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The product of generalized superderivations on a
prime superalgebra
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Abstract
In the paper, we extend the definition of generalized derivations to su-
peralgebras and prove that a generalized superderivation g on a prime
superalgebra A is represented as g(x) = ax+d(x) for all x ∈ A, where a
is an element of Qmr (the maximal right ring of quotients of A) and d is
a superderivation on A. Using the result we study two generalized su-
perderivations when their product is also a generalized superderivation
on a prime superalgebra A.
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1. Introduction
Let R be a prime ring. According to Hvala [9] an additive mapping g : R → R

is said to be a generalized derivation of R if there exists a derivation δ of R such that
g(xy) = g(x)y+xδ(y) for all x, y ∈ R. In [14] Lee proved that every generalized derivation
of A can be uniquely extended to Qmr and there exists an element a ∈ Qmr such that
g(x) = ax+ δ(x) for all x ∈ R.

The study of the product of derivations in prime rings was initiated by Posner [18]. He
proved that the product of two nonzero derivations can not be a derivation on a prime ring
of characteristic not 2. Later a number of authors studied the problem in several ways (see
[2], [4], [5], [9], [10], [12], [13], and [15]). Hvala [9] studied two generalized derivations f1,
f2 when the product is also a generalized derivation on a prime ring R of characteristic not
2 in 1998. In 2001 Lee [13] gave a description of Hvala’s Theorem without the assumption
of charR 6= 2. In 2004 Fošner [5] extended Posner’s Theorem to prime superalgebras.
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Superalgebras first appeared in physics, in the Theory of Supersymmetry, to create an
algebraic structure representing the behavior of the subatomic particles known as bosons
and fermions ([11]). Recently there has been a considerable authors who are interested
in superalgebras. They extended many results of rings to superalgebras (see [3], [5], [6],
[7], [8], [11], [16], [17] and [19]).

In Section 3, we will extend the definition of generalized derivations to superalge-
bras and prove that every generalized superderivation of a prime superalgebra A can
be extended to Qmr (the maximal right ring of quotients of A). Further, we will prove
that a generalized superderivation of a prime superalgebra is a sum of a left multipli-
cation mapping and a superderivation. Using the result we will study two generalized
superderivations when their product is also a generalized superderivation on a prime su-
peralgebra. As a result, Fošner’s theorem [5, Theorem 4.1] is the special case of the
main theorem of the paper.

2. preliminaries
Let Φ be a commutative ring with 1

2
∈ Φ. An associative algebra A over Φ is said

to be an associative superalgebra if there exist two Φ-submodules A0 and A1 of A such
that A = A0

⊕
A1 and AiAj ⊆ Ai+j , i, j ∈ Z2. A superalgebra is called trivial if

A1 = 0. The elements of Ai are homogeneous of degree i and we write |ai| = i for all
ai ∈ Ai. We define [a, b]s = ab − (−1)|a||b|ba for all a, b ∈ A0 ∪ A1. Thus, [a, b]s =
[a0, b0]s + [a1, b0]s + [a0, b1]s + [a1, b1]s, where a = a0 + a1, b = b0 + b1 and ai, bi ∈ Ai
for i = 0, 1. It follows that [a, b]s = [a, b] if one of the elements a and b is homogeneous
of degree 0. Let k ∈ {0, 1}. A superderivation of degree k is actually a Φ-linear mapping
dk : A→ A which satisfies dk(Ai) ⊆ Ak+i for i ∈ Z2 and dk(ab) = dk(a)b+(−1)k|a|adk(b)
for all a, b ∈ A0 ∪A1. If d = d0 + d1, then d is a superderivation on A. For example, for
a = a0 + a1 ∈ A the mapping ads(a)(x) = [a, x]s = [a0, x]s + [a1, x]s is a superderivation,
which is called the inner superderivation induced by a. For a superalgebra A, we define
σ : A → A by (a0 + a1)σ = a0 − a1, then σ is an automorphism of A such that σ2 = 1.
On the other hand, for an algebra A, if there exists an automorphism σ of A such that
σ2 = 1, then A becomes a superalgebra A = A0

