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The product of generalized superderivations on a
prime superalgebra

He Yuan* and Yu Wang'

Abstract

In the paper, we extend the definition of generalized derivations to su-
peralgebras and prove that a generalized superderivation g on a prime
superalgebra A is represented as g(x) = ax+d(x) for all x € A, where a
is an element of @, (the maximal right ring of quotients of A) and d is
a superderivation on A. Using the result we study two generalized su-
perderivations when their product is also a generalized superderivation
on a prime superalgebra A.
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1. Introduction

Let R be a prime ring. According to Hvala [9] an additive mapping ¢ : R — R
is said to be a generalized derivation of R if there exists a derivation J of R such that
g(zy) = g(x)y+zd(y) for all x,y € R. In [14] Lee proved that every generalized derivation
of A can be uniquely extended to @, and there exists an element a € Q. such that
g(z) = ax + §(x) for all z € R.

The study of the product of derivations in prime rings was initiated by Posner [18]. He
proved that the product of two nonzero derivations can not be a derivation on a prime ring
of characteristic not 2. Later a number of authors studied the problem in several ways (see
[2], [4], [5], [9], [10], [12], [13], and [15]). Hvala [9] studied two generalized derivations f1,
f2 when the product is also a generalized derivation on a prime ring R of characteristic not
21in 1998. In 2001 Lee [13] gave a description of Hvala’s Theorem without the assumption
of charR # 2. In 2004 Fosner [5] extended Posner’s Theorem to prime superalgebras.
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Superalgebras first appeared in physics, in the Theory of Supersymmetry, to create an
algebraic structure representing the behavior of the subatomic particles known as bosons
and fermions ([11]). Recently there has been a considerable authors who are interested
in superalgebras. They extended many results of rings to superalgebras (see [3], [5], [6],
[7], [8], [11], [16], [17] and [19]).

In Section 3, we will extend the definition of generalized derivations to superalge-
bras and prove that every generalized superderivation of a prime superalgebra A can
be extended to Qmr (the maximal right ring of quotients of A). Further, we will prove
that a generalized superderivation of a prime superalgebra is a sum of a left multipli-
cation mapping and a superderivation. Using the result we will study two generalized
superderivations when their product is also a generalized superderivation on a prime su-
peralgebra. As a result, Fosner’s theorem [5, Theorem 4.1] is the special case of the
main theorem of the paper.

2. preliminaries

Let ® be a commutative ring with 1 € ®. An associative algebra A over @ is said
to be an associative superalgebra if there exist two ®-submodules Ay and A; of A such
that A = Ao@P A1 and A;A; C Aiqj, i,j € Zz. A superalgebra is called trivial if
A; = 0. The elements of A; are homogeneous of degree ¢ and we write |a;| = 7 for all
a; € A;. We define [a,b]s = ab — (—1)!%!""lpa for all a,b € Ag U Ay. Thus, [a,b]s =
[ao, bo]s + [a1,bo]s + [ao, b1]s + [a1,b1]s, where @ = ao + a1, b = by + b1 and a;,b; € A;
for i« = 0,1. It follows that [a,b]s = [a,]] if one of the elements a and b is homogeneous
of degree 0. Let k € {0,1}. A superderivation of degree k is actually a ®-linear mapping
dy : A — A which satisfies di(A;) € Apys for i € Zo and dy(ab) = dy(a)b+(—1)*1* ady (b)
for all a,b € Ag U A1. If d = dp + d1, then d is a superderivation on A. For example, for
a = ap+ a1 € A the mapping ads(a)(z) = [a,z]s = [ao, z]s + [a1, z]s is a superderivation,
which is called the inner superderivation induced by a. For a superalgebra A, we define
o:A— Aby (ao + a1)’ = ap — a1, then ¢ is an automorphism of A such that o = 1.
On the other hand, for an algebra A, if there exists an automorphism o of A such that
o® = 1, then A becomes a superalgebra A = Ay @ A1, where A4; = {x € A|z” = (—1)‘x},
1 =0,1. Clearly a superderivation d of degree 1 is a o-derivation, i.e., it satisfies d(ab) =
d(a)b + ad(b) for all a,b € A. A superalgebra A is called a prime superalgebra if and
only if aAb = 0 implies a = 0 or b = 0, where at least one of the elements a and b is
homogeneous. The knowledge of superalgebras refers to [3], [5], [6], [7], [8], [16], [17] and
[19].

In [17] Montaner obtained that a prime superalgebra A is not necessarily a prime
algebra but a semiprime algebra. Hence one can define the maximal right ring of quotients
Qmr of A, and the useful properties of Q- can be found in [1]. By [1, proposition 2.5.3] &
can be uniquely extended to Q. such that ¢? = 1. Therefore Q. is also a superalgebra.
Further, we can get that Q. is a prime superalgebra.

