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ABSTRACT 
 

The propagation of harmonic waves in an elastic tube filled with fluid is presented in this study. The tube material is considered 

to be incompressible, homogeneous, isotropic, initially axially stretched, inflated, and constructed of thick elastic, like human 

arteries. The viscous fluid is assumed to be incompressible and Newtonian. The differential equations of both materials are 

obtained in cylindrical coordinates. The analytical solutions of the equations of motion for the fluid and numerical solutions of 

the equations of motion for the tube have been found. The residual circumferential strain in the unloaded state of artery causes 

an opening angle. The dispersion relation is presented as a function of the axial stretch, opening angle, internal pressure, and 

material parameters. The effects of these parameters are shown and discussed in the graphics. 
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1. INTRODUCTION 

 

The propagation of pressure waves in a blown-up tube has been investigated since the time of Thomas 

Young who first showed the speed of pulsatile blood flow in arteries. Womersley [1], Morgan & Kiely 

[2] and Mirsky [3], have contributed significantly on this problem. Atabey & Lew [4] first considered 

the initial stretch of an arterial wall. Rachev [5] studied the effect of the transmural pressure of the artery 

as a membrane. Demiray & Antar [6] investigated the effects on the pressure wave of the thickness of 

the artery. Cox [7] and Kizilova [8] studied the effects of wall material parameters on the fluid volume 

flow-rate at thick viscoelastic tube. The blood that combined plasma and blood cells was first considered 

by Nayfeh [9] who investigated two-phase fluid flow. After that, Nag & Jana [10] studied the oscillating 

two-phase fluid flow in thin elastic tube without initial stresses. The pulsatile flow of a dusty fluid in an 

initial stressed thick elastic tube was studied by Ercengiz [11]. Demiray [12,13] investigated nonlinear 

waves in viscoelastic and elastic tubes. Jagielska et al. [14] determined the dispersion relations for thin-

walled flexible fluid-filled tube surrounded by an external viscoelastic tissue. Chaudhry et al. [15] 

investigated the effects of strain in the oscillating arteries and residual stresses on the stress distribution.  

 

The opening angle indicates the existence of residual stress. The existence of the opening angle was first 

revealed by Vaishnav & Vossoughi [16]. Huang & Yen [17], in their experimental measurements, 

observed that the mean opening angle varied between 46o and 82o in the arterial tree. However, there 

have been no studies that consider tubes subjected to this residual circumferential stress in the course of 

the wave propagation in the tube. 

 

The purpose of this study is to discover the effect of the opening angle on wave propagation. For this 

purpose, wave propagation of an inflated, axial stretched, isotropic, and incompressible thick elastic 

tube filled with viscous fluid was studied. The ratio of arterial wall thickness to arterial radius changes 

was between 1/6 and ¼; therefore, the tube was considered to be thick. The arteries in the body are 

inflated with a mean pressure of approximately 13 kPa and subjected to axial stretch of about 1.5. 
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Considering this physiological condition, the artery was assumed to have circumferential stretch, an 

inner pressure of Pi, and axial stretch. These effects create large static stresses. Furthermore, the blood 

pressure change was around 2.5 kPa. The dynamical effect resulting from this pressure deviation was 

small compared to the initial static deformation. Therefore, the theory of small deformations 

superimposed on initial static deformations was used to obtain the governing equations in this study. 

The nonlinear terms in the equations are neglected because the amplitude of the pressure oscillation is 

much smaller than the mean pressure. 

 

The analytical solutions of the equations of the fluid can be presented, but a closed-form solution of the 

equations of the tube cannot be obtained because of the variable coefficients of the governing equations. 

So, the governing equations of the tube are solved by the finite-difference method. The dispersion 

relation associated with harmonic wave propagation was derived. How internal pressure, opening angle, 

and axial stretch affects the dispersion relation were discussed in the graphics. 

 

2. BASIC EQUATIONS 

 

The problem studied here is due to the interactions of the tube with the fluid. Therefore, the motion of 

the wall, the motion of the fluid, and condition on their interface should be included in the study. 