⊕
A1, where Ai = {x ∈ A|xσ = (−1)ix},

i = 0, 1. Clearly a superderivation d of degree 1 is a σ-derivation, i.e., it satisfies d(ab) =
d(a)b + aσd(b) for all a, b ∈ A. A superalgebra A is called a prime superalgebra if and
only if aAb = 0 implies a = 0 or b = 0, where at least one of the elements a and b is
homogeneous. The knowledge of superalgebras refers to [3], [5], [6], [7], [8], [16], [17] and
[19].

In [17] Montaner obtained that a prime superalgebra A is not necessarily a prime
algebra but a semiprime algebra. Hence one can define the maximal right ring of quotients
Qmr of A, and the useful properties of Qmr can be found in [1]. By [1, proposition 2.5.3] σ
can be uniquely extended to Qmr such that σ2 = 1. Therefore Qmr is also a superalgebra.
Further, we can get that Qmr is a prime superalgebra.

3. the product of generalized superderivations
Firstly, we extend the definition of generalized derivations to superalgebras.

3.1. Definition. Let A be a superalgebra. For i ∈ {0, 1}, a Φ-linear mapping gi : A→ A
is called a generalized superderivation of degree i if gi(Aj) ⊆ Ai+j , j ∈ Z2, and gi(xy) =

gi(x)y + (−1)i|x|xdi(y) for all x, y ∈ A0 ∪ A1, where di is a superderivation of degree i
on A. If g = g0 + g1, then g is called a generalized superderivation on A.

Let A be a prime superalgebra and Q = Qmr be the maximal right ring of quotients
of A. Next, we prove that a generalized superderivation of a prime superalgebra is a sum



of a left multiplication mapping and a superderivation. By [20, proposition 2] we have
every σ-derivation d of a semiprime ring A can be uniquely extended to a σ-derivation
of Q.

3.2. Theorem. Let A be a prime superalgebra and g : A → A be a generalized su-
perderivation. Then g can be extended to Q and there exist an element a ∈ Q and a
superderivation d of A such that g(x) = ax+ d(x) for all x ∈ A, where both a and d are
determined by g uniquely.

Proof. To prove that the generalized superderivation g on a prime superalgebra A can be
extended to Q, it suffices to prove that g0 and g1 can be extended to Q, respectively. The
generalized superderivation of degree 1 g1 is represented as g1(xy) = g1(x)y + xσd1(y)
for all x, y ∈ A, where d1 is a superderivation of degree 1 on A. Note that d1(xy) =
d1(x)y+xσd1(y). So combining the two equations we have (g1−d1)(xy) = (g1−d1)(x)y.
Let g1 − d1 = f . Clearly f is a right A-module mapping. Then there exists a1 ∈ Q such
that f(x) = a1x. So g1(x) = a1x+d1(x) for all x ∈ A. Since d1 can be extended toQ, then
it follows that g1 can be extended to Q. It is easy to prove that g0(x) = a0x+ d0(x) and
g0 can be extended to Q similarly, where a0 is an element of Q and d0 is a superderivation
of degree 0 on A. So g can be extended to Q. Clearly ai ∈ Qi, i ∈ {0, 1}. Let a = a0 +a1
and d = d0 + d1. Then g(x) = g0(x) + g1(x) = a0x+ d0(x) + a1x+ d1(x) = ax+ d(x) for
all x ∈ A, where a is an element of Q and d is a superderivation of A.

Now we claim both a and d are determined by g uniquely. It suffices to prove that
a = 0 and d = 0 when g = 0. Since g = 0, we have g0 = g1 = 0. By g1 = 0, we obtain
0 = g1(yr) = a1yr + d1(yr) = a1yr + d1(y)r + yσd1(r) = g1(y)r + yσd1(r) = yσd1(r) for
all y, r ∈ A. Then Aσd1(A) = 0. So Ad1(A) = 0. Clearly d1(A) = 0. Since g1(A) = 0, it
follows that a1A = 0. Hence a1 = 0. Similarly we can prove the case when g0 = 0. So
a = 0 and d = 0. �

Next, we give two results which are used in the proof of the main result.

