The product of generalized superderivations on a prime superalgebra

He Yuan* and Yu Wang ${ }^{\dagger}$

Abstract

In the paper, we extend the definition of generalized derivations to superalgebras and prove that a generalized superderivation g on a prime superalgebra A is represented as $g(x)=a x+d(x)$ for all $x \in A$, where a is an element of $Q_{m r}$ (the maximal right ring of quotients of A) and d is a superderivation on A. Using the result we study two generalized superderivations when their product is also a generalized superderivation on a prime superalgebra A.

2000 AMS Classification: $16 \mathrm{~N} 60,16 \mathrm{~W} 25,16 \mathrm{~W} 55$.
Keywords: Generalized derivation, Prime ring, Extended centroid, Generalized superderivation, Superalgebra.

Received 05: 10:2011 : Accepted 09: 10: 2013 Doi : 10.15672/HJMS. 2014437522

1. Introduction

Let R be a prime ring. According to Hvala [9] an additive mapping $g: R \rightarrow R$ is said to be a generalized derivation of R if there exists a derivation δ of R such that $g(x y)=g(x) y+x \delta(y)$ for all $x, y \in R$. In [14] Lee proved that every generalized derivation of A can be uniquely extended to $Q_{m r}$ and there exists an element $a \in Q_{m r}$ such that $g(x)=a x+\delta(x)$ for all $x \in R$.

The study of the product of derivations in prime rings was initiated by Posner [18]. He proved that the product of two nonzero derivations can not be a derivation on a prime ring of characteristic not 2. Later a number of authors studied the problem in several ways (see [2], [4], [5], [9], [10], [12], [13], and [15]). Hvala [9] studied two generalized derivations f_{1}, f_{2} when the product is also a generalized derivation on a prime ring R of characteristic not 2 in 1998. In 2001 Lee [13] gave a description of Hvala's Theorem without the assumption of $\operatorname{char} R \neq 2$. In 2004 Fošner [5] extended Posner's Theorem to prime superalgebras.

[^0]Superalgebras first appeared in physics, in the Theory of Supersymmetry, to create an algebraic structure representing the behavior of the subatomic particles known as bosons and fermions ([11]). Recently there has been a considerable authors who are interested in superalgebras. They extended many results of rings to superalgebras (see [3], [5], [6], [7], [8], [11], [16], [17] and [19]).

In Section 3, we will extend the definition of generalized derivations to superalgebras and prove that every generalized superderivation of a prime superalgebra A can be extended to $Q_{m r}$ (the maximal right ring of quotients of A). Further, we will prove that a generalized superderivation of a prime superalgebra is a sum of a left multiplication mapping and a superderivation. Using the result we will study two generalized superderivations when their product is also a generalized superderivation on a prime superalgebra. As a result, Fošner's theorem [5, Theorem 4.1] is the special case of the main theorem of the paper.

