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Abstaract − The object of the present paper is to derive the generating formulae for the Gegen-

bauer and modified Gegenbauer matrix polynomials by introducing a partial differential operator

and constructing the Lie algebra representation formalism of special linear algebra by using Weis-
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1 Introduction

The study of special matrix polynomials is an important due to their applications in
certain areas of statistics, physics, engineering, Lie group theory and number theory.
Group theoretic methods have played an important role in the modern theory of
special functions. Lie algebraic methods for computing eigenvalues and recurrence
relations have been developed and the methods developed in the present paper pro-
vide a more flexible and direct treatment than the standard Lie algebraic treatment
used recently in [1, 5, 14, 15, 21, 23, 24, 32, 34]. The reason of interest for this
family of Gegenbauer matrix polynomials (GMPs) and their associated operational
formalism is due to their intrinsic mathematical importance and the fact that these
polynomials have important applications in physics. Motivated and inspired by the
work of Jódar et. al. and his co-authors on Gegenbauer matrix polynomials, see for
example [2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 22, 25, 26, 33] and due
to make use of the Lie group-theoretic method (see [1, 23, 24, 27, 28, 29, 30, 31]).
In this paper, we introduce the differential operators for 2-variable Gegenbauer and
modified Gegenbauer matrix polynomials (MGMPs) and derive their many new and
known generating matrix relations by using Lie algebraic techniques.
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1.1 Preliminaries

For the sake of clarity in the presentation we recall some generating matrix rela-
tions for the Gegenbauer matrix polynomials and some notations which will be used
throughout the next section. Throughout this paper, we assume that A is a positive
stable matrix in CN×N ; that is, the matrix A satisfies the following condition

Re(µ) > 0 for all µ ∈ σ(A), σ(A) := spectrum of A. (1)

Definition 1.1. (Jódar et al. [16]) Let A be a matrix in C
N×N satisfying the

condition

(−z

2
) /∈ σ(A) for all z ∈ Z

+ ∪ {0}. (2)

The Gegenbauer matrix polynomials (GMPs) are defined by

CA
n (x) =

[ 1
2
n]

∑

k=0

(−1)k(2x)n−2k

k!(n− 2k)!
(A)n−k, (3)

and the generating matrix functions

F (x, t, A) = (1− 2xt+ t2)−A =
∞
∑

n=0

CA
n (x)t

n. (4)

If r1 and r2 are the roots of the quadratic equation 1 − 2xt + yt2 = 0 and r is
the minimum of the set {r1, r2}, then the matrix function F (x, t, A) regarded as a
function of t, is analytic in the disk |t| < r for every real number in |x| ≤ 1.

We recall that the Gegenbauer’s matrix polynomials (GMPs) satisfy the pure and
differential matrix recurrence relations by each element of this set [22]:

nCA
n (x) = 2x(A + (n− 1)I)CA

n−1(x)− (2A+ (n− 2)I)CA
n−2(x);n ≥ 2, (5)

where I is the identity matrix in CN×N , and

(1− x2)
d

dx
CA

n (x) = (2A+ (n− 1)I)CA
n−1(x)− nxCA

n (x). (6)

From (5) and (6), we obtain the matrix differential recurrence relations:

(1− x2)
d

dx
CA

n (x) = (2A+ nI)xCA
n (x)− (n + 1)CA

n+1(x). (7)

Gegenbauer matrix polynomials CA
n (x) is a solution of the following matrix differen-

tial equation:

(1− x2)
d2

dx2
CA

n (x)− x(2A+ I)
d

dx
CA

n (x) + n(2A + nI)CA
n (x) = 0, n ≥ 0, (8)

where 0 is the null matrix in CN×N .

