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Abstract
This study provides the definition of normal and osculating curves in 3-dimensional Sasakian space with
their characterizations. Furthermore, the differential equations obtained from these characterizations are
solved and their figures are presented in the text.
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1. Introduction
Sasakian manifolds were introduced in 1960 by the Japenese geometer Shigeo Sasaki [19]. There was not much

activity in this field after the mid-1970s, until the advent of String theory. Since then Sasakian manifolds have
gained importance in physics and geometry. For physicists and geometers, the study of Sasakian space has its own
interest, so it has been extensively studied area of scientific researchs [1, 3, 4, 7, 9, 20].

In the 3-dimensional Sasakian space, to each regular curve γ, it is possible to associate three mutually ortogonal
unit vector fields. The vectors V1, V2, V3 are called the tangent, the principal normal and the binormal vector field,
respectively. The planes spanned by the vector fields, {V1, V2} , {V1, V3} and {V2, V3} are defined as the osculating
plane, the rectifying plane and the normal plane, respectively. In the Euclidean space E3, the notion of rectifying
curves was introduced by Chen in [10]. In addition, he showed in [11] that there exist a simple relationship between
the rectifying curves and centrodes, which play some important roles in mechanics, kinematics as well as differential
geometry.

On the other hand, it should be noted that most papers on rectifying, normal and osculating curves. Because it
is a quite interesting problem to obtain explicit parameter equations of rectifying, normal and osculating curves in
different spaces.

In [2], Ali and Önder defined a spacelike rectifying curve with spacelike principal normal in the Minkowski
spacetime E4

1 and characterized such curves in terms of their curvature. Güngör and Tosun investigated spatial
quaternionic rectifying curves in Euclidean space R3 and R4 in [13]. Also, in [16], İlarslan and Nesovic defined the
spacelike, the timelike and the null rectifying curves in the Minkowski 3-space in terms of centrodes. Furthermore,
İlarslan, Nesovic and Petrovic-Torgasev studied non-null and null rectifying curves, lying fully in the Minkowski
3-space E3

1 and gave some parametrizations of rectifying curves in [17].
In addition to rectifying curve, normal and osculating curves are also studied by many mathematicians. In

[8], Camcı, Kula and İlarslan characterized surface curves in terms of geodesic curvature, normal curvature and
geodesic torsion. Also they gave some characterization for the regular surface by using the concept of transversality
of surfaces in Euclidean 3-space. Moreover, Grbovic and Nesovic obtained explicit parameter equations of spacelike
rectifying curves in E3

1 whose projection onto spacelike, timelike and lightlike plane of E3
1 is a normal curve and

they also obtained explicit parameter equations of spacelike normal curves in E3
1 whose projection onto lightlike

plane of E3
1 , with respect to a chosen screen distribution, is a rectifying W-curve in [12]. In [14], İlarslan gave some
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characterizations of spacelike normal curves with spacelike, timelike or null principal normal in the Minkowski 3-
space E3

1 . Besides, İlarslan and Nesovic characterized timelike and null curves for which the position vector always
lies in their normal plane in the Minkowski 3-space in [15]. In [18], Öztekin and Öğrenmiş studied normal and
rectifying curves in pseudo-Galilean space G3

1. In addition, Yılmaz and Külahcı gave classifications of quaternionic
osculating curves in [21].

To the best of authors’ knowledge, normal and osculating curves are not defined in 3-dimensional Sasakian
space. The main goal of this paper is to obtain some results of these curves in Sasakian space.

The remainder of this paper is organized as follows: In section 2, the basic notion and properties are reviewed.
In section 3, by considering a casual character of a curve, we gave some characterizations of normal and osculating
curves in the 3-dimensional Sasakian space. We solved the differential equations of normal and osculating curves
and we draw their figures as shown in Figures 1 and 2.

2. Preliminaries
In this paper, the notations and concepts are used from the literature [5, 6, 7].
If a (2n+1)-dimensional differentiable manifold M carries a global differential 1-form η such that

η ∧ (dη)
n 6= 0

everywhere on M , it is called a contact manifold and η is a contact structure [5]. It is well known that there exists a
unique vector field ξ such that η (ξ) = 1 and dη (X, ξ) = 0. Unique vector field ξ is called a characteristic vector field
of η. D is said to be a contact distribution [3]

D = {X ∈ χ (M) : η (X) = 0} .