2. preliminaries

Let Φ be a commutative ring with $\frac{1}{2} \in \Phi$. An associative algebra A over Φ is said to be an associative superalgebra if there exist two Φ-submodules A_{0} and A_{1} of A such that $A=A_{0} \bigoplus A_{1}$ and $A_{i} A_{j} \subseteq A_{i+j}, i, j \in Z_{2}$. A superalgebra is called trivial if $A_{1}=0$. The elements of A_{i} are homogeneous of degree i and we write $\left|a_{i}\right|=i$ for all $a_{i} \in A_{i}$. We define $[a, b]_{s}=a b-(-1)^{|a||b|} b a$ for all $a, b \in A_{0} \cup A_{1}$. Thus, $[a, b]_{s}=$ $\left[a_{0}, b_{0}\right]_{s}+\left[a_{1}, b_{0}\right]_{s}+\left[a_{0}, b_{1}\right]_{s}+\left[a_{1}, b_{1}\right]_{s}$, where $a=a_{0}+a_{1}, b=b_{0}+b_{1}$ and $a_{i}, b_{i} \in A_{i}$ for $i=0,1$. It follows that $[a, b]_{s}=[a, b]$ if one of the elements a and b is homogeneous of degree 0 . Let $k \in\{0,1\}$. A superderivation of degree k is actually a Φ-linear mapping $d_{k}: A \rightarrow A$ which satisfies $d_{k}\left(A_{i}\right) \subseteq A_{k+i}$ for $i \in Z_{2}$ and $d_{k}(a b)=d_{k}(a) b+(-1)^{k|a|} a d_{k}(b)$ for all $a, b \in A_{0} \cup A_{1}$. If $d=d_{0}+d_{1}$, then d is a superderivation on A. For example, for $a=a_{0}+a_{1} \in A$ the mapping $\operatorname{ad}_{s}(a)(x)=[a, x]_{s}=\left[a_{0}, x\right]_{s}+\left[a_{1}, x\right]_{s}$ is a superderivation, which is called the inner superderivation induced by a. For a superalgebra A, we define $\sigma: A \rightarrow A$ by $\left(a_{0}+a_{1}\right)^{\sigma}=a_{0}-a_{1}$, then σ is an automorphism of A such that $\sigma^{2}=1$. On the other hand, for an algebra A, if there exists an automorphism σ of A such that $\sigma^{2}=1$, then A becomes a superalgebra $A=A_{0} \bigoplus A_{1}$, where $A_{i}=\left\{x \in A \mid x^{\sigma}=(-1)^{i} x\right\}$, $i=0,1$. Clearly a superderivation d of degree 1 is a σ-derivation, i.e., it satisfies $d(a b)=$ $d(a) b+a^{\sigma} d(b)$ for all $a, b \in A$. A superalgebra A is called a prime superalgebra if and only if $a A b=0$ implies $a=0$ or $b=0$, where at least one of the elements a and b is homogeneous. The knowledge of superalgebras refers to [3], [5], [6], [7], [8], [16], [17] and [19].

In [17] Montaner obtained that a prime superalgebra A is not necessarily a prime algebra but a semiprime algebra. Hence one can define the maximal right ring of quotients $Q_{m r}$ of A, and the useful properties of $Q_{m r}$ can be found in [1]. By [1, proposition 2.5.3] σ can be uniquely extended to $Q_{m r}$ such that $\sigma^{2}=1$. Therefore $Q_{m r}$ is also a superalgebra. Further, we can get that $Q_{m r}$ is a prime superalgebra.

3. the product of generalized superderivations

Firstly, we extend the definition of generalized derivations to superalgebras.
3.1. Definition. Let A be a superalgebra. For $i \in\{0,1\}$, a Φ-linear mapping $g_{i}: A \rightarrow A$ is called a generalized superderivation of degree i if $g_{i}\left(A_{j}\right) \subseteq A_{i+j}, j \in Z_{2}$, and $g_{i}(x y)=$ $g_{i}(x) y+(-1)^{i|x|} x d_{i}(y)$ for all $x, y \in A_{0} \cup A_{1}$, where d_{i} is a superderivation of degree i on A. If $g=g_{0}+g_{1}$, then g is called a generalized superderivation on A.

Let A be a prime superalgebra and $Q=Q_{m r}$ be the maximal right ring of quotients of A. Next, we prove that a generalized superderivation of a prime superalgebra is a sum
of a left multiplication mapping and a superderivation. By [20, proposition 2] we have every σ-derivation d of a semiprime ring A can be uniquely extended to a σ-derivation of Q.
3.2. Theorem. Let A be a prime superalgebra and $g: A \rightarrow A$ be a generalized superderivation. Then g can be extended to Q and there exist an element $a \in Q$ and a superderivation d of A such that $g(x)=a x+d(x)$ for all $x \in A$, where both a and d are determined by g uniquely.