Theorem 1.2. [7] Let A, B and C are matrices in C
N×N such that C + nI is an

invertible matrix for all integers n ≥ 0. Suppose that C, C − A and C − B are
positive stable matrices with BC = CB, the relation

2F1

(

A,B;C; z

)

= (1− z)C−A−B
2F1

(

C −A,C − B;C; z

)

(9)

is valid for |z| < 1.
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2 Group-theoretic Method for Gegenbauer Ma-

trix Polynomials

From (8) we construct a partial differential equation, replacing d
dx

by ∂
∂x
, n by y ∂

∂y
,

and CA
n (x) by CA

n (x, y):

(1− x2)
∂2

∂x2
CA

n (x, y)− (2A+ I)x
∂

∂x
CA

n (x, y) + y
∂

∂y
(2A+ y

∂

∂y
I)CA

n (x, y) = 0. (10)

Therefore CA
n (x, y) = CA

n (x)y
n is a solution of the matrix partial differential equation

Eq. (10), since CA
n (x) is a solution of matrix differential equation Eq. (8). We may

rewrite (10) in the following form:

(1− x2)
∂2

∂ x2
CA

n (x, y) + y2
∂2

∂ y2
CA

n (x, y)− (2A+ I)x
∂

∂x
CA

n (x, y)

+ (2A+ I)y
∂

∂y
CA

n (x, y) = 0.

Let L represent the differential operators of (10), i.e.,

L = (1− x2)
∂2

∂x2
I + y2

∂2

∂y2
I − (2A+ I)x

∂

∂x
+ (2A+ I)y

∂

∂y
.

Next, using the matrix recurrence relations (6) and (7), we determine the first-
order linear partial differential operators with the aid of A, B and C the differential
operators A, B and C such that

B

[

CA
n (x)y

n

]

= −(2A + (n− 1)I)CA
n−1(x)y

n−1,

and

C

[

CA
n (x)y

n

]

= (n+ 1)CA
n+1(x)y

n+1,

where

A = y
∂

∂y
I,

B =
x2 − 1

y

∂

∂x
I − x

∂

∂y
I,

and

C = (x2 − 1)y
∂

∂x
I + xy2

∂

∂y
I + 2xyA,

where the linear differential operators I, A, B, and C satisfy the following commu-
tation relations

[A,B] = −B, [A,C] = C, [B,C] = −2A− 2AI,
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where the commutator notation is defined as [A,B] = AB − BA. Therefore, we will
show that these differential operators generate a three-parameter Lie group.

The second order differential operator L satisfies the differential operator identity

(1− x2)L = BC + A
2 + (2A− I)A.

By means of this identity and the commutator relations we prove that (1 − x2)L
commutes with each of the differential operators A, B, and C,

[(1− x2)L,A] = [(1− x2)L,B] = [(1− x2)L,C] = 0.

Then for arbitrary constants b and c the differential operator ecCebB will transform
solutions of L into solutions of L; in other words,

ecCebB(1− x2)LCA
n (x, y) = (1− x2)L

(

ecCebBCA
n (x, y)

)

= 0.

if and only if LCA
n (x, y) = 0.

To accomplish our task of obtaining the generating matrix relations, we search for
matrix function f(x, y, A) and extended forms of transformation groups generated
by differential operators B and C expressed as follows:

ebBf(x, y, A) = f

(

xy − b
√

y2 − 2bxy + b2
,
√

y2 − 2bxy + b2, A

)

,

and

ecCf(x, y, A) =

(

c2y2 − 2cxy + 1

)

−A

f

(

x− cy
√

c2y2 − 2cxy + 1
,

y
√

c2y2 − 2cxy + 1
, A

)

,

where b, c are arbitrary constants and f(x, y, A) is an arbitrary matrix function. We
know that B and C commute operators and we find

ecCebB[CA
n (x)y

n] =

(

c2y2 − 2cxy + 1

)

−A

CA
n (ξ)η

n, (11)

where

ξ =
(1 + 2bc)xy − c(1 + bc)y2 − b

√

c2y2 − 2cxy + 1
√

(1 + bc)2y2 − 2b(1 + bc)xy + b2
,

and

η =

√

(1 + bc)2y2 − 2b(1 + bc)xy + b2
√

c2y2 − 2cxy + 1
.