 

2.1. Equation for Fluid 

 

Blood is known to be an incompressible, non-Newtonian fluid. Heartbeat causes small pressure and 

velocity increments on large static pressure Pi. It has been assumed that when body forces and initial 

velocity are absent, blood flow is axially symmetric. Under these assumptions the governing differential 

equations are written as  

 

2 2

2 2 2

ˆ ˆ ˆ ˆ ˆ ˆ1
ˆˆ 0

p u u u u u

r r r r r z t
 
     

       
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 (1) 
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    

. (2) 

In the cylindrical coordinates and the incompressibility equation 

 

 
ˆ ˆ ˆ

0
u u w

r r z

 
  

 
, (3) 

where ̂  denotes the density of the fluid, ̂ denotes the viscosity, p̂  is the pressure and  ˆ ˆ,u w are the 

velocity components of fluid. The stresses components which for applying the boundary conditions are 

given by 

 
ˆ
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. (4) 

 

2.2. Equation for Tube 

 

For the mathematical analysis of the problem, the artery wall is assumed to be incompressible, isotropic 

and elastic; the tube is subjected to high internal pressure Pi; there is a circumferential and axial stretch; 

and there is no twist. These conditions are depicted in Figure 1 as Loaded Configuration. This 

configuration is assumed to be a large static load in the mathematical model. Unloaded configuration 

describes a condition in which no load applied to the artery is removed from the body. But in this 
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configuration, stress and strain on the artery still exist. If arterial ring is cut in a radial direction, it opens. 

This state is depicted in Figure 1. as Zero-stress Configuration. Thus, the tube’s motion can be described 

in a cylindrical coordinate system as follows: 
 

   , , ,r r R z Z      (5) 
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Figure 1. Arterial ring in the various configurations 

where  , ,R Z ,  , ,r z  are the coordinates in the zero-stress state and loaded state, respectively,   

is defined by  0/ / 2    , z   is the constant axial stretch, 0  is an opening angle 

characterizing the residual stresses. The principle stretch ratios in axial, circumferential, radial direction 

are given as  

 , ,r

z r r

Z R R
  

 
  


. (6) 

Thus, the deformation gradient tensor /kK k KF x X    may be expressed as  

 diag , , z

r r

R R


  
   

F . (7) 

From the incompressibility condition det 1F  we get 

  2 2 21
i ir r R R


  


. (8) 

A set stress-strain relations for the soft biological tissues was proposed by Demiray [18] as 

  0 0 1 exp 3kl kl klt P c I       , (9) 

where 
0

klt  is the stress tensor, 
0P  is the hydrostatic pressure, and superscript (0) describes the initial 

condition, kl  is the Kronecker delta, ,   are the material constants, and I  is the first invariant of the 

finger deformation tensor 
1

klc
 which is defined as 
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2 2
1 2

2 2
=diag , , ,kl kK lK
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c F F x

x r
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 
; (10)  

Introducing (10) into (9), the Cauchy stress tensor may be expressed as 
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 
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  

. (11) 

These stress components must satisfy the equations of motion in cylindrical the coordinate system, 

which is given as  

  
00 0

0 01
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tt t
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r r z
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


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. (12) 

Introducing (11) into (12), we get, 

 

 

     

     

2 2
0 0 0 2

2 2 2

0 0 4 2 0 0 2

2 2

2

, ,

, ,

, exp 3

o

o

i

x

rr rr
x

zz rr rr

x

i
x

t d t t x F x
x

t t x F x P t x F x

P F d F x I



   
 

  

 


 

 
   

 

   
      

   

    

 
       

 





 (13) 

where subscripts (i) and (o) denote the value of a quantity written on the inner and outer surfaces of the 

tube, respectively. These stress components correspond to a large static stress field due to mean internal 

pressure, axial stretch, and opening angle. More information about the theory of superimposing small 

deformations on large initial static deformations can be found in Baek et al. [19]. To investigate small 

pressure oscillation at this initial state, the incremental Piola-Kichhoff stress tensor was proposed by 

Demiray [20] as  

 
0

,kl kl kl l mT t t u  , (14) 

where lu  is incremental displacement components and klt  is defined as 

  0 1 12 2 exp 3kl kl kl mn mn klt p P e I c e c          . (15) 

where mne  is defined as  , , / 2mn m n n me u u  . Hereafter, we may write the equations of incremental 

motion. For this purpose, incremental motion for the tube is considered to be an axially symmetric and 

there is no twist on the tube. Therefore, this motion is described as  

    1 2 3, , , 0, , ,u u r z t u u w r z t   . (16) 

Introducing (16), (15) and (13) into (14) and recalling the incompressibility condition 
, 0k ku   non-

zero, the components of the Piola-Kichhoff stress tensor are written as 
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 (17) 

where  , 1, ,6j j   are described as 
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 . (18)  

These stress field satisfy the governing differential equations which may be written as (Eringen & 

Suhubi [8]) 
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  


 (19) 

where   is the mass density of the tube material and
lf  is the body forces vector. If body forces are 

vanished and (17) written into (19), we get, 
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where  , 1, ,8j j  are described as 
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      .  (21) 

The above system of differential equations must satisfy boundary conditions. The stresses must be zero 

on the outside of the tube. Stresses and displacement components on the fluid-tube interface inside the 

tube because of the continuity of the points. 
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3. SOLUTION OF THE FIELD EQUATIONS 

 

In this section, with regard to the pulsatile motion of the heart, we seek harmonic type solution to the 

field equations given in (1)-(3) for fluid and (20) for the tube. One can see from equations (1)-(3) that a 

closed-form solution can be presented for the field equation of fluid. However, a numerical solution for 

the equations of tube can be given by the finite-difference method.  