Proof. To prove that the generalized superderivation g on a prime superalgebra A can be extended to Q, it suffices to prove that g_{0} and g_{1} can be extended to Q, respectively. The generalized superderivation of degree $1 g_{1}$ is represented as $g_{1}(x y)=g_{1}(x) y+x^{\sigma} d_{1}(y)$ for all $x, y \in A$, where d_{1} is a superderivation of degree 1 on A. Note that $d_{1}(x y)=$ $d_{1}(x) y+x^{\sigma} d_{1}(y)$. So combining the two equations we have $\left(g_{1}-d_{1}\right)(x y)=\left(g_{1}-d_{1}\right)(x) y$. Let $g_{1}-d_{1}=f$. Clearly f is a right A-module mapping. Then there exists $a_{1} \in Q$ such that $f(x)=a_{1} x$. So $g_{1}(x)=a_{1} x+d_{1}(x)$ for all $x \in A$. Since d_{1} can be extended to Q, then it follows that g_{1} can be extended to Q. It is easy to prove that $g_{0}(x)=a_{0} x+d_{0}(x)$ and g_{0} can be extended to Q similarly, where a_{0} is an element of Q and d_{0} is a superderivation of degree 0 on A. So g can be extended to Q. Clearly $a_{i} \in Q_{i}, i \in\{0,1\}$. Let $a=a_{0}+a_{1}$ and $d=d_{0}+d_{1}$. Then $g(x)=g_{0}(x)+g_{1}(x)=a_{0} x+d_{0}(x)+a_{1} x+d_{1}(x)=a x+d(x)$ for all $x \in A$, where a is an element of Q and d is a superderivation of A.

Now we claim both a and d are determined by g uniquely. It suffices to prove that $a=0$ and $d=0$ when $g=0$. Since $g=0$, we have $g_{0}=g_{1}=0$. By $g_{1}=0$, we obtain $0=g_{1}(y r)=a_{1} y r+d_{1}(y r)=a_{1} y r+d_{1}(y) r+y^{\sigma} d_{1}(r)=g_{1}(y) r+y^{\sigma} d_{1}(r)=y^{\sigma} d_{1}(r)$ for all $y, r \in A$. Then $A^{\sigma} d_{1}(A)=0$. So $A d_{1}(A)=0$. Clearly $d_{1}(A)=0$. Since $g_{1}(A)=0$, it follows that $a_{1} A=0$. Hence $a_{1}=0$. Similarly we can prove the case when $g_{0}=0$. So $a=0$ and $d=0$.

Next, we give two results which are used in the proof of the main result.

3.3. Lemma. Let A be a prime superalgebra. If A satisfies

$$
\begin{equation*}
\left(\left[a_{0}, x\right]+d_{0}(x)\right) y k_{0}(z)+\left(\left[b_{0}, x\right]+k_{0}(x)\right) y d_{0}(z)=0 \quad \text { for all } x, y, z \in A \tag{3.1}
\end{equation*}
$$

where $a_{0}, b_{0} \in Q_{0}$ and both d_{0} and k_{0} are superderivations of degree 0 on A. Then one of the following cases is true:
(i) There exists $0 \neq \mu \in C_{0}$ such that $\mu k_{0}(x)+d_{0}(x)=0$;
(ii) $\left[a_{0}, x\right]+d_{0}(x)=0$;
(iii) $\left[b_{0}, x\right]+k_{0}(x)=0$
for all $x \in A$.
Proof. Let $d_{0}=k_{0}=0$. Clearly there exists $0 \neq \mu \in C_{0}$ such that $\mu k_{0}(x)+d_{0}(x)=0$. Hence (i) is true.

Next we assume either $d_{0} \neq 0$ or $k_{0} \neq 0$. By [5, Theorem 3.3] there exist λ_{1} and λ_{2} not all zero such that $\lambda_{1}\left(\left[a_{0}, x\right]+d_{0}(x)\right)+\lambda_{2}\left(\left[b_{0}, x\right]+k_{0}(x)\right)=0$. Let $\lambda_{1}=\lambda_{10}+\lambda_{11}$ and $\lambda_{2}=\lambda_{20}+\lambda_{21}$. Then $\lambda_{10}\left(\left[a_{0}, x\right]+d_{0}(x)\right)+\lambda_{11}\left(\left[a_{0}, x\right]+d_{0}(x)\right)+\lambda_{20}\left(\left[b_{0}, x\right]+k_{0}(x)\right)+$ $\lambda_{21}\left(\left[b_{0}, x\right]+k_{0}(x)\right)=0$ for all $x \in A$, where $\lambda_{10}, \lambda_{20} \in C_{0}, \lambda_{11}, \lambda_{21} \in C_{1}$. By $A_{0} \cap A_{1}=0$, we have