2.1 Generating Matrix Functions for Gegenbauer Matrix

Polynomials

In this subsection, some special cases of the generating matrix functions for Gegen-
bauer matrix polynomials are derived from the differential operator (A− AI).
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If we choose b = 1, c = 0 and CA
n (x, y) = CA

n (x)y
n in (11), we find

eB[CA
n (x)y

n] =

(

y2 − 2xy + 1

)
1

2
n

CA
n

(

xy − 1
√

y2 − 2xy + 1

)

.

By expanding this Ggegenbauer matrix polynomials, we get

(

y2 − 2xy + 1

)
1

2
n

CA
n

(

xy − 1
√

y2 − 2xy + 1

)

=

n
∑

k=0

((1− n)I − 2A)k
k!

CA
n−k(x)y

n−k.

If we divide by yn and let t = 1
y
, we get

(

1− 2xt+ t2
)

1

2
n

CA
n

(

x− t√
1− 2xt + t2

)

=
n

∑

k=0

((1− n)I − 2A)k
k!

CA
n−k(x)t

k. (12)

Secondly, if we choose b = 0 and c = 1, we get

eC[CA
n (x)y

n] = yn
(

y2 − 2xy + 1

)

−A−
1

2
nI

CA
n

(

x− y
√

y2 − 2xy + 1

)

.

If we expand this generating matrix function for Gegenbauer matrix polynomials
and divide by yn, we get the generating matrix relation

(

y2 − 2xy + 1

)

−A−
1

2
nI

CA
n

(

x− y
√

y2 − 2xy + 1

)

=

∞
∑

k=0

(n + k)!

k!n!
CA

n+k(x)y
k. (13)

Thirdly, for bc 6= 0 we choose b = −1 and c = 1, (this choice is suggested by the
frequency of occurrence in (11) of the factor 1 + bc), we have

ecCebB[CA
n (x)y

n] =

(

c2y2 − 2cxy + 1

)

−A

CA
n (ξ)η

n,

where ξ = 1−xy√
1−2xy+y2

and η = 1√
1−2xy+y2

.

We expand this generating matrix function for Gegenbauer matrix polynomials
as follows:

(

1− 2xy + y2
)

−A−
1

2
nI

CA
n

(

1− xy
√

1− 2xy + y2

)

=

∞
∑

k=0

(2A+ kI)n
k!

CA
k (x)y

k. (14)

If we let ρ =
√

1− 2xy + y2 we can rewrite (14) in the form

ρ−2A−nICA
n

(

1− xy

ρ

)

=

∞
∑

k=0

(2A+ kI)n
k!

CA
k (x)y

k.

In order to express the left member of (14) in hypergeometric matrix functions form
we use

CA
n (x) =

xn

n!
(2A)n 2F1

(

− 1

2
nI,

1

2
(1− n)I;A+

1

2
nI;

x2 − 1

x2

)

,

∣

∣

∣

∣

x2 − 1

x2

∣

∣

∣

∣

< 1.
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Then after some simplification, Eq. (14) yields

(1− 2xy + y2)−A−nI(1− xy)n 2F1

(

− 1

2
nI,

1

2
(1− n)I;A+

1

2
nI;

y2(x2 − 1)

(1− xy)2

)

=
∞
∑

k=0

(2A+ nI)k[(2A)k]
−1CA

k (x)y
k,

∣

∣

∣

∣

y2(x2 − 1)

(1− xy)2

∣

∣

∣

∣

< 1,

∣

∣

∣

∣

xy

∣

∣

∣

∣

< 1.

(15)

By applying the Theorem 1.1 and letting B = 2A+ nI, in the left member of (15),
we obtain

(1− xy)−B
2F1

(

1

2
B,

1

2
(B + I);A+

1

2
nI;

y2(x2 − 1)

(1− xy)2

)

=
∞
∑

k=0

(B)k[(2A)k]
−1CA

k (x)y
k,

∣

∣

∣

∣

y2(x2 − 1)

(1− xy)2

∣

∣

∣

∣

< 1.