3. the product of generalized superderivations

Firstly, we extend the definition of generalized derivations to superalgebras.

3.1. Definition. Let A be a superalgebra. For i € {0,1}, a ®-linear mapping g; : A — A
is called a generalized superderivation of degree i if g;(A;) C Ai+j, j € Z2, and g;(zy) =
gi(x)y + (=1)"1"lzd;(y) for all z,y € Ao U Ay, where d; is a superderivation of degree i
on A. If g = go + g1, then g is called a generalized superderivation on A.

Let A be a prime superalgebra and Q = Q. be the maximal right ring of quotients
of A. Next, we prove that a generalized superderivation of a prime superalgebra is a sum



of a left multiplication mapping and a superderivation. By [20, proposition 2] we have
every o-derivation d of a semiprime ring A can be uniquely extended to a o-derivation

of Q.

3.2. Theorem. Let A be a prime superalgebra and g : A — A be a generalized su-
perderivation. Then g can be extended to Q and there exist an element a € Q and a
superderivation d of A such that g(x) = ax + d(z) for all x € A, where both a and d are
determined by g uniquely.

Proof. To prove that the generalized superderivation g on a prime superalgebra A can be
extended to @, it suffices to prove that go and g1 can be extended to @, respectively. The
generalized superderivation of degree 1 g; is represented as g1(zy) = g1(z)y + 27d1(y)
for all z,y € A, where di is a superderivation of degree 1 on A. Note that di(zy) =
di(z)y+x7d1(y). So combining the two equations we have (g1 —d1)(zy) = (g1 — d1)(2)y.
Let g1 —di = f. Clearly f is a right A-module mapping. Then there exists a; € @ such
that f(z) = ai1z. So g1(z) = a1z+di(z) for all z € A. Since d; can be extended to @, then
it follows that g1 can be extended to Q. It is easy to prove that go(z) = aoz + do(z) and
go can be extended to @ similarly, where ag is an element of @ and dy is a superderivation
of degree 0 on A. So g can be extended to Q. Clearly a; € Q;, i € {0,1}. Let a = ap+ a1
and d = do + dy. Then g(z) = go(x) + g1(x) = aox + do(z) + a1z + di(z) = ax + d(z) for
all x € A, where a is an element of @) and d is a superderivation of A.

Now we claim both a and d are determined by g uniquely. It suffices to prove that
a=0and d =0 when g = 0. Since g = 0, we have go = g1 = 0. By g1 = 0, we obtain
0=g1(yr) = aryr + di(yr) = aryr + di(y)r +y7da(r) = g1 (y)r +y°da(r) = y”da(r) for
all y,7 € A. Then A%d;(A) =0. So Ad;(A) = 0. Clearly di(A) = 0. Since g1(A4) =0, it
follows that a1 A = 0. Hence a1 = 0. Similarly we can prove the case when go = 0. So
a=0and d=0. O

Next, we give two results which are used in the proof of the main result.

3.3. Lemma. Let A be a prime superalgebra. If A satisfies
(3.1) ([ao, ] + do(x))yko(2) + ([bo, x] + ko(x))ydo(z) =0 for all x,y,z € A,

where ao, bo € Qo and both dy and ko are superderivations of degree 0 on A. Then one
of the following cases is true:

(i) There exists 0 # p € Co such that pko(z) + do(x) = 0;

(i) [ao, x] + do(x) = 0;

(i) [bo, x] + ko(x) =0
for all x € A.

Proof. Let do = ko = 0. Clearly there exists 0 # pu € Co such that pko(z) + do(xz) = 0.
Hence (i) is true.

Next we assume either dy # 0 or ko # 0. By [5, Theorem 3.3] there exist A1 and Az
not all zero such that A1 ([ao, z] + do(x)) + A2([bo, z] + ko(x)) = 0. Let A1 = Ao+ A11 and
A2 = A20 + A21. Then Aio([ao, 2] + do(x)) + A1 ([ao, ] + do(x)) 4+ Xao([bo, 2] + ko(z)) +
)\21([[)0,.12] —|—I€0($)) =0forallx € A, where )\10, )\20 S Co, )\11, o1 € Cy. By AoﬂA1 = 07

we have
(3.2) )\11([&0, :Eo] + do(xo)) + )\21([b0,$0] + ko(iﬂo)) =0 for all ¢ € Ao7

(33) )\11([0/0,.%1] + do(wl)) + )\21([()0,5[1] + ko(CEl)) =0 for all z1 € A;.
Using (3.2) and (3.3) we obtain

(3.4) )\11([0,0, Ll’} + do(ﬂ?)) —+ )\21([[)0, 33] + ko(m)) =0 for all z € A.



