On the Fibonacci and Lucas numbers, their sums and permanents of one type of Hessenberg matrices

Fatih YILMAZ*† and Durmus BOZKURT ${ }^{\ddagger}$

Abstract

At this paper, we derive some relationships between permanents of one type of lower-Hessenberg matrix family and the Fibonacci and Lucas numbers and their sums.

2000 AMS Classification: 15A36, 15A15, 11B37
Keywords: Hessenberg matrix, permanent, Fibonacci and Lucas number.

Received 05:10:2011 : Accepted 05: 10:2013 Doi : 10.15672/HJMS. 2014437527

1. Introduction

The well-known Fibonacci and Lucas sequences are recursively defined by

$$
\begin{aligned}
& F_{n+1}=F_{n}+F_{n-1}, n \geq 1 \\
& L_{n+1}=L_{n}+L_{n-1}, n \geq 1
\end{aligned}
$$

with initial conditions $F_{0}=0, F_{1}=1$ and $L_{0}=2, L_{1}=1$. The first few values of the sequences are given below:

n	0	1	2	3	4	5	6	7	8	9
F_{n}	0	1	1	2	3	5	8	13	21	34
L_{n}	2	1	3	4	7	11	18	29	47	76

The permanent of a matrix is similar to the determinant but all of the signs used in the Laplace expansion of minors are positive. The permanent of an n-square matrix is defined by

$$
\operatorname{per} A=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i} \sigma(i)
$$

[^0]where the summation extends over all permutations σ of the symmetric group $S_{n}[1]$.
Let $A=\left[a_{i j}\right]$ be an $m \times n$ matrix with row vectors $r_{1}, r_{2}, \ldots, r_{m}$. We call A is contractible on column k, if column k contains exactly two non zero elements. Suppose that A is contractible on column k with $a_{i k} \neq 0, a_{j k} \neq 0$ and $i \neq j$. Then the $(m-1) \times$ ($n-1$) matrix $A_{i j: k}$ obtained from A replacing row i with $a_{j k} r_{i}+a_{i k} r_{j}$ and deleting row j and column k is called the contraction of A on column k relative to rows i and j. If A is contractible on row k with $a_{k i} \neq 0, a_{k j} \neq 0$ and $i \neq j$, then the matrix $A_{k: i j}=\left[A_{i j: k}^{T}\right]^{T}$ is called the contraction of A on row k relative to columns i and j. We know that if B is a contraction of $A[6]$, then
\[

$$
\begin{equation*}
\operatorname{per} A=\operatorname{per} B \tag{1.1}
\end{equation*}
$$

\]

It is known that there are a lot of relationships between determinants or permanents of matrices and well-known number sequences. For example, the authors [2] investigate relationships between permanents of one type of Hessenberg matrix and the Pell and Perrin numbers.

In [3], Lee defined a $(0-1)-$ matrix whose permanents are Lucas numbers.
In [4], the author investigate general tridiagonal matrix determinants and permanents. Also he showed that the permanent of the tridiagonal matrix based on $\left\{a_{i}\right\},\left\{b_{i}\right\},\left\{c_{i}\right\}$ is equal to the determinant of the matrix based on $\left\{-a_{i}\right\},\left\{b_{i}\right\},\left\{c_{i}\right\}$.

In [5], the authors give $(0,1,-1)$ tridiagonal matrices whose determinants and permanents are negatively subscripted Fibonacci and Lucas numbers. Also, they give an $n \times n$ $(-1,1)$ matrix S, such that $\operatorname{per} A=\operatorname{det}(A \circ S)$, where $A \circ S$ denotes Hadamard product of A and S.

In the present paper, we consider a particular case of lower Hessenberg matrices. We show that the permanents of this type of matrices are related with Fibonacci and Lucas numbers and their sums.

2. Determinantal representation of Fibonacci and Lucas numbers and their sums

Let $H_{n}=\left[h_{i j}\right]_{n \times n}$ be an n-square lower Hessenberg matrix as below:

$$
H_{n}=\left[h_{i j}\right]_{n \times n}=\left\{\begin{array}{l}
2, \text { if } i=j, \text { for } i, j=1,2, \ldots, n-1 \tag{2.1}\\
1, \text { if } j=i-2 \text { and } i=j=n \\
(-1)^{i}, \text { if } j=i+1 \\
0, \text { otherwise }
\end{array}\right.
$$

Then we have the following theorem.
2.1. Theorem. Let H_{n} be as in (2.1), then

$$
\operatorname{per} H_{n}=\operatorname{per} H_{n}^{(n-2)}=F_{n+1}
$$

where F_{n} is the nth Fibonacci number.