3.3. Lemma. Let A be a prime superalgebra. If A satisfies

(3.1) ([a0, x] + d0(x))yk0(z) + ([b0, x] + k0(x))yd0(z) = 0 for all x, y, z ∈ A,

where a0, b0 ∈ Q0 and both d0 and k0 are superderivations of degree 0 on A. Then one
of the following cases is true:

(i) There exists 0 6= µ ∈ C0 such that µk0(x) + d0(x) = 0;
(ii) [a0, x] + d0(x) = 0;
(iii) [b0, x] + k0(x) = 0

for all x ∈ A.

Proof. Let d0 = k0 = 0. Clearly there exists 0 6= µ ∈ C0 such that µk0(x) + d0(x) = 0.
Hence (i) is true.

Next we assume either d0 6= 0 or k0 6= 0. By [5, Theorem 3.3] there exist λ1 and λ2

not all zero such that λ1([a0, x] +d0(x)) +λ2([b0, x] +k0(x)) = 0. Let λ1 = λ10 +λ11 and
λ2 = λ20 + λ21. Then λ10([a0, x] + d0(x)) + λ11([a0, x] + d0(x)) + λ20([b0, x] + k0(x)) +
λ21([b0, x]+k0(x)) = 0 for all x ∈ A, where λ10, λ20 ∈ C0, λ11, λ21 ∈ C1. By A0∩A1 = 0,
we have

(3.2) λ11([a0, x0] + d0(x0)) + λ21([b0, x0] + k0(x0)) = 0 for all x0 ∈ A0,

(3.3) λ11([a0, x1] + d0(x1)) + λ21([b0, x1] + k0(x1)) = 0 for all x1 ∈ A1.

Using (3.2) and (3.3) we obtain

(3.4) λ11([a0, x] + d0(x)) + λ21([b0, x] + k0(x)) = 0 for all x ∈ A.



We proceed by dividing three cases. Only one of λ11 and λ21 is nonzero. If λ21 6= 0,
then [b0, x] + k0(x) = 0. If λ11 6= 0, then [a0, x] + d0(x) = 0. Hence either (ii) or (iii) is
true.

Both λ11 6= 0 and λ21 6= 0. By (3.4) and [5, Lemma 3.1] we arrive at [a0, x] + d0(x) =
λ([b0, x] + k0(x)), where λ = −λ−1

11 λ21 6= 0. Using (3.1) we get λ([b0, x] + k0(x))yk0(z) +
([b0, x] + k0(x))yd0(z) = 0. That is, ([b0, x] + k0(x))y(λk0(z) + d0(z)) = 0. If there exists
z ∈ A such that λk0(z)+d0(z) 6= 0, then [b0, x]+k0(x) = 0 for all x ∈ A0∪A1. It follows
that [b0, x] + k0(x) = 0 for all x ∈ A. Hence either (i) or (iii) is true. Similarly, when
ρ([a0, x] + d0(x)) = [b0, x] + k0(x), where ρ = −λ−1

21 λ11 6= 0, we have either (i) or (ii) is
true by using (3.1) again.

When λ11 = λ21 = 0, i.e., λ1, λ2 ∈ C0. If one of λ1 and λ2 is zero, then either
(ii) or (iii) is true. If both λ1 and λ2 are nonzero, the proof is similar to the above
paragraph. �

Similar to the proof of Lemma 3.3, we can get the following result.

3.4. Lemma. Let A be a prime superalgebra. If A satisfies

([a1, x]s + d1(x))yk1(z)− ([b1, x]s + k1(x))yd1(z) = 0 for all x, y, z ∈ A,

where a1, b1 ∈ Q1 and both d1 and k1 are superderivations of degree 1 on A. Then one
of the following cases is true:

(i) There exists 0 6= ν ∈ C0 such that νk1(x) + d1(x) = 0;
(ii) [a1, x]s + d1(x) = 0;
(iii) [b1, x]s + k1(x) = 0

for all x ∈ A.