(16)

2.2 Generating Matrix Functions Annulled by not Conju-

gate of (A−AI)

In this subsection, the generating matrix functions for Gegenbauer matrix polyno-
mials are derived from the differential operators not conjugate to (A − AI). The
three generating matrix functions of (12), (13), and (14) have been obtained by
transforming CA

n (x)y
n which is a solution of the system

LCA
n (x, y) = 0 and (A− nI)CA

n (x, y) = 0.

If we wish to obtain additional generating matrix functions for the Gegenbauer ma-
trix polynomials, we need to find differential operators which are not conjugate to
(A − nI); i.e., we wish to find first order differential operators R such that for all
choices of b and c;

ecCebB(A− nI)e−bBe−cC 6= R.

We take the set of linear differential operators R = r1A + r2B + r3C + r4I, for all
combinations of zero and nonzero coefficients except for r1 = r2 = r3 = 0. We find
that

ecCebB(A− nI)e−bBe−cC = (1 + 2bc)A+ bB− c(1 + bc)C+ (2bcA− nI)I.

Then for r1 = 1 + 2bc, r2 = b, r3 = c(1 + bc), we have r2 + 4r2r3 = 1.
Therefore, A−nI is not conjugate to differential operators for which r21+4r2r3 = 0

in the following cases:
If r1 = 0, r2 = 1, and r3 = 0, we seek a solution of the system

Lu(x, y, A) = 0 and (B+ I)u(x, y, A) = 0.

A solution of this system is

u(x, y, A) = exy 0F1

(

−;A+
1

2
I;

y2(x2 − 1)

4

)

.
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If we expand this matrix function, we get

exy 0F1

(

−;A +
1

2
I;

y2(x2 − 1)

4

)

=

∞
∑

k=0

[(2A)k]
−1CA

k (x)y
k. (17)

For r1 = 0, r2 = 0, and r3 6= 0, we seek a solution of the system

Lu = 0 and (C+ λI)u = 0,

where λ is an arbitrary constant. We may avoid actually solving this system by
noting that

ebBecC(B+ I)e−cCe−bB = 2c(1 + bc)A+ (1 + bc)2I− c2C+ 2c(1 + bc)AI+ I.

If we choose b = 1 and c = −1, we get

eBe−C(B+ I)eCe−B = −C+ I.

Therefore, we can obtain a solution of the system Lu = 0 and (C − I)u = 0, by
transforming the generating matrix functions of (17) as follows:

eBe−Cexy 0F1

(

−;A+
1

2
I;

y2(x2 − 1)

4

)

= y−2A exp

(

y − x

y

)

0F1

(

−;A +
1

2
I;

x2 − 1

4y2

)

.

If we let t = − 1
y
, we get

e(−t)2Aext 0F1

(

−;A+
1

2
I;

t2(x2 − 1)

4

)

as our generating matrix function. But this matrix function differs only trivially
from (17).

As applications, we now obtained many new and known generating matrix rela-
tions for the Gegenbauer matrix polynomials in the following:

ρnCA
n

(

x− y

ρ

)

=

n
∑

k=0

((1− n)I − 2A)k
k!

CA
n−k(x)y

k, (18)

ρ−2A−nICA
n

(

x− y

ρ

)

=

∞
∑

k=0

(k + n)!

k!n!
CA

n+k(x)y
k, (19)

which is given in [8].

ρ−2A−nICA
n

(

1− xy

ρ

)

=

∞
∑

k=0

(2A+ kI)n
n!

CA
k (x)y

k, (20)

and

exy 0F1

(

−;A +
1

2
I;

y2(x2 − 1)

4

)

=

∞
∑

k=0

[(2A)k]
−1CA

k (x)y
k. (21)
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3 Group-theoretic Method for Modified Gegen-

bauer Matrix Polynomials

Here, we consider the modified Gegenbauer matrix polynomials CA+nI
n (x) which

satisfy the following matrix differential equation:

(1− x2)
d2

dx2
CA+nI

n (x)− x(2A+ (2n+ 1)I)
d

dx
CA+nI

n (x)

+ n(2A + 3nI)CA+nI
n (x) = 0, n ≥ 0.