We proceed by dividing three cases. Only one of A11 and 21 is nonzero. If Aa1 # 0,
then [bo, x] + ko(z) = 0. If A1; # 0, then [ao,z] + do(z) = 0. Hence either (ii) or (iii) is
true.

Both A11 # 0 and A21 # 0. By (3.4) and [5, Lemma 3.1] we arrive at [ao, 2] + do(z) =
A([bo, ] + ko(z)), where A = —A;' A21 # 0. Using (3.1) we get A([bo, z] + ko())yko(2) +
([bo, ] + ko(z))ydo(z) = 0. That is, ([bo, z] + ko(z))y(Ako(2) + do(z)) = 0. If there exists
z € A such that Ako(z) +do(z) # 0, then [bo, z] + ko(z) = 0 for all z € AgU A;. It follows
that [bo,z] + ko(z) = O for all z € A. Hence either (i) or (iii) is true. Similarly, when
p([ao, ] + do(z)) = [bo, x] + ko(x), where p = —A5' M1 # 0, we have either (i) or (ii) is
true by using (3.1) again.

When A1 = A21 = 0, ie., A\, A2 € Cp. If one of A1 and A2 is zero, then either
(ii) or (iii) is true. If both A1 and Ay are nonzero, the proof is similar to the above
paragraph. O

Similar to the proof of Lemma 3.3, we can get the following result.
3.4. Lemma. Let A be a prime superalgebra. If A satisfies
(lax, z]s + di(x))yki(2) — ([b1,2]s + k1 (2))ydi(2) =0 for allz,y,z € A,

where a1, b1 € Q1 and both di and k1 are superderivations of degree 1 on A. Then one
of the following cases is true:

(i) There exists 0 # v € Cy such that vki(x) + di(x) = 0;

(%) [a1, x]s + d1(z) = 0;

(%) [b1,x]s + ki(x) =0
for allx € A.

Now, we are in a position to give the main result of this paper.

3.5. Theorem. Let A be a prime superalgebra and let f = a+d and g = b+ k be
two nonzero generalized superderivations on A, where a,b € @ and both d and k are
superderivations on A. If fg is also a generalized superderivation on A. Then one of the
following cases is true:

(i) There exists 0 # w € Co such that wk;(z) + d;(z) = 0;

(”) [aiax}s + d’b(m) =0;
for all x € A, where i,j € {0,1}, a;,b; € Q; and both d; and k; are superderivations of
degree i on A, as well as d; and k;.

Proof. According to Theorem 3.2 we assume h(z) = fg(z) = cx + I(z) for all x € A,
where ¢ € @ and [ is a superderivation on A, then

fg(z) =a(bx + k(x)) + d(bx + k(z))
=abz + ak(z) + do(b)z + bdo(z) + d1(b)x + b7 di1(x) + dok(x) + d1k(z).
Hence
¢ =ab+ do(b) + d1(b) = ab + d(b),
(z) =ak(x) + bdo(z) + b di1(x) + dok(z) + d1k(z),

U(z)
lo (a:) =aoko (l‘) + a1k (1’) + bodo (1,‘) — bids (1’) =+ doko(l’) + dik1 (1’),
ll({E) =a1ko (ac) + aok: (l’) + b1dop (.T) + bod1 (l’) + dok1 (az) + dlko(m')