Now, we are in a position to give the main result of this paper.

3.5. Theorem. Let A be a prime superalgebra and let f = a + d and g = b + k be
two nonzero generalized superderivations on A, where a, b ∈ Q and both d and k are
superderivations on A. If fg is also a generalized superderivation on A. Then one of the
following cases is true:

(i) There exists 0 6= ω ∈ C0 such that ωkj(x) + dj(x) = 0;
(ii) [ai, x]s + di(x) = 0;
(iii) [bi, x]s + ki(x) = 0

for all x ∈ A, where i, j ∈ {0, 1}, ai, bi ∈ Qi and both di and ki are superderivations of
degree i on A, as well as dj and kj.

Proof. According to Theorem 3.2 we assume h(x) = fg(x) = cx + l(x) for all x ∈ A,
where c ∈ Q and l is a superderivation on A, then

fg(x) =a(bx+ k(x)) + d(bx+ k(x))

=abx+ ak(x) + d0(b)x+ bd0(x) + d1(b)x+ bσd1(x) + d0k(x) + d1k(x).

Hence

c =ab+ d0(b) + d1(b) = ab+ d(b),

l(x) =ak(x) + bd0(x) + bσd1(x) + d0k(x) + d1k(x),

l0(x) =a0k0(x) + a1k1(x) + b0d0(x)− b1d1(x) + d0k0(x) + d1k1(x),

l1(x) =a1k0(x) + a0k1(x) + b1d0(x) + b0d1(x) + d0k1(x) + d1k0(x).



On the one hand we get

l0(xy) =a0k0(xy) + a1k1(xy) + b0d0(xy)− b1d1(xy) + d0k0(xy) + d1k1(xy)

=a0k0(x)y + a0xk0(y) + a1k1(x)y + a1x
σk1(y)

+ b0d0(x)y + b0xd0(y)− b1d1(x)y − b1xσd1(y)

+ d0k0(x)y + k0(x)d0(y) + d0(x)k0(y) + xd0k0(y)

+ d1k1(x)y + k1(x)σd1(y) + d1(xσ)k1(y) + xd1k1(y)

and on the other hand we get

l0(xy) =a0k0(x)y + a1k1(x)y + b0d0(x)y − b1d1(x)y + d0k0(x)y + d1k1(x)y

+ x[a0k0(y) + a1k1(y) + b0d0(y)− b1d1(y) + d0k0(y) + d1k1(y)].

Combining the two equations we have

(3.5)
0 =[a0, x]k0(y) + a1x

σk1(y)− xa1k1(y) + [b0, x]d0(y)− b1xσd1(y)

+ xb1d1(y) + k0(x)d0(y) + d0(x)k0(y) + k1(x)σd1(y)− d1(x)σk1(y).

In particular, replacing y by yz in (3.5) we get

0 =[a0, x]k0(yz) + a1x
σk1(yz)− xa1k1(yz) + [b0, x]d0(yz)− b1xσd1(yz)

+ xb1d1(yz) + k0(x)d0(yz) + d0(x)k0(yz) + k1(x)σd1(yz)− d1(x)σk1(yz).

Extending the identity above we arrive at

0 =[a0, x]k0(y)z + [a0, x]yk0(z) + a1x
σk1(y)z + a1x

σyσk1(z)

− xa1k1(y)z − xa1yσk1(z) + [b0, x]d0(y)z + [b0, x]yd0(z)

− b1xσd1(y)z − b1xσyσd1(z) + xb1d1(y)z + xb1y
σd1(z)

+ k0(x)d0(y)z + k0(x)yd0(z) + d0(x)k0(y)z + d0(x)yk0(z)

+ k1(x)σd1(y)z + k1(x)σyσd1(z)− d1(x)σk1(y)z − d1(x)σyσk1(z).