(22)

By using the following differential matrix recurrence relations

(1− x2)
d

dx
CA+nI

n (x) = (2A+ (3n− 1)I)CA+nI
n−1 (x) + nxCA+nI

n (x), (23)

and

(1− x2)
d

dx
CA+nI

n (x) = (2A+ 3nI)xCA+nI
n (x)− (n+ 1)CA+nI

n+1 (x). (24)

Replacing d
dx

by ∂
∂x
, n by y ∂

∂y
, and CA+nI

n (x) by CA+nI
n (x, y) in (22) we obtain the

following a matrix partial differential equation:

(1− x2)
∂2

∂x2
CA+nI

n (x, y)− (2A+ (2n+ 1)I)x
∂

∂x
CA+nI

n (x, y)

+ y
∂

∂y
(2A+ 3y

∂

∂y
I)CA+nI

n (x, y) = 0.
(25)

Thus we see that CA+nI
n (x, y) = CA+nI

n (x)yn is a solution of the matrix partial
differential equation Eq. (3.3), since CA+nI

n (x) is a solution of the matrix differential
equation Eq. (22). We can rewrite (24) in the following form:

(1− x2)
∂2

∂ x2
CA+nI

n (x, y) + 3y2
∂2

∂ y2
CA+nI

n (x, y)− (2A+ I)x
∂

∂x
CA+nI

n (x, y)

− 2xy
∂

∂y∂x
CA+nI

n (x, y) + (2A+ 3I)y
∂

∂y
CA+nI

n (x, y) = 0.

(26)

We define the differential operators I, A, B, and C as follows

A = y
∂

∂y
I,

B =
x2 − 1

y

∂

∂x
I − x

∂

∂y
I,

and

C = (x2 − 1)y
∂

∂x
I + 3xy2

∂

∂y
I + 2xyA.
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Next, we determine the following partial differential operators with the aid of A, B
and C the differential operators A, B and C such that

A

[

CA+nI
n (x)yn

]

= nCA+nI
n (x)yn,

B

[

CA+nI
n (x)yn

]

= −(2A + (3n− 1)I)CA+nI
n−1 (x)yn−1,

and

C

[

CA+nI
n (x)yn

]

= (n + 1)CA+nI
n+1 (x)yn+1,

where differential operators A, B, and C satisfy the commutator relations

[A,B] = −B, [A,C] = C, [B,C] = −2A− 2AI. (27)

Nota that: The set of linear combinations of the differential operators I, A, B and
C forms a Lie algebra.

It can be easily shown that the partial differential operators in (24) L given by

L = (1− x2)
∂2

∂x2
I + 3y2

∂2

∂y2
I − (2A+ I)x

∂

∂x
− 2xy

∂

∂y∂x
I + (2A+ 3I)y

∂

∂y
.

The second order differential operator L satisfies the differential operators identity
as follows

(1− x2)L = BC + (2A+ 3A)(A+ I). (28)

It can be easily verified that (1−x2)L commutes with each of the differential operators
A, B and C,

[(1− x2)L,A] = [(1− x2)L,B] = [(1− x2)L,C] = 0. (29)

The extended forms of transformation groups generated by differential operators A,
B and C are given by

eaAf(x, y, A) = f

(

x, eay, A

)

, (30)

ebBf(x, y, A) = f

(

xy − b
√

y2 − 2bxy + b2
,
√

y2 − 2bxy + b2, A

)

, (31)

and

ecCf(x, y, A) =

(

c2y2 − 2cxy + 1

)

−A

f

(

x− cy
√

c2y2 − 2cxy + 1
,

y
√

c2y2 − 2cxy + 1
, A

)

,(32)

where a, b and c are arbitrary constants and f(x, y, A) is an arbitrary matrix function.
From the above relations the A, B and C commute operators, we get

ecCebBeaAf(x, y, A) = f

(

y(x− cy)− b(c2y2 − 2cxy + 1)
√

c2y2 − 2cxy + 1
√

b2(c2y2 − 2cxy + 1)− 2by(x− cy) + y2

, ea
√

b2(c2y2 − 2cxy + 1)− 2by(x− cy) + y2

(c2y2 − 2cxy + 1)
3

2

, A

)

.