 

3.1. Solution of the Field Equations for Fluid 

 

As noted previously, when harmonic type solution is sought, we set 

           ˆ ˆ ˆˆ ˆ ˆ, , , , expp u w P r U r W r i t kz     (23) 

where   denotes the angular frequency, k is axial wave number, and      ˆ ˆ ˆ, ,P r U r W r  are complex 

amplitudes to be determined from solution of differential equations and boundary conditions. 

Introducing (23) into equations (1)-(3), the solution of the differential equations for      ˆ ˆ ˆ, ,P r U r W r  

may be given as  
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Where A and B are integration constants to be calculated by boundary conditions,  nJ rs and  nI kr  

are the first kind of Bessel and modified Bessel functions of order n, respectively. To get stress 

components in equation (4), (24) is substituted in (4), 
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. (25) 

These stress components will be used in the solution for governing equations for the tube as boundary 

conditions. 
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3.2. Solution of the Field Equations for the Tube 

 

As in the solution of the field equations for fluid, a harmonic type solution is sought. For that we set 

again, 

           , , , , expp u w P r U r W r i t kz    . (26) 

If (26) is introduced in (20), ordinary differential equations for the tube are obtained as 
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In order to normalize the above equations, the following non-dimensional parameters are introduced: 
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Using similar procedures, the boundary conditions in (22) can be normalized into the following forms: 
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where 
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. (30) 

The variable  , known as the Womersley number, denotes the ratio of unsteady internal forces to 

viscous forces in the flow. Because the coefficients of the equations are complex, it is almost impossible 

to achieve a closed form solution. Therefore, the finite-difference method is used to solve equations (27) 

and (29). To obtain dimensionless quantities, we divide the thickness of the tube, o ih r r  , into n equal 

intervals, defining thus: 

 
0 0 int., 0,1,..., , 1 , .

2
j n o

h h
j j n
nr r

             (31) 

By introducing these terms for various derivatives, we get the finite difference equations given in the 

appendix for the equations (27) and (29). This system is known as the eigensystem. Therefore, the 

determinant of the coefficient matrix must be zero. Thus, the condition of the determinate of the 

coefficient matrix gives the dispersion relations for the Young mode and the Lamb mode. 

 

4. NUMERICAL ANALYSIS AND DISCUSSION 

 

First, some special cases will be investigated for the verification of the present study. To this end, special 

cases in the literature will be examined, by making some simplifications in the equations obtained for 

the general case. 

 

4.1. Long Wave Approximation and Thin Tube with Inviscid Fluid 

 

The wavelength of the oscillations is much larger than the radius of the artery (Atabek & Lew) [22]. 

Therefore, to simplify the frequency equation, we will assume that the wave number k is very small 

and 𝜇 ≪ 1 and f denoted by (30) approaches 2. Using the definitions sr   and 
2 2ˆ ˆ/i r     in 

(24), we get 

 
2 2.    (32) 

To compare the obtained results with previous studies, the wall of tube is assumed to be a tube filled 

with a non-viscous fluid. As a result, the dispersion relation may be written in term of the complex phase 

velocity /c   by setting n =1,    and g   become as follows: 

 
4 21 2 3 0B c B c B    (33) 

where B1, B2, and B3 coefficients are determined from the equation (27) under the above assumptions. 

In the absence of an initial deformation  1, 1    , these coefficients can be obtained: 

 
2 2

2 2

1 2

2 8 4

3 12

B hqi

B hqi ih q

B ih q

 

 

 

. (34) 

The approximate roots of the equation (33) can be calculated under the assumption that h is quiet for the 

thin tube as 
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    2 2 2

1 2

3
4 ,

2

qh
c O h c O h    . (35) 

The complex roots are represented as 

 c X iY  , (36) 

proposed by Atabek & Lew [22], the velocity of wave propagation v and transmission per wavelength 

  are defined by  

 

2 2

, exp 2 .
X Y Y

v
X X

 
  

   
 

 (37) 

Using the real physical quantities and setting 
3

E  , where E is the Young modulus of the tube, the 

speeds of the propagation may be expressed as 

 

 
2 2

1 1 2 2

4
, 1, , 1

ˆ3 2

E Eh
v v

r
 

 
     (38) 

where v1 denotes Lamb mode wave speed and v2 denotes Moens-Korteweg wave speed. 