Proof. By definition of the matrix H_{n}, it can be contracted on column n. Let $H_{n}^{(r)}$ be the r th contraction of H_{n}. If $r=1$, then

$$
H_{n}^{(1)}=\left(\begin{array}{ccccccc}
2 & -1 & & & & & \\
0 & 2 & 1 & & & & \\
1 & 0 & 2 & -1 & & & \\
& 1 & 0 & 2 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & \\
& & & 1 & 0 & 2 & (-1)^{n-2} \\
& & & & 1 & (-1)^{n-1} & 2
\end{array}\right) .
$$

Since $H_{n}^{(1)}$ also can be contracted according to the last column,

$$
H_{n}^{(2)}=\left(\begin{array}{ccccccc}
2 & -1 & & & & & \\
0 & 2 & 1 & & & & \\
1 & 0 & 2 & -1 & & & \\
& 1 & 0 & 2 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & \\
& & & 1 & 0 & 2 & (-1)^{n-3} \\
& & & & 2 & (-1)^{n-2} & 3
\end{array}\right)
$$

Continuing this method, we obtain the r th contraction

$$
\begin{aligned}
H_{n}^{(r)} & =\left(\begin{array}{ccccccc}
2 & -1 & & & & & \\
0 & 2 & 1 & & & \\
1 & 0 & 2 & -1 & & \\
& 1 & 0 & 2 & 1 & \\
& & \ddots & \ddots & \ddots & \ddots & (-1)^{r-1} \\
& & & 1 & 0 & 2 & F_{r+2}
\end{array}\right), n \text { is even } \\
& \\
H_{n}^{(r)} & =\left(\begin{array}{ccccccc}
2 & -1 & & & & & (-1)^{r}\left(F_{r+2}-F_{r+1}\right) \\
0 & 2 & 1 & & & & \\
1 & 0 & 2 & -1 & & & \\
& 1 & 0 & 2 & 1 & \ddots & (-1)^{r} \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & 0 & F_{r+1} & (-1)^{r-1}\left(F_{r+2}-F_{r+1}\right) \\
F_{r+2}
\end{array}\right), n \text { is odd }
\end{aligned}
$$

where $2 \leq r \leq n-4$. Hence

$$
H_{n}^{(n-3)}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
0 & 2 & 1 \\
F_{n-2} & \left(F_{n-2}-F_{n-1}\right) & F_{n-1}
\end{array}\right)
$$

by contraction of $H_{n}^{(n-3)}$ on column 3,

$$
H_{n}^{(n-2)}=\left(\begin{array}{cc}
2 & -1 \\
F_{n-2} & F_{n}
\end{array}\right) .
$$

By (1.1), we have $\operatorname{per} H_{n}=\operatorname{per} H_{n}^{(n-2)}=F_{n+1}$.
Let $K_{n}=\left[k_{i j}\right]_{n \times n}$ be an n-square lower Hessenberg matrix in which the superdiagonal entries are alternating -1 s and 1 s starting with 1 , except the first one which is -3 , the
main diagonal entries are 2 s , except the last one which is 1 , the subdiagonal entries are 0 s , the lower-subdiagonal entries are 1 s and otherwise 0 . Clearly:

$$
K_{n}=\left(\begin{array}{ccccccc}
2 & -3 & & & & & \tag{2.2}\\
0 & 2 & 1 & & & & \\
1 & 0 & 2 & -1 & & & \\
& 1 & 0 & 2 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & \\
& & & 1 & 0 & 2 & (-1)^{n-1} \\
& & & & 1 & 0 & 1
\end{array}\right)
$$

2.2. Theorem. Let K_{n} be as in (2.2), then

$$
\operatorname{per} K_{n}=\operatorname{per} K_{n}^{(n-2)}=L_{n-2}
$$

where L_{n} is the nth Lucas number.
Proof. By definition of the matrix K_{n}, it can be contracted on column n. By consecutive contraction steps, we can write down,