(33)
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3.1 Generating Matrix Functions for Modified Gegenbauer

Matrix Polynomials

From (26), CA+nI
n (x, y) = CA+nI

n (x)yn is a solution of the system

LCA+nI
n (x, y) = 0 and (A− nI)CA+nI

n (x, y) = 0.

From (29) we easily get

ecCebBeaA(1− x2)L[CA+nI
n (x)yn] = (1− x2)LecCebBeaA[CA+nI

n (x)yn].

Therefore the transform ecCebBeaA[CA+nI
n (x)yn] is annulled by (1− x2)L.

If we choose a = 0 and CA+nI
n (x, y) = CA+nI

n (x)yn in (33), we get

ecCebB[CA+nI
n (x)yn]

=

(

b2(c2y2 − 2cxy + 1)− 2by(x− cy) + y2
)

1

2
n(

c2y2 − 2cxy + 1

)

−(A+ 3

2
nI)

× CA+nI
n

(

y(x− cy)− b(c2y2 − 2cxy + 1)
√

c2y2 − 2cxy + 1
√

b2(c2y2 − 2cxy + 1)− 2by(x− cy) + y2

)

.

(34)

On the other hand we get

ecCebB[CA+nI
n (x)yn] =

∞
∑

m=0

cm

m!

∞
∑

k=0

bk

k!
(n− k + 1)m((1− 3n)I − 2A)ky

n−k+mCA+nI
n−k+m(x).(35)

Equating (34) and (35), we get

(

b2(c2y2 − 2cxy + 1)− 2by(x− cy) + y2
)

1

2
n(

c2y2 − 2cxy + 1

)

−(A+ 3

2
nI)

× CA+nI
n

(

y(x− cy)− b(c2y2 − 2cxy + 1)
√

c2y2 − 2cxy + 1
√

b2(c2y2 − 2cxy + 1)− 2by(x− cy) + y2

)

=
∞
∑

m=0

n
∑

k=0

cmbk

m!k!
(n− k + 1)m((1− 3n)I − 2A)ky

n−k+mCA+nI
n−k+m(x).

(36)

Here, we obtain some interesting results as the particular case of generating matrix
relations (36).

Putting b = 1, c = 0 and writing y = t in (36) we get of generating matrix
relations

(

1− 2xt+ t2
)

1

2
n

CA+nI
n

(

xt− 1√
1− 2xt + t2

)

=

n
∑

k=0

1

k!
((1− 3n)I − 2A)kt

n−kCA+nI
n−k (x).

(37)

Letting b = 0, c = 1 and y = t in (36) we obtain

(

t2 − 2xt + 1

)

−(A+ 3

2
nI)

CA+nI
n

(

x− t√
t2 − 2xt+ 1

)

=
∞
∑

m=0

1

m!
(n+ 1)mt

mCA+nI
n+m (x).

(38)
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Putting b = −1
b
, c = 1 and substituting y = t in (36), we get

(

1

b2
(t2 − 2xt + 1) +

2

b
t(x− t) + t2

)
1

2
n(

t2 − 2xt + 1

)

−(A+ 3

2
nI)

× CA+nI
n

(

t(x− t) + 1
b
(t2 − 2xt+ 1)

√
t2 − 2xt+ 1

√

1
b2
(t2 − 2xt+ 1) + 2

b
t(x− t) + t2

)

=

∞
∑

m=0

∞
∑

k=0

cm(−1
b
)k

m!k!
(n− k + 1)m((1− 3n)I − 2A)kt

n−k+mCA+nI
n−k+m(x).

