | k + 1 ≤ i ≤ n

}
(5.2)

where σi := card(supp(mi)) is the number of elements in supp(mi).

Proof. We will show that S generates I ′C , then we prove that S is a standard basis.
For k + 1 ≤ i ≤ n
LetXp

i ∈ S and we will prove thatXp
i ∈ I ′C . Since we work over a field of characteristic p, we have (Xi+1)p = Xp

i +1.
Thus

Xp
i = (Xi + 1)p + p− 1 ∈ I ′C .

For 1 ≤ i ≤ k

Let Xi −
∑

0≤tl≤p−gi,jl (1≤l≤σi)
(t1,...,tσi ) 6=(0,...,0)

σi∏
h=1

(
p− gi,jh

th

)
Xth
jh
∈ S. Suppose that

supp(mi) = {j1, j2, . . . , jσi}with j1 < j2 < · · · < jσi and denote
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A := Xi −
∑

0≤tl≤p−gi,jl (1≤l≤σi)
(t1,...,tσi )6=(0,...,0)

σi∏
h=1

(
p− gi,jh

th

)
Xth
jh

. Since we work over a field of characteristic p, we have

A = Xi + 1−
[ ∑
0≤tl≤p−gi,jl (1≤l≤σi)
(t1,...,tσi ) 6=(0,...,0)

σi∏
h=1

(
p− gi,jh

th

)
Xth
jh

+ 1

]

= Xi + 1−
∑

0≤tl≤p−gi,jl (1≤l≤σi)

σi∏
h=1

(
p− gi,jh

th

)
Xth
jh

= Xi + 1−
p−gi,j1∑
t1=0

· · ·
p−gi,jσi∑
tσi=0

(
p− gi,j1

t1

)
. . .

(
p− gi,jσi

tσi

)
Xt1
j1
. . . X

tσi
jσi

= Xi + 1−
[p−gi,j1∑
t1=0

(
p− gi,j1

t1

)
Xt1
j1

]
. . .

[p−gi,jσi∑
tσi=0

(
p− gi,jσi

tσi

)
X
tσi
jσi

]

= Xi + 1−
[(
Xj1 + 1

)p−gi,j1] . . . [(Xjσi
+ 1
)p−gi,jσi ]

= Xi + 1−
∏

j∈supp(mi)

(
Xj + 1

)p−gi,j
= Xi + 1 + p

[ ∏
j∈supp(mi)

(
Xj + 1

)p−gi,j]− ∏
j∈supp(mi)

(
Xj + 1

)p−gi,j
= Xi + 1 + (p− 1)

[ ∏
j∈supp(mi)

(Xj + 1)p−gi,j
]
∈ I ′C

By Lemma 5.1, S is a generating set for I ′C .
Let us now show that S is a standard basis over Fp.

* Let the pair (i, j) such that k + 1 ≤ i < j ≤ n.

We have spoly(Xp
i , X

p
j ) =

Xp
i X

p
j

Xp
i

Xp
i −

Xp
i X

p
j

Xp
j

Xp
j = Xp

i X
p
j −X

p
i X

p
j = 0, and NF (0 | S) = 0.

* Let the pair (i, j) such that 1 ≤ i ≤ k and k + 1 ≤ j ≤ n.

Denote fi := Xi −
∑

0≤tl≤p−gi,jl (1≤l≤σi)
(t1,...,tσi )6=(0,...,0)

σi∏
h=1

(
p− gi,jh

th

)
Xth
jh

. We have

spoly(fi, X
p
j ) =

XiX
p
j

Xi

[
Xi −

∑
0≤tl≤p−gi,jl (1≤l≤σi)
(t1,...,tσi )6=(0,...,0)

σi∏
h=1

(
p− gi,jh

th

)
Xth
jh

]
−
XiX

p
j

Xp
j

Xp
j

= XiX
p
j −X

p
j

[ ∑
0≤tl≤p−gi,jl (1≤l≤σi)
(t1,...,tσi )6=(0,...,0)

σi∏
h=1

(
p− gi,jh

th

)
Xth
jh

]
−XiX

p
j

= −Xp
j

[ ∑
0≤tl≤p−gi,jl (1≤l≤σi)
(t1,...,tσi )6=(0,...,0)

σi∏
h=1

(
p− gi,jh

th

)
Xth
jh

]

In the last expression, all these monomials are multiple of Xp
j ∈ S. Therefore the remainder of the division of

spoly(fi, X
p
j ) by {Xp

j } is zero, i.e

NF

(
spoly(fi, X

p
j ) | {X

p
j }
)

= 0.
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* Finally, let 1 ≤ i < j ≤ k.

Let gi := Xi −
∑

0≤tl≤p−gi,rl (1≤l≤σi)
(t1,...,tσi )6=(0,...,0)

σi∏
h=1

(
p− gi,rh

th

)
Xth
rh

and gj := Xj −
∑

0≤t′l≤p−gj,sl (1≤l≤σj)
(t′1,...,t

′
σj

) 6=(0,...,0)

σj∏
u=1

(
p− gj,su

t′u

)
X
t′u
su .

We have lt>(gi) = Xi and lt>(gj) = Xj ,
then lcm(lm>(gi), lm>(gj)) = lm>(gi). lm>(gj). According to the Product Criterion in Proposition 5.1, we
obtain

NF

(
spoly(gi, gj) | {gi, gj}

)
= 0 . And by the Buchberger’s criterion in Theorem 5.1, the assertion follows.

Example 5.1. Consider the generator matrix G = (gij) defined by

G =

1 0 0 1 0 1
0 1 0 2 1 0
0 0 1 2 2 1


Under the negative degree lexicographic order > on F3[X], the ideal
I = I ′C Loc>(F3[X]) where I ′C is defined in Lemma 5.1 with p = 3, n = 6 and k = 3 has the standard basis

S =

{
g1, g2, g3, X

3
4 , X

3
5 , X

3
6

}
where
g1 = X1 +X4 +X6 + 2X2

4 + 2X4X6 + 2X2
6 +X2

4X6 +X4X
2
6 + 2X2

4X
2
6 ,

g2 = X2 + 2X4 +X5 +X4X5 + 2X2
5 + 2X4X

2
5 ,

g3 = X3 + 2X4 + 2X5 +X6 + 2X4X5 +X4X6 +X5X6 + 2X2
6 +X4X5X6 + 2X4X

2
6 + 2X5X

2
6 + 2X4X5X

2
6 .

An immediate consequence is the result in [9] ( for p = 2)

Theorem 5.3. In view of the negative degree lexicographic order > on F2[X], the ideal I = I ′CLoc>(F2[X]) in Loc>(F2[X])
where
I ′C = 〈(Xi + 1) +

∏
j∈supp(mi)

(Xj + 1) | 1 ≤ i ≤ k〉+ 〈(Xi + 1)2 + 1 | k + 1 ≤ i ≤ n〉

has the standard basis

S =

{
Xi −

∑
J⊆supp(mi)

J 6=∅

XJ | 1 ≤ i ≤ k
}
∪
{
X2
i | k + 1 ≤ i ≤ n

}
.
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