$$
\begin{aligned}
K_{n}^{(r)} & =\left(\begin{array}{ccccccc}
2 & -3 & & & & & \\
0 & 2 & 1 & & & \\
1 & 0 & 2 & -1 & & \\
& 1 & 0 & 2 & 1 & \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & 0 & 2 & (-1)^{r-1} \\
& & & & F_{r+1} & (-1)^{r-2}\left(F_{r+2}-F_{r+1}\right) & F_{r+2}
\end{array}\right), n \text { is even } \\
K_{n}^{(r)} & =\left(\begin{array}{ccccccc}
2 & -3 & & & & & \\
0 & 2 & 1 & & & & \\
1 & 0 & 2 & -1 & & \\
& 1 & 0 & 2 & 1 & \\
& & \ddots & \ddots & \ddots & \\
& & & 1 & 0 & \\
& & & F_{r+1} & (-1)^{r-1}\left(F_{r+2}-F_{r+1}\right) & F_{r+2}
\end{array}\right), n \text { is odd }
\end{aligned}
$$

for $1 \leq r \leq n-4$. Hence

$$
K_{n}^{(n-3)}=\left(\begin{array}{ccc}
2 & -3 & 0 \\
0 & 2 & 1 \\
F_{n-2} & F_{n-2}-F_{n-1} & F_{n-1}
\end{array}\right)
$$

by contraction of $K_{n}^{(n-3)}$ on column 3, gives

$$
K_{n}^{(n-2)}=\left(\begin{array}{cc}
2 & -3 \\
F_{n-2} & F_{n}
\end{array}\right) .
$$

By applying (1.1), we have $\operatorname{per} K_{n}=\operatorname{per} K_{n}^{(n-2)}=2 F_{n}-3 F_{n-2}=L_{n-2}$, which is desired.

Let $M_{n}=\left[m_{i j}\right]_{n \times n}$ be an n-square lower Hessenberg matrix as below:

$$
M_{n}=\left[m_{i j}\right]_{n \times n}=\left\{\begin{array}{l}
2, \text { if } i=j, \text { for } i, j=1,2, \ldots, n \tag{2.3}\\
1, \text { if } j=i-2 \\
(-1)^{i}, \text { if } j=i+1 \\
0, \text { otherwise }
\end{array}\right.
$$

2.3. Theorem. Let M_{n} be as in (2.3), then

$$
\operatorname{per} M_{n}=\operatorname{per} M_{n}^{(n-2)}=\sum_{i=0}^{n+1} F_{i}=F_{n+3}-1
$$

where F_{n} is the nth Fibonacci number.

Proof. By contraction method on column n, we have

$$
\begin{aligned}
& M_{n}^{(r)}=\left(\begin{array}{ccccccc}
2 & -1 & & & & & \\
0 & 2 & 1 & & & & \\
1 & 0 & 2 & -1 & & & \\
& 1 & 0 & 2 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & \\
& & & 1 & 0 & 2 & (-1)^{r} \\
& & & & \sum_{i=0}^{r+1} F_{i} & (-1)^{r-1} \sum_{i=0}^{r} F_{i} & \sum_{i=0}^{r+2} F_{i}
\end{array}\right), n \text { is odd } \\
& M_{n}^{(r)}=\left(\begin{array}{ccccccc}
2 & -1 & & & & & \\
0 & 2 & 1 & & & & \\
1 & 0 & 2 & -1 & & & \\
& 1 & 0 & 2 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & \\
& & & 1 & 0 & 2 & (-1)^{r-1} \\
& & & & \sum_{i=0}^{r+1} F_{i} & (-1)^{r-2} \sum_{i=0}^{r} F_{i} & \sum_{i=0}^{r+2} F_{i}
\end{array}\right), n \text { is even }
\end{aligned}
$$

for $1 \leq r \leq n-4$. Hence

$$
M_{n}^{(n-3)}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
0 & 2 & 1 \\
\sum_{i=0}^{n-2} F_{i} & -\sum_{i=0}^{n-3} F_{i} & \sum_{i=0}^{n-1} F_{i}
\end{array}\right)
$$

by contraction of $M_{n}^{(n-3)}$ on column 3, gives

$$
M_{n}^{(n-2)}=\left(\begin{array}{cc}
2 & -1 \\
\sum_{i=0}^{n-2} F_{i} & \sum_{i=0}^{n} F_{i}
\end{array}\right) .
$$

By applying (1.1), we have

$$
\operatorname{per} M_{n}=\operatorname{per} M_{n}^{(n-2)}=\sum_{i=0}^{n+1} F_{i}=F_{n+3}-1
$$

which is desired.