$$
\begin{array}{ll}
\lambda_{11}\left(\left[a_{0}, x_{0}\right]+d_{0}\left(x_{0}\right)\right)+\lambda_{21}\left(\left[b_{0}, x_{0}\right]+k_{0}\left(x_{0}\right)\right)=0 & \text { for all } x_{0} \in A_{0}, \\
\lambda_{11}\left(\left[a_{0}, x_{1}\right]+d_{0}\left(x_{1}\right)\right)+\lambda_{21}\left(\left[b_{0}, x_{1}\right]+k_{0}\left(x_{1}\right)\right)=0 & \text { for all } x_{1} \in A_{1} . \tag{3.3}
\end{array}
$$

Using (3.2) and (3.3) we obtain

$$
\begin{equation*}
\lambda_{11}\left(\left[a_{0}, x\right]+d_{0}(x)\right)+\lambda_{21}\left(\left[b_{0}, x\right]+k_{0}(x)\right)=0 \quad \text { for all } x \in A . \tag{3.4}
\end{equation*}
$$

We proceed by dividing three cases. Only one of λ_{11} and λ_{21} is nonzero. If $\lambda_{21} \neq 0$, then $\left[b_{0}, x\right]+k_{0}(x)=0$. If $\lambda_{11} \neq 0$, then $\left[a_{0}, x\right]+d_{0}(x)=0$. Hence either (ii) or (iii) is true.

Both $\lambda_{11} \neq 0$ and $\lambda_{21} \neq 0$. By (3.4) and [5, Lemma 3.1] we arrive at $\left[a_{0}, x\right]+d_{0}(x)=$ $\lambda\left(\left[b_{0}, x\right]+k_{0}(x)\right)$, where $\lambda=-\lambda_{11}^{-1} \lambda_{21} \neq 0$. Using (3.1) we get $\lambda\left(\left[b_{0}, x\right]+k_{0}(x)\right) y k_{0}(z)+$ $\left(\left[b_{0}, x\right]+k_{0}(x)\right) y d_{0}(z)=0$. That is, $\left(\left[b_{0}, x\right]+k_{0}(x)\right) y\left(\lambda k_{0}(z)+d_{0}(z)\right)=0$. If there exists $z \in A$ such that $\lambda k_{0}(z)+d_{0}(z) \neq 0$, then $\left[b_{0}, x\right]+k_{0}(x)=0$ for all $x \in A_{0} \cup A_{1}$. It follows that $\left[b_{0}, x\right]+k_{0}(x)=0$ for all $x \in A$. Hence either (i) or (iii) is true. Similarly, when $\rho\left(\left[a_{0}, x\right]+d_{0}(x)\right)=\left[b_{0}, x\right]+k_{0}(x)$, where $\rho=-\lambda_{21}^{-1} \lambda_{11} \neq 0$, we have either (i) or (ii) is true by using (3.1) again.

When $\lambda_{11}=\lambda_{21}=0$, i.e., $\lambda_{1}, \lambda_{2} \in C_{0}$. If one of λ_{1} and λ_{2} is zero, then either (ii) or (iii) is true. If both λ_{1} and λ_{2} are nonzero, the proof is similar to the above paragraph.

Similar to the proof of Lemma 3.3, we can get the following result.
3.4. Lemma. Let A be a prime superalgebra. If A satisfies

$$
\left(\left[a_{1}, x\right]_{s}+d_{1}(x)\right) y k_{1}(z)-\left(\left[b_{1}, x\right]_{s}+k_{1}(x)\right) y d_{1}(z)=0 \quad \text { for all } x, y, z \in A
$$