It is known that the maximum dimension of integral sub-manifold is only η for a contact manifold. A 1−dimensional
integral sub-manifold is called a Legendre curve, which is necessary for avoiding the confusion with an integral
curve of the vector field ξ. When φ, η and ξ are of type (1, 1) , (0, 1) and (1, 0) , respectively, satisfying that

φ2X = −X + η (X) ξ

where η (ξ) = 1, then (φ, η, ξ) is called an almost contact manifold on M. Belkhelfa et al. [4] have
defined an almost contact manifold, contact manifold and Sasakian manifold in Lorentzian manifold. Let M
be a (2n+ 1)−dimensional differentiable manifold then in this case, (M, φ, ξ, η, g, ε) is called an almost contact
metric manifold if ( φ, ξ, η) is an almost contact structure on M and there exists a metric g such that

g (φX, φY ) = g (X, Y )− εη (X) η (Y )

where g (ξ, ξ) = ε = ±1. When ε = 1 and ε = −1, then g is a Riemannian and Lorentzian metric, respectively. So
one can say that (φ, ξ, η, g, ε) is a contact metric structure on M if it is an almost contact metric structure on M
under the condition dη (X, Y ) = εg (X, φY ) [4]. It is well known that every contact metric manifold is a contact
manifold [5].

Let M be a (2n+ 1)−dimensional almost contact manifold with almost contact structure ( φ, ξ, η) . One can
define a linear map J on the tangent space of M × IR by

J

(
X, f

d

dt

)
=

(
φX − fξ, η (X)

d

dt

)
where X is a vector field in χ (M) , t ∈ IR and f is a real volume function. This indicates that J2 = −I. J, which is
said to be an almost complex structure on M × IR. J is an integrable if its Nijenhuis torsion NJ vanishes, where

NJ = − [X, Y ] + [JX, JY ]− J [JX, Y ]− J [X, JY ] .

J is integrable if and only if NJ ≡ 0. It is well known that the almost contact structure ( φ, ξ, η) is normal if and
only if N1 ≡ 0, where

N1 (X, Y ) = Nφ (X, Y ) + 2dη (X, Y ) ξ.

A (2n+ 1)−dimensional manifold M is said to be a Sasakian manifold if it is endowed with a normal contact metric
structure (φ, ξ, η, g, ε) . It is well known that M is a Sasakian structure if and only if [4,5,7]

(∇Xφ)Y = εg (X, Y )− η (Y )X.
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Let us take a regular curve
γ : I ⊂ IR→ En

with (I, γ) coordinate neighborhood, and its i−th curvature ki takes the following form as,

ki : I → IR, i = 1, 2, ..., n,

s→ ki (s) = g
(
V

′

i , Vi+1

)
, kn−1 6= 0,

where {V1, V2, ..., Vn} is a Frenet n-frame of the curve γ [7].

3. Normal and Osculating Curves In The 3-Dimensional Sasakian Space

Theorem 3.1. Let M be a 3-dimensional manifold endowed with the contact metric structure (φ, ξ, η, g, ε) then M is a
Sasakian manifold if and only if the torsion of its Legendre curves is ε. Let γ be an arc-length parametrized curve on M, then
the Frenet euations of γ can be given partially as follows [3,4,7].

∇V1
V1 = κV2,

∇V1
V2 = −κV1 + εV3, (3.1)

∇V1
V3 = −V2.

Definition 3.1. Let γ(s) be a regular curve in 3-dimensional Sasakian space. If the position vector of γ(s) always
lies in its normal plane, then it is called normal curve in 3-dimensional Sasakian space. Using this definition, one
can write the following position vector of a curve γ(s)

γ(s) = ξ(s) V2(s) + η(s)V3(s) (3.2)

where ξ(s), η(s) are differentiable functions.