(39)

Now replacing A by A− nI and t = 1
t
in (37) we get

(

1− 2xt + t2
)

1

2
n

CA
n

(

x− t√
1− 2xt+ t2

)

=

n
∑

k=0

1

k!
((1− n)I − 2A)kt

kCA
n−k(x). (40)

Again on replacing A by A− nI in (38) we get
(

t2 − 2xt+ 1

)

−(A+nI)

CA
n

(

x− t√
t2 − 2xt + 1

)

=

∞
∑

m=0

1

m!
(n+ 1)mt

mCA
n+m(x). (41)

3.2 Generating Matrix Functions for Modified Gegenbauer

Matrix Polynomials CA−nI
n+r (x)

Here, we consider the following operator D :

D = (x2 − 1)y
∂

∂x
I − 2xy2

∂

∂y
I + xy(2A− I), (42)

such that

D[CA−nI
n+r (x)yn] =

1

2
(n + r + 1)((1 + n− r)I − 2A)((1 + n)I − A)−1C

A−(n+1)I
n+r+1 (x)yn+1.(43)

The extended form of group generated by D is given as follows:

edDf(x, y) =

(

d2y2(x2 − 1) + 2dxy + 1

)A−
1

2
I

× f

(

x+ dy(x2 − 1),
y

√

d2y2(x2 − 1) + 2dxy + 1

)

,

(44)

where d is an arbitrary constant. Using (44), we obtain

edD[CA−nI
n+r (x)yn] = yn

(

d2y2(x2 − 1) + 2dxy + 1

)A−(n+ 1

2
)I

CA−nI
n+r

(

x+ dy(x2 − 1)

)

.(45)

By using (43), we obtain

edD[CA−nI
n+r (x)yn] =

∞
∑

k=0

dk

k!
D

k[CA−nI
n+r (x)yn]

=
∞
∑

k=0

dk

k!

1

2k
(n+ r + 1)k((1 + n− r)I − 2A)k

(

((1 + n)I − A)k

)

−1

C
A−(n+k)I
n+r+k (x)yn+k.

(46)
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Equating (45) and (46) then putting t = 1
2
dy, we get

(

4t2(x2 − 1) + 4xt + 1

)A−(n+ 1

2
)I

CA−nI
n+r

(

x+ 2t(x2 − 1)

)

=
∞
∑

k=0

1

k!
(n+ r + 1)k((1 + n− r)I − 2A)k

(

((1 + n)I − A)k

)

−1

C
A−(n+k)I
n+r+k (x)tk.

(47)

Putting r = 0 in (47), we get

(

4t2(x2 − 1) + 4xt + 1

)A−(n+ 1

2
)I

CA−nI
n

(

x+ 2t(x2 − 1)

)

=

∞
∑

k=0

1

k!
(n+ 1)k((1 + n)I − 2A)k

(

((1 + n)I −A)k

)

−1

C
A−(n+k)I
n+k (x)tk.

(48)

Putting r = 0 and replacing A by A+ nI in (47), we get

(

4t2(x2 − 1) + 4xt + 1

)A−
1

2
I

CA
n

(

x+ 2t(x2 − 1)

)

=

∞
∑

k=0

1

k!
(n+ 1)k((1− n)I − 2A)k

(

(I − A)k

)

−1

CA−kI
n+k (x)tk.

(49)

Putting n = 0 in (49), we get

(

4t2(x2 − 1) + 4xt+ 1

)A−
1

2
I

CA
n

(

x+ 2t(x2 − 1)

)

=

∞
∑

k=0

(I − 2A)k

(

(I − A)k

)

−1

CA−kI
k (x)tk.

(50)
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[18] L. Jódar, and J. C. Cortés, On the hypergeometric matrix function, Journal of
Computational and Applied Mathematics, Vol. 99 (1998), 205–217.

[19] L. Jódar, and J. C. Cortés, Closed form general solution of the hypergeometric

matrix differential equation, Mathematical and Computer Modelling, Vol. 32
(2000), 1017–1028.

[20] E. B. McBride, Obtaining Generating Functions, Springer, New York, 1971.

[21] W. J. R. Miller, Lie Theory and Special Functions, Academic Press, New York
and London, 1968.

[22] K. A. M. Sayyed, M. S. Metwally, and R. S. Batahan, Gegenbauer ma-

trix polynomials and second order matrix differential equations, Divulgaciones
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