where $a_{1}, b_{1} \in Q_{1}$ and both d_{1} and k_{1} are superderivations of degree 1 on A. Then one of the following cases is true:
(i) There exists $0 \neq \nu \in C_{0}$ such that $\nu k_{1}(x)+d_{1}(x)=0$;
(ii) $\left[a_{1}, x\right]_{s}+d_{1}(x)=0$;
(iii) $\left[b_{1}, x\right]_{s}+k_{1}(x)=0$
for all $x \in A$.
Now, we are in a position to give the main result of this paper.
3.5. Theorem. Let A be a prime superalgebra and let $f=a+d$ and $g=b+k$ be two nonzero generalized superderivations on A, where $a, b \in Q$ and both d and k are superderivations on A. If $f g$ is also a generalized superderivation on A. Then one of the following cases is true:
(i) There exists $0 \neq \omega \in C_{0}$ such that $\omega k_{j}(x)+d_{j}(x)=0$;
(ii) $\left[a_{i}, x\right]_{s}+d_{i}(x)=0$;
(iii) $\left[b_{i}, x\right]_{s}+k_{i}(x)=0$
for all $x \in A$, where $i, j \in\{0,1\}, a_{i}, b_{i} \in Q_{i}$ and both d_{i} and k_{i} are superderivations of degree i on A, as well as d_{j} and k_{j}.

Proof. According to Theorem 3.2 we assume $h(x)=f g(x)=c x+l(x)$ for all $x \in A$, where $c \in Q$ and l is a superderivation on A, then

$$
\begin{aligned}
f g(x) & =a(b x+k(x))+d(b x+k(x)) \\
& =a b x+a k(x)+d_{0}(b) x+b d_{0}(x)+d_{1}(b) x+b^{\sigma} d_{1}(x)+d_{0} k(x)+d_{1} k(x) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
c & =a b+d_{0}(b)+d_{1}(b)=a b+d(b), \\
l(x) & =a k(x)+b d_{0}(x)+b^{\sigma} d_{1}(x)+d_{0} k(x)+d_{1} k(x), \\
l_{0}(x) & =a_{0} k_{0}(x)+a_{1} k_{1}(x)+b_{0} d_{0}(x)-b_{1} d_{1}(x)+d_{0} k_{0}(x)+d_{1} k_{1}(x), \\
l_{1}(x) & =a_{1} k_{0}(x)+a_{0} k_{1}(x)+b_{1} d_{0}(x)+b_{0} d_{1}(x)+d_{0} k_{1}(x)+d_{1} k_{0}(x) .
\end{aligned}
$$

On the one hand we get

$$
\begin{aligned}
l_{0}(x y)= & a_{0} k_{0}(x y)+a_{1} k_{1}(x y)+b_{0} d_{0}(x y)-b_{1} d_{1}(x y)+d_{0} k_{0}(x y)+d_{1} k_{1}(x y) \\
= & a_{0} k_{0}(x) y+a_{0} x k_{0}(y)+a_{1} k_{1}(x) y+a_{1} x^{\sigma} k_{1}(y) \\
& +b_{0} d_{0}(x) y+b_{0} x d_{0}(y)-b_{1} d_{1}(x) y-b_{1} x^{\sigma} d_{1}(y) \\
& +d_{0} k_{0}(x) y+k_{0}(x) d_{0}(y)+d_{0}(x) k_{0}(y)+x d_{0} k_{0}(y) \\
& +d_{1} k_{1}(x) y+k_{1}(x)^{\sigma} d_{1}(y)+d_{1}\left(x^{\sigma}\right) k_{1}(y)+x d_{1} k_{1}(y)
\end{aligned}
$$

and on the other hand we get

$$
\begin{aligned}
l_{0}(x y)= & a_{0} k_{0}(x) y+a_{1} k_{1}(x) y+b_{0} d_{0}(x) y-b_{1} d_{1}(x) y+d_{0} k_{0}(x) y+d_{1} k_{1}(x) y \\
& +x\left[a_{0} k_{0}(y)+a_{1} k_{1}(y)+b_{0} d_{0}(y)-b_{1} d_{1}(y)+d_{0} k_{0}(y)+d_{1} k_{1}(y)\right] .
\end{aligned}
$$

Combining the two equations we have

$$
\begin{align*}
0= & {\left[a_{0}, x\right] k_{0}(y)+a_{1} x^{\sigma} k_{1}(y)-x a_{1} k_{1}(y)+\left[b_{0}, x\right] d_{0}(y)-b_{1} x^{\sigma} d_{1}(y) } \\
& +x b_{1} d_{1}(y)+k_{0}(x) d_{0}(y)+d_{0}(x) k_{0}(y)+k_{1}(x)^{\sigma} d_{1}(y)-d_{1}(x)^{\sigma} k_{1}(y) . \tag{3.5}
\end{align*}
$$