Theorem 3.2. Let γ(s) be a regular curve in 3-dimensional Sasakian space, with curvature κ(s), ε(s) ∈ R. Then γ(s) is a

normal curve with κ(s) = e
η(s)
ξ(s)

ξ2(s) if and only if the principal normal curve and binormal components of the position vector are
respectively given by

< γ(s), V2(s) >=
−κ(s)

κ2(s) + ε(s)
+A1(s) cos (ws) +A2(s) sin (ws) +B1(s) cos (2ws)

+B2(s) sin (2ws) + C1(s) cos (3ws) + C2(s) sin (3ws) (3.3)

and

< γ(s), V3(s) >= a1 cos (ws) + a2 sin (ws) + b1 cos (2ws)

+ b2 sin (2ws) + c1 cos (3ws) + c2 sin (3ws) (3.4)

where

A1(s) =

(
ε(s) + w2(s)

)
2ε(s)

a1, A2(s) =

(
ε(s) + w2(s)

)
2ε(s)

a2, B1(s) =

(
ε(s) + 4w2(s)

)
2ε(s)

b1,

B2(s) =

(
ε(s) + 4w2(s)

)
2ε(s)

b2, C1(s) =

(
ε(s) + 9w2(s)

)
2ε(s)

c1, C2(s) =

(
ε(s) + 9w2(s)

)
2ε(s)

c2,

w = ±
(
1

2
κ2(s) + 2ε(s)± 1

2

(
κ4(s) + 12κ2(s)ε(s) + 20ε2(s)

) 1
2

) 1
2

and a1, a2, b1, b2, c1, c2 ∈ R.
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Proof. Let us assume that γ(s) is a normal curve in 3-dimensional Sasakian space, then, from Definition 3.1,

γ(s) = ξ(s) V2(s) + η(s)V3(s)

If one differentiates this with respect to s and using equation (3.1) the final product becomes,

V1(s) = −κ (s) ξ(s) V1(s) +
(
ξ
′
(s)− η(s)

)
V2(s) + (ε(s)ξ(s)− η(s)) η

′
(s)V3(s) (3.5)

Again differentiating equation (3.5) with respect to s and by using equation (3.1), gives,

κ (s)V2(s) =
(
−κ

′
(s) ξ(s)− 2κ (s) ξ

′
(s) + η(s)κ (s)

)
V1(s)

+
(
−κ2 (s) ξ(s) + ξ

′′

(s)− 2η
′
(s)− ε(s)ξ(s)

)
V2(s) (3.6)

+ 2 ε(s)ξ
′
(s)− ε(s)η(s) + ε

′
(s)ξ(s) + η

′′
(s))V3(s).

Consideration of the hypotesis of theorem, the equation (3.21) becomes,

ξ
′′

(s)− 2η
′
(s)−

(
κ2 (s) + ε (s)

)
ξ(s) = κ (s) (3.7)

η
′′
(s) + 2ε (s) ξ

′′

(s)− ε (s) η(s)− ε
′
(s) ξ(s) = 0.

If this system is solved, the result appears as,

ξ(s) =
−κ(s)

κ2(s) + ε(s)
+A1(s) cos (ws) +A2(s) sin (ws) +B1(s) cos (2ws)

+B2(s) sin (2ws) + C1(s) cos (3ws) + C2(s) sin (3ws)

and

η(s) = a1 cos (ws) + a2 sin (ws) + b1 cos (2ws)

+ b2 sin (2ws) + c1 cos (3ws) + c2 sin (3ws)

which completes the proof.
Changes of normal curve for different values of κ and ε are given in Figure 1.

Definition 3.2. Let γ(s) be a regular curve in 3-dimensional Sasakian space. If the position vector of γ(s) always
lies in its osculating plane, then it is called osculating curve in 3-dimensional Sasakian space. By this definition,
for a curve in 3-dimensional Sasakian space, the position vector of a curve γ(s) satisfies

γ(s) = a(s) V1(s) + b(s)V2(s), (3.8)

where a(s), b(s) are differentiable functions.

Theorem 3.3. Let γ(s) be a regular curve in 3-dimensional Sasakian space, with curvature κ(s), ε(s) ∈ R. Then γ(s) is a

osculating curve with ε(s) = − e
a(s)κ(s)
b(s)

b2(s) if and only if the tangential normal and principal normal components of the position
vector are given respectively by the following expressions.