On the one hand we get
lo(zy) =aoko(zy) + arki(zy) + bodo(zy) — brdi(2y) + doko(xy) + dik1(zy)
=aoko(z)y + aozko(y) + arki()y + ar12%k1(y)
+ bodo(x)y + boxdo(y) — bidi(x)y — b1z’ d1(y)
+ doko(z)y + ko(z)do(y) + do(x)ko(y) + zdoko(y)
+ diki(2)y + k()7 di(y) + di(27) k1 (y) + zdika (y)
and on the other hand we get
lo(zy) =aoko(x)y + arki(x)y + bodo(x)y — brdi(2)y + doko(x)y + dik1(x)y
+ laoko(y) + a1k1(y) + bodo(y) — bidi(y) + doko(y) + dika (y)].
Combining the two equations we have
0 =[ao, ]ko(y) + a127k1(y) — xaiki(y) + [bo, z]do(y) — b1z’ d1(y)
+ zbidi(y) + ko(z)do(y) + do(@)ko(y) + k1(x)7 d1(y) — di(2) k1 (y)-
In particular, replacing y by yz in (3.5) we get
0 =[ao, z]ko(y2) + a12” k1(y2) — za1k1(yz) + [bo, z]do(yz) — b1z d1(yz)
+ abidi (yz) + ko(z)do(yz) + do(x)ko(yz) + k1(2)”di(y2) — di(x) k1 (yz).
Extending the identity above we arrive at
0 =[ao, ]ko(y)z + [ao, x]yko(2) + a1z k1 (y
— zairk1(y)z — za1y° ki1(z) + [bo, z]do(y
—b127d1(y)z — b127y d1(2) + xb1di(y)z + b1y’ d1(2)
+ ko(z)do(y)z + ko(x)ydo(2) + do(x)ko(y)z + do(x)yko(2)
+ ki (2)7di(y)z + k1 (2)7y  di(2) — di(2) k1 (y)z — da ()7 y7 ka(2).
Using (3.5) we have
0 =[ao, z]yko(z) + a12°y k1 (2) — za1y” k1 (z) + [bo, z]ydo(z) — b1z’ y d:1(z)
+ ab1ydi(2) + ko(2)ydo(2) + do(@)yko(2) + k1(2)7y” di(2) — di(2)7y k1 (2).
[5, Corollary 3.6] gives
(3.6)  pij = a0, m:]yko(25) + [bo, zi]ydo(2;) + ko(zi)ydo(2;) + do(zi)yko(2;) = 0,
qij =177 yk1(z;) — ziaryki(2;) — biziydi(z;) + zibiydi (2;)
+ k1 (2i) ydi(z) — di(z:) yki(2;) = 0.
for all x; € A;, y € A, z; € Aj, 1,7 € {0,1}. Therefore
poo + por + pro + P11 =[ao, z]yko(2) + [bo, z]ydo(2) + ko(z)ydo(2)
+ do(z)yko(2) = 0,

(3.5)

~

2+ a1x°y k1 (z)
z + [bo, z]ydo(z)

/\\./

(3.7)

(3.8)

(3.9) qoo + qo1 + qio + q11 =a12°yk1(2) — zaryki(z) — biz’ydi(z) + xbirydi(2)
+ k(@) ydi (2) — di () yka(2) = 0.
According to (3.8) and Lemma 3.3 we see that either (i) or (ii) or (iii) is true.
By (3.9) we get
[ax, zolyki(2) — [br, zolydi (2)—k1(x0)yda (2)
+d1(zo)yki(z) = 0 for all zo € Ao,y, 2 € A,



—lar, z1]syk1(2) 4 [b1, 21]syda (2)+k (z1)yda (2)
—di(z1)yk1(z) =0 for all z1 € Ay,y,z € A.
Combining the identities above we give
[a1, z)syk1(2) — [b1, z]sydi (2) — k1 (x)ydi(2) + di(x)yki(z) =0 for all z,y, 2z € A.

By Lemma 3.4 we have that either (i) or (ii) or (iii) is true. Similarly, using the same
way to l1(xy) we have

[ao, z]yk1(2) + [bo, z]yd1(2) + ko(x)yd1(2) + do(x)yk:(2) = 0,
arzyko(z) — 2% a1yko(2) + bizydo(2)
—a7b1ydo(2) + k1(2)ydo(2) + di(z)yko(2) = 0
and either (i) or (ii) or (iii) is true. O

(3.10)

In particular, taking a = b = 0 in Theorem 3.5 we obtain

3.6. Corollary. (|5, Theorem 4.1]) Let A be a prime associative superalgebra and let d =
do +d1 and k = ko + k1 be nonzero superderivations on A. Then dk is a superderivation
if and only if do = ko = 0 and k1 = Aod1 for some nonzero Ao € Co.

Proof. We assume that both dop and ko are nonzero. Since d and k are nonzero su-
perderivations and dk is also a superderivation of A, then there exists 0 # p € Cp such
that ko(z) = udo(xz) by Theorem 3.5. We have 2udo(z)ydo(z) = 0 by taking z = = in
(3.8), that is, do(x)Ado(z) = 0. Since A is a semiprime algebra, then do(z) = 0. But it
contradicts do # 0. We set dop = 0. Then di1 # 0. When ki # 0. There exists 0 # Ao € Co
such that ki(z) = Aodi(z) and ko(z) = do(z) = 0 by Theorem 3.5. When k1 = 0 and
ko # 0, we have di(z) = 0 by (3.10). It contradicts that d is a nonzero superderivation.
So dp = ko = 0 and k1 = Aod1 for some nonzero \g € Co when dk is a superderivation.
It is easy to prove that dk is a superderivation when do = ko = 0 and k1 = Aod1 for some
nonzero A\g € Co d
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