In particular, replacing y by $y z$ in (3.5) we get

$$
\begin{aligned}
0= & {\left[a_{0}, x\right] k_{0}(y z)+a_{1} x^{\sigma} k_{1}(y z)-x a_{1} k_{1}(y z)+\left[b_{0}, x\right] d_{0}(y z)-b_{1} x^{\sigma} d_{1}(y z) } \\
& +x b_{1} d_{1}(y z)+k_{0}(x) d_{0}(y z)+d_{0}(x) k_{0}(y z)+k_{1}(x)^{\sigma} d_{1}(y z)-d_{1}(x)^{\sigma} k_{1}(y z) .
\end{aligned}
$$

Extending the identity above we arrive at

$$
\begin{aligned}
0= & {\left[a_{0}, x\right] k_{0}(y) z+\left[a_{0}, x\right] y k_{0}(z)+a_{1} x^{\sigma} k_{1}(y) z+a_{1} x^{\sigma} y^{\sigma} k_{1}(z) } \\
& -x a_{1} k_{1}(y) z-x a_{1} y^{\sigma} k_{1}(z)+\left[b_{0}, x\right] d_{0}(y) z+\left[b_{0}, x\right] y d_{0}(z) \\
& -b_{1} x^{\sigma} d_{1}(y) z-b_{1} x^{\sigma} y^{\sigma} d_{1}(z)+x b_{1} d_{1}(y) z+x b_{1} y^{\sigma} d_{1}(z) \\
& +k_{0}(x) d_{0}(y) z+k_{0}(x) y d_{0}(z)+d_{0}(x) k_{0}(y) z+d_{0}(x) y k_{0}(z) \\
& +k_{1}(x)^{\sigma} d_{1}(y) z+k_{1}(x)^{\sigma} y^{\sigma} d_{1}(z)-d_{1}(x)^{\sigma} k_{1}(y) z-d_{1}(x)^{\sigma} y^{\sigma} k_{1}(z) .
\end{aligned}
$$

Using (3.5) we have

$$
\begin{aligned}
0= & {\left[a_{0}, x\right] y k_{0}(z)+a_{1} x^{\sigma} y^{\sigma} k_{1}(z)-x a_{1} y^{\sigma} k_{1}(z)+\left[b_{0}, x\right] y d_{0}(z)-b_{1} x^{\sigma} y^{\sigma} d_{1}(z) } \\
& +x b_{1} y^{\sigma} d_{1}(z)+k_{0}(x) y d_{0}(z)+d_{0}(x) y k_{0}(z)+k_{1}(x)^{\sigma} y^{\sigma} d_{1}(z)-d_{1}(x)^{\sigma} y^{\sigma} k_{1}(z) .
\end{aligned}
$$

[5, Corollary 3.6] gives

$$
\begin{align*}
p_{i j}= & {\left[a_{0}, x_{i}\right] y k_{0}\left(z_{j}\right)+\left[b_{0}, x_{i}\right] y d_{0}\left(z_{j}\right)+k_{0}\left(x_{i}\right) y d_{0}\left(z_{j}\right)+d_{0}\left(x_{i}\right) y k_{0}\left(z_{j}\right)=0, } \tag{3.6}\\
q_{i j}= & a_{1} x_{i}^{\sigma} y k_{1}\left(z_{j}\right)-x_{i} a_{1} y k_{1}\left(z_{j}\right)-b_{1} x_{i}^{\sigma} y d_{1}\left(z_{j}\right)+x_{i} b_{1} y d_{1}\left(z_{j}\right) \\
& +k_{1}\left(x_{i}\right)^{\sigma} y d_{1}\left(z_{j}\right)-d_{1}\left(x_{i}\right)^{\sigma} y k_{1}\left(z_{j}\right)=0 . \tag{3.7}
\end{align*}
$$