< γ(s), V1(s) >= c1 exp

[
±
(
1

2
ε(s)− κ2(s)± 1

2

(
ε2(s)− 8κ2(s)ε(s)

) 1
2

) 1
2

s

]
(3.9)

and
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Figure 1. Normal curves which are given for different values of κ(s) and ε(s)

< γ(s), V2(s) >= c1

[(
1
2ε(s)− κ

2(s)± 1
2

(
ε2(s)− 8κ2(s)ε(s)

) 1
2

) 1
2

]
2κ(s)

[
±
(

1
2ε(s)− κ2(s)±

1
2 (ε

2(s)− 8κ2(s)ε(s))
1
2

) 1
2

] (3.10)

exp

[
±
(
1

2
ε(s)− κ2(s)± 1

2

(
ε2(s)− 8κ2(s)ε(s)

) 1
2

) 1
2

s

]
+

κ(s)

κ2(s) + ε(s)

where c1 ∈ R.

Proof. Let us assume that γ(s) is a osculating curve in 3-dimensional Sasakian space, then, from Definition 3.2, one
can write that (3.8).

Differentiating this with respect to s and using equation (3.1) leads to,

V1(s) =
(
a

′
− κ(s) b(s)

)
V1(s) +

(
aκ(s) + b

′
(s)
)
V2(s) + (ε(s)b(s) )V3(s) (3.11)

Again differentiating this with respect to s and using equation (3.1) it is possible to obtain that,

κ(s)V2(s) =
(
a

′′
(s)− κ

′
(s)b(s)− κ(s)b

′
(s)− a(s)κ2(s)− κ(s)b

′
(s)
)
V1(s) (3.12)

+
(
a

′
(s)κ(s)− b(s)κ2(s) + a

′
(s)κ(s) + a(s)κ

′
(s) + b

′′
(s)− ε(s)b(s)

)
V2(s)

+
(
a(s)ε(s)κ(s) + b

′
(s)ε(s) + ε

′
(s)b(s) + a(s)κ

′
(s) + b

′
(s)ε(s)

)
V3(s).

Considering the hypotesis of theorem, equation (3.27) can be written as follows.

a
′′
(s)− κ

′
(s)b(s)− κ(s)b

′
(s)− a(s)κ2(s)− κ(s)b

′
(s) = 0 (3.13)

b
′′
(s) + κ

′
(s)b(s) + 2κ(s)a

′
(s)− b(s)κ2(s)− ε(s)b(s) = κ(s).
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Figure 2. Osculating curves which are given for different values of κ(s) and ε(s)

If this system is solved, the final product becomes,

a(s) = c1 exp

[
±
(
1

2
ε(s)− κ2(s)± 1

2

(
ε2(s)− 8κ2(s)ε(s)

) 1
2

) 1
2

s

]
and

b(s) = c1

[(
1
2ε(s)− κ

2(s)± 1
2

(
ε2(s)− 8κ2(s)ε(s)

) 1
2

) 1
2

]
2κ(s)

[
±
(

1
2ε(s)− κ2(s)±

1
2 (ε

2(s)− 8κ2(s)ε(s))
1
2

) 1
2

]
exp

[
±
(
1

2
ε(s)− κ2(s)± 1

2

(
ε2(s)− 8κ2(s)ε(s)

) 1
2

) 1
2

s

]
+

κ(s)

κ2(s) + ε(s)

hence the theorem is proved.
Changes of osculating curve for different values of κ and ε are given in Figure 2. For ε = −1, κ〉1 and ε = −1,

κ〈−1, it is observed that the waves are periodic. In addition frequencies are also nearly equal to each other.

References
[1] Alegre P., Blair D. E., Carriazo A, Generalized Sasakian Space Forms. Israel Journal of Mathematics 141 (2004),

157-183.

[2] Ali A.T., Onder M.A., Some Characterizations of Spacelike Rectifying Curves in the Minkowski Space-time.
Global Journal of Science Frontier Research Mathematics & Decision Sciences 12 (2012), no. 1.

[3] Baikoussis C., Blair D.E., On Legendre Curves In Contact 3-Manifolds. Geometria Dedicata 49 (1994), 135-142.

[4] Belkhelfa M., Hırıca I E., Rosca R., Verstraelen L., On Legendre curves in Riemannian and Lorentzian Sasaki
spaces. Soochow J Math 28 (2002), no. 11, 81-91.

[5] Blair D.E., Contact Manifolds in Riemannian Geometry. Lecture Notes in Math. Berlin: Springer 509 (1976).



126 M.A. Külahcı, M. Bektaş & A. Bilici
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