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Abstract  

Providing fast video encoding, Compressive Sensing has been very suitable for the schemes which 
require power-constraint devices such as in wireless sensor networks. However, resulted data load 
on the network is extremely high and accomplishing rate control on these compressive sensing codecs 
by a simple scheme is crucial. In this paper we propose a simple scheme of data rate control 
mechanism for an existing compressive sensing codec for distributed video coding which has been 
reported as an efficient framework in terms of video reconstruction quality. Our approach does not 
use a feedback channel from decoder which avoids encoder to wait for high-complexity optimization 
problem. Embedding the proposed scheme to the codec architecture, we have obtained ~43% gain in 
data rate with an acceptable decrease (6%) in Video PSNR. 
Keywords: Compressive sensing, Distributed video coding, Rate control, Adaptive sampling rate, Video quality. 

 

Öz 

Sıkıştırmalı Algılama, düşük karmaşıklıklı video kodlama imkanı sunduğu için, kablosuz duyarga 
ağları gibi kaynak-kısıtlı cihazlar gerektiren ortamlar için oldukça uygundur. Ancak, ağ üzerinde 
oluşan veri yükü geleneksel video kodlama yöntemleri ile kıyaslandığında oldukça fazladır. 
Dolayısıyla, sıkıştırmalı algılamalı kodlayıcı-kodçözücüler için düşük hesaplama karmaşıklıklı basit 
bir tasarım ile veri hızı kontrolünün gerçekleştirilmesi önemlidir. Bu makalede, literatürde dağıtık 
video kodlama uygulamaları için önerilmiş olan video geriçatım kalitesi anlamında etkin bir 
sıkıştırmalı algılamalı kodlayıcı-kodçözücü kullanılarak düşük karmaşıklı bir veri hızı kontrol 
mekanizması önerilmiştir. Önerilen tasarım geri bildirim kanalı kullanmamakta ve dolayısıyla 
kodlayıcının yüksek karmaşıklıklı eniyileme problemi çözümünü beklemesi gerekmemektedir. 
Önerilen tasarım ile kabul edilebilir ölçüde (6%) Video PSNR kalite kaybına karşılık dikkate çeker 
ölçüde (~43%) veri hızı kazanımı sağlandığı gösterilmiştir.  
Anahtar Kelimeler: Sıkıştırmalı algılama, Dağıtık video kodlama, Veri hızı kontrolü, Uyarlanabilir veri hızı, Video 

geriçatım kalitesi  
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1. Introduction 

The primary concern of video coding is 
compressing raw video data into relatively small 
sizes at the encoder side while maintaining 
acceptable reconstruction quality at the decoder 
side [1]. The well accepted codecs such as H.26x 
and MPEG-x use the heavy-encoder and light-
decoder architecture which is appropriate for 
the applications requiring to encode once and 
decode several times by the end-users. In these 
codecs, the encoder is responsible for complex 
implementations such as spatial and temporal 
correlation analysis and motion compensation 
and estimation which require a device with high 
processing power. However, in the last decades, 
codecs with light-encoder and heavy-decoder 
architecture are demanded in the applications 
where resource-constraint devices (sensors) 
take place, e.g. Wireless Sensor Networks (WSN) 
[2]. To cope with this lightweight encoder 
expectation, based on Slepian-Wolf [4] and 
Wyner-Ziv [5] theorems Distributed Video 
Coding (DVC) [3] is introduced where 
complexity is shifted from encoder to decoder. 

Another development was the proposal of 
Compressive Sensing (CS) [6-8] which provides 
representing signals using only a few non-zero 
coefficients in an appropriate basis. Such signals 
are then recovered from a few measurements by 
solving a sparsity-constraint optimization 
problem. Established the theory of compressive 
sensing by the mathematicians in the early 
2000s, attracted significant attentions in signal 
and image processing community [9]. CS has 
been effectively used in many application areas, 
examples include but not limited to image 
denoising, deblurring and inpainting [10], depth-
map coding [11], video surveillance [12], 
foreground extraction [13], radar imaging [14], 
astronomical data analysis [15], digital 
watermarking [16], wireless body sensor 
networks [17], etc. CS is very suitable