for all $x_{i} \in A_{i}, y \in A, z_{j} \in A_{j}, i, j \in\{0,1\}$. Therefore

$$
\begin{align*}
p_{00}+p_{01}+p_{10}+p_{11}= & {\left[a_{0}, x\right] y k_{0}(z)+\left[b_{0}, x\right] y d_{0}(z)+k_{0}(x) y d_{0}(z) } \\
& +d_{0}(x) y k_{0}(z)=0, \tag{3.8}\\
q_{00}+q_{01}+q_{10}+q_{11}= & a_{1} x^{\sigma} y k_{1}(z)-x a_{1} y k_{1}(z)-b_{1} x^{\sigma} y d_{1}(z)+x b_{1} y d_{1}(z) \\
& +k_{1}(x)^{\sigma} y d_{1}(z)-d_{1}(x)^{\sigma} y k_{1}(z)=0 . \tag{3.9}
\end{align*}
$$

According to (3.8) and Lemma 3.3 we see that either (i) or (ii) or (iii) is true.
By (3.9) we get

$$
\begin{aligned}
{\left[a_{1}, x_{0}\right] y k_{1}(z)-\left[b_{1}, x_{0}\right] y d_{1}(z) } & -k_{1}\left(x_{0}\right) y d_{1}(z) \\
& +d_{1}\left(x_{0}\right) y k_{1}(z)=0 \text { for all } x_{0} \in A_{0}, y, z \in A
\end{aligned}
$$

$$
\begin{aligned}
-\left[a_{1}, x_{1}\right]_{s} y k_{1}(z)+\left[b_{1}, x_{1}\right]_{s} y d_{1}(z) & +k_{1}\left(x_{1}\right) y d_{1}(z) \\
& -d_{1}\left(x_{1}\right) y k_{1}(z)=0 \text { for all } x_{1} \in A_{1}, y, z \in A .
\end{aligned}
$$

Combining the identities above we give

$$
\left[a_{1}, x\right]_{s} y k_{1}(z)-\left[b_{1}, x\right]_{s} y d_{1}(z)-k_{1}(x) y d_{1}(z)+d_{1}(x) y k_{1}(z)=0 \text { for all } x, y, z \in A .
$$

By Lemma 3.4 we have that either (i) or (ii) or (iii) is true. Similarly, using the same way to $l_{1}(x y)$ we have

$$
\begin{align*}
& {\left[a_{0}, x\right] y k_{1}(z)+\left[b_{0}, x\right] y d_{1}(z)+k_{0}(x) y d_{1}(z)+d_{0}(x) y k_{1}(z)=0,} \\
& \quad a_{1} x y k_{0}(z)-x^{\sigma} a_{1} y k_{0}(z)+b_{1} x y d_{0}(z) \\
& -x^{\sigma} b_{1} y d_{0}(z)+k_{1}(x) y d_{0}(z)+d_{1}(x) y k_{0}(z)=0 \tag{3.10}
\end{align*}
$$

and either (i) or (ii) or (iii) is true.
In particular, taking $a=b=0$ in Theorem 3.5 we obtain
3.6. Corollary. ([5, Theorem 4.1]) Let A be a prime associative superalgebra and let $d=$ $d_{0}+d_{1}$ and $k=k_{0}+k_{1}$ be nonzero superderivations on A. Then $d k$ is a superderivation if and only if $d_{0}=k_{0}=0$ and $k_{1}=\lambda_{0} d_{1}$ for some nonzero $\lambda_{0} \in C_{0}$.