 

4.2. Long-Wave Approach in a Thick Tube Filled With a Viscous Fluid 

 

To examine the dispersion relation numerically, the inner and outer radii 3.1 , 3.8i oR mm R mm   

presented by Simon et al. [23] and material constants 1.948, 9.9kPa   calculated by Demiray 

[24] will be used. The thickness of the arterial wall is divided into four parts (n=4). There have not been 

major changes in the result for much larger values of n. The ratio of the density of the arterial wall to 

density of the blood q is approximately equal to 1 (𝑞 ≈ 1). 

 

The dispersion relation is derived for the given assumptions. The speeds of wave propagation and 

transmission coefficients are calculated for various axial stretch, internal pressure, and opening angles. 

The results are discussed in figures 2-9.  

 

In Figures 2 and 3, changes in wave propagation velocity and transmission coefficient for a different 

axial stretch ( ) and internal pressure (Pi) related to the Womersley number are shown. Figure 2 shows 

that the primary wave speed 1v  increases with the axial stretch and decreases with the Pi for all 

Womersley number values. Figure 3 shows that the transmission coefficient 1  of the primary wave 

speed decreases for  <3 with the increase of  and increases of the   decreases of Pi. But the effect 

of internal pressure and axial stretch was not observed sufficiently on transmission coefficient 1 . These 

results are in good agreement with Demiray & Antar [6], Demiray & Ercengiz [25], and Demiray & 

Akgün [26]. 
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Figure 2. Change in v1 related to   for different Pi and   values. 

 

 

Figure 3. Change in 1  related to   for different Pi and   values. 

In Figure 4, secondary wave speed 2v  increases for all values of   with increases of   and increases 

of Pi. The effect of the internal pressure was more noticeable when the axial stretch was greater. Figure 

5 shows that the transmission coefficient 2  of the secondary wave speed increases with the decreases 

of   and the increases of Pi. These results are in good agreement with Demiray & Antar [6], Demiray 

& Ercengiz [25], and Demiray (Akgün [26]. 
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Figure 4. Change in v2 related to   for different Pi and   values. 

 

 

 

 

Figure 5. Change in 2  related to   for different Pi and   values. 

The effect of the opening angle on wave characteristics was depicted in Figures 6-9. In Figure 6, an 

increase in the opening angle caused increased primary wave speed, but the opening angle was more 

effective at the lower axial stretch. The transmission coefficient was not sufficiently affected from 

opening angle in Figure 7. 
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Figure 6. Change in v1 related to   for different 0  and   values. 

 

Figure 7. Change in 1  related to   for different 0  and   values. 

 

The opening angle had a major impact on the secondary wave speed when axial stretch was smaller, as 

in Figure 8. On the other hand, it did not affect the transmission coefficient 2 , as in Figure 9.  
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Figure 8. Change in v2 related to   for different 0  and   values. 

 

 

Figure 9. Change in 2  related to   for different 0  and   values. 

 

5. CONCLUSIONS AND RESULTS 

 

In the present study, harmonic wave propagation in an initially stressed, thick elastic tube filled with 

viscous fluid was investigated. The effects of the axial inflation, internal pressure, and opening angle on 

the wave propagation characteristics was examined. The computational results show that the effects of 

internal pressure and axial stretch were consistent with the previous studies. However, the effect of the 

opening angle on the wave propagation characteristics has not previously been reported in the 

literature.As mentioned by Demiray & Antar [6], Demiray & Ercengiz [25], and Demiray & Akgün 

[26], axial stretch affected all wave propagation characteristics strongly, and the same results were 

obtained in this study. 
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The obtained results for the opening angle shown in Figures 6-9, emphasize the importance of the 

opening angle, particularly on the secondary wave speed. The effect of the opening angle that 

characterized the residual strain in the unloaded state must be taken into consideration in the new study. 

Additionally, recent experimental studies have revealed the importance of the opening angle 

(Bustamante & Holzapfel) [26]. 

 

The results obtained from the simplification of the governing equations presented in this study are 

similar to the results in the literature. The result confirms the validity of this study. 

 

Appendix. Terms in the equations 
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If we use appropriate finite difference expressions given above in equation (27), we get finite difference 

equations 
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Using the similar procedures, the boundary conditions in (29) written as  
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where subscripts (0) and (n) are described to the inner surface and the outer surface of a thick elastic 

tube, respectively. Determinant of the coefficients jU , jW , kP , A and B  1, , 2j n  ,  1,k n

matrix must vanish. This gives the dispersion relationship of the problem. 
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