Let $N_{n}=\left[n_{i j}\right]_{n \times n}$ be an n-square lower Hessenberg matrix in which the superdiagonal entries are alternating -1 s and 1 s starting with 1 , except the first one which is -2 , the main diagonal entries are 2 s , except the first one is 3 , the subdiagonal entries are 0 s, the lower-subdiagonal entries are 1 s and otherwise 0 . In this content:

$$
N_{n}=\left(\begin{array}{ccccccc}
3 & -2 & & & & & \tag{2.4}\\
0 & 2 & 1 & & & & \\
1 & 0 & 2 & -1 & & & \\
& 1 & 0 & 2 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & \\
& & & 1 & 0 & 2 & (-1)^{n-1} \\
& & & & 1 & 0 & 2
\end{array}\right)
$$

2.4. Theorem. Let N_{n} be an n-square matrix $(n \geq 2)$ as in (2.4), then

$$
\operatorname{per} N_{n}=\operatorname{per} N_{n}^{(n-2)}=\sum_{i=0}^{n} L_{i}=L_{n+2}-1
$$

where L_{n} is the nth Lucas number.
Proof. By contraction method on column n, we have

$$
\begin{aligned}
& N_{n}^{(r)}=\left(\begin{array}{ccccccc}
3 & -2 & & & & & \\
0 & 2 & 1 & & & & \\
1 & 0 & 2 & -1 & & & \\
& 1 & 0 & 2 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & \\
& & & 1 & 0 & 2 & (-1)^{r} \\
& & & & \sum_{i=0}^{r+1} F_{i} & (-1)^{r-1} \sum_{i=0}^{r} F_{i} & \sum_{i=0}^{r+2} F_{i}
\end{array}\right), n \text { is odd } \\
& N_{n}^{(r)}=\left(\begin{array}{ccccccc}
3 & -2 & & & & & \\
0 & 2 & 1 & & & & \\
1 & 0 & 2 & -1 & & & \\
& 1 & 0 & 2 & 1 & & \\
& & \ddots & \ddots & \ddots & \ddots & \\
& & & 1 & 0 & 2 & (-1)^{r-1} \\
& & & & \sum_{i=0}^{r+1} F_{i} & (-1)^{r} \sum_{i=0}^{r} F_{i} & \sum_{i=0}^{r+2} F_{i}
\end{array}\right), n \text { is even }
\end{aligned}
$$

for $1 \leq r \leq n-4$. Hence

$$
N_{n}^{(n-3)}=\left(\begin{array}{ccc}
3 & -2 & 0 \\
0 & 2 & 1 \\
\sum_{i=0}^{n-2} F_{i} & -\sum_{i=0}^{n-3} F_{i} & \sum_{i=0}^{n-1} F_{i}
\end{array}\right)
$$

by contraction of $N_{n}^{(n-3)}$ on column 3, gives

$$
N_{n}^{(n-2)}=\left(\begin{array}{cc}
3 & -2 \\
\sum_{i=0}^{n-2} F_{i} & \sum_{i=0}^{n} F_{i}
\end{array}\right)
$$

By applying (1.1), we have

$$
\operatorname{per} N_{n}=\operatorname{per} N_{n}^{(n-2)}=\sum_{i=0}^{n} L_{i}=L_{n+2}-1
$$

by the identity $F_{n-1}+F_{n+1}=L_{n}$.

Acknowledgement We thank to referees for providing valuable suggestions and the careful reading.

References

[1] H. Minc, Encyclopedia of Mathematics and Its Applications, Permanents, Vol. 6, AddisonWesley Publishing Company, London, 1978.
[2] F. Yılmaz, D. Bozkurt, Hessenberg matrices and the Pell and Perrin numbers, Journal of Number Theory, 131 (2011) 1390-1396.
[3] G. Y. Lee, k-Lucas numbers and associated bipartite graphs, Linear Algebra and Its Applications, 320 (2000) 51.
[4] D. H. Lehmer, Fibonacci and related sequences in periodic tridiagonal matrices, Fibonacci Quarterly 12 (1975) 150-158.
[5] E. Kılıç and D. Taşçı, Negatively subscripted Fibonacci and Lucas numbers and their complex factorizations, Ars Combinatoria 96 (2010) 275-288.
[6] R. A. Brualdi, P. M. Gibson, Convex polyhedra of Doubly Stochastic matrices I: applications of the permanent function, J. Combin. Theo. A 1977, 194-230.

[^0]: *Gazi University, Polatli Art and Science Faculty Department of Mathematics, 06900, Ankara, Turkey, Email: fatihyilmaz@gazi.edu.tr
 ${ }^{\dagger}$ Corresponding Author.
 ${ }^{\ddagger}$ Selcuk University, Science Faculty Department of Mathematics, 42250, Campus Konya, Turkey, Email: dbozkurt@selcuk.edu.tr