Proof. We assume that both d_{0} and k_{0} are nonzero. Since d and k are nonzero superderivations and $d k$ is also a superderivation of A, then there exists $0 \neq \mu \in C_{0}$ such that $k_{0}(x)=\mu d_{0}(x)$ by Theorem 3.5. We have $2 \mu d_{0}(x) y d_{0}(x)=0$ by taking $z=x$ in (3.8), that is, $d_{0}(x) A d_{0}(x)=0$. Since A is a semiprime algebra, then $d_{0}(x)=0$. But it contradicts $d_{0} \neq 0$. We set $d_{0}=0$. Then $d_{1} \neq 0$. When $k_{1} \neq 0$. There exists $0 \neq \lambda_{0} \in C_{0}$ such that $k_{1}(x)=\lambda_{0} d_{1}(x)$ and $k_{0}(x)=d_{0}(x)=0$ by Theorem 3.5. When $k_{1}=0$ and $k_{0} \neq 0$, we have $d_{1}(x)=0$ by (3.10). It contradicts that d is a nonzero superderivation. So $d_{0}=k_{0}=0$ and $k_{1}=\lambda_{0} d_{1}$ for some nonzero $\lambda_{0} \in C_{0}$ when $d k$ is a superderivation. It is easy to prove that $d k$ is a superderivation when $d_{0}=k_{0}=0$ and $k_{1}=\lambda_{0} d_{1}$ for some nonzero $\lambda_{0} \in C_{0}$

References

[1] Beidar, K. I., Martindale 3rd, W. S. and Mikhalev, A. V. Rings with Generalized Identities, Marccl Dekker, New York, 1996.
[2] Chebotar, M. A. and Lee, P. H. A Note on Compositions of Derivations of Prime Rings, Comm. Algebra 31(6), 2965-2969, 2003.
[3] Chen, T. S. Supercentralizing Superderivations on Prime Superalgebras, Comm. Algebra 33(12), 4457-4466, 2005.
[4] Chuang, C. L. On Compositions of Derivations of Prime Rings, Proc. Amer. Math. Soc. 108(3), 647-652, 1990.
[5] Fošner, M. On the Extended Centroid of Prime Associative Superalgebras with Applications to Superderivations, Comm. Algebra 32(2), 689-705, 2004.
[6] Fošner, M. Jordan ϵ-homomorphisms and Jordan ϵ-derivations, Taiwanese J. Math. 9(4), 595-616, 2005.
[7] Fošner, M. Jordan superderivations, Comm. Algebra 31(9), 4533-4545, 2003.
[8] Fošner, M. Jordan superderivations II, Int. J. Math. Math. Sci. 2004(44), 2357-2369, 2004.
[9] Hvala, B. Generalized Derivations in Rings, Comm. Algebra 26(4), 1147-1168, 1998.
[10] Jensen, D. Nilpotency of Derivations in Prime Rings, Proc. Amer. Math. Soc. 123(9), 2633-2636, 1995.
[11] Laliena, J. and Sacristán, S. On Certain Semiprime Associative Superalgebras, Comm. Algebra 37(10), 3548-3552, 2009.
[12] Lanski, C. Differential Identities, Lie Ideals, and Posner's Theorems, Pacific J. Math. 134(2), 275-297, 1988.
[13] Lee, T. K. Identities with Generalized Derivations, Comm. Algebra 29(10), 4451-4460, 2001.
[14] Lee, T. K. Generalized Derivations of Left Faithful Rings, Comm. Algebra 27(8), 4057-4073, 1999.
[15] Lee, T. K. and Liu, C. K. Nilpotency of q-skew Derivations, Comm. Algebra 34(2), 661-669, 2006.
[16] Lee, P. H. and Wang, Y. Supercentralizing Maps in Prime Superalgebras, Comm. Algebra 37(3), 840-854, 2009.
[17] Montaner, F. On the Lie Structure of Associative Superalgebras, Comm. Algebra 26(7), 2337-2349, 1998.
[18] Posner, E. C. Derivations in Prime Rings, Proc. Amer. Math. Soc. 8, 79-92, 1957.
[19] Wang, Y. Supercentralizing Superautomorphisms on Prime Superalgebras, Taiwanese J. Math. 13(5), 1441-1449, 2009.
[20] Wei, F. and Niu, F. W. Extension of $(1, \sigma)$ Derivations of Semiprime Rings, Acta Mathmatica Sinica (PRC) 44(1), 169-174, 2001.

[^0]: *Department of Mathematics Jilin University Changchun 130012, P. R. of China and Department of Mathematics Jilin Normal University Siping 136000, P. R. of China
 Email: yuanhe1983@126.com
 ${ }^{\dagger}$ Department of Mathematics Shanghai Normal University Shanghai 200234, P. R. of China Email:ywang2004@126.com