Using (3.5) we have

0 =[a0, x]yk0(z) + a1x
σyσk1(z)− xa1yσk1(z) + [b0, x]yd0(z)− b1xσyσd1(z)

+ xb1y
σd1(z) + k0(x)yd0(z) + d0(x)yk0(z) + k1(x)σyσd1(z)− d1(x)σyσk1(z).

[5, Corollary 3.6] gives

(3.6) pij = [a0, xi]yk0(zj) + [b0, xi]yd0(zj) + k0(xi)yd0(zj) + d0(xi)yk0(zj) = 0,

(3.7)
qij =a1x

σ
i yk1(zj)− xia1yk1(zj)− b1xσi yd1(zj) + xib1yd1(zj)

+ k1(xi)
σyd1(zj)− d1(xi)

σyk1(zj) = 0.

for all xi ∈ Ai, y ∈ A, zj ∈ Aj , i, j ∈ {0, 1}. Therefore

(3.8)
p00 + p01 + p10 + p11 =[a0, x]yk0(z) + [b0, x]yd0(z) + k0(x)yd0(z)

+ d0(x)yk0(z) = 0,

(3.9)
q00 + q01 + q10 + q11 =a1x

σyk1(z)− xa1yk1(z)− b1xσyd1(z) + xb1yd1(z)

+ k1(x)σyd1(z)− d1(x)σyk1(z) = 0.

According to (3.8) and Lemma 3.3 we see that either (i) or (ii) or (iii) is true.
By (3.9) we get

[a1, x0]yk1(z)− [b1, x0]yd1(z)−k1(x0)yd1(z)

+d1(x0)yk1(z) = 0 for all x0 ∈ A0, y, z ∈ A,



−[a1, x1]syk1(z) + [b1, x1]syd1(z)+k1(x1)yd1(z)

−d1(x1)yk1(z) = 0 for all x1 ∈ A1, y, z ∈ A.
Combining the identities above we give

[a1, x]syk1(z)− [b1, x]syd1(z)− k1(x)yd1(z) + d1(x)yk1(z) = 0 for all x, y, z ∈ A.
By Lemma 3.4 we have that either (i) or (ii) or (iii) is true. Similarly, using the same
way to l1(xy) we have

[a0, x]yk1(z) + [b0, x]yd1(z) + k0(x)yd1(z) + d0(x)yk1(z) = 0,

(3.10)
a1xyk0(z)− xσa1yk0(z) + b1xyd0(z)

−xσb1yd0(z) + k1(x)yd0(z) + d1(x)yk0(z) = 0

and either (i) or (ii) or (iii) is true. �

In particular, taking a = b = 0 in Theorem 3.5 we obtain

3.6. Corollary. ([5, Theorem 4.1]) Let A be a prime associative superalgebra and let d =
d0 + d1 and k = k0 + k1 be nonzero superderivations on A. Then dk is a superderivation
if and only if d0 = k0 = 0 and k1 = λ0d1 for some nonzero λ0 ∈ C0.

Proof. We assume that both d0 and k0 are nonzero. Since d and k are nonzero su-
perderivations and dk is also a superderivation of A, then there exists 0 6= µ ∈ C0 such
that k0(x) = µd0(x) by Theorem 3.5. We have 2µd0(x)yd0(x) = 0 by taking z = x in
(3.8), that is, d0(x)Ad0(x) = 0. Since A is a semiprime algebra, then d0(x) = 0. But it
contradicts d0 6= 0. We set d0 = 0. Then d1 6= 0. When k1 6= 0. There exists 0 6= λ0 ∈ C0

such that k1(x) = λ0d1(x) and k0(x) = d0(x) = 0 by Theorem 3.5. When k1 = 0 and
k0 6= 0, we have d1(x) = 0 by (3.10). It contradicts that d is a nonzero superderivation.
So d0 = k0 = 0 and k1 = λ0d1 for some nonzero λ0 ∈ C0 when dk is a superderivation.
It is easy to prove that dk is a superderivation when d0 = k0 = 0 and k1 = λ0d1 for some
nonzero λ0 ∈ C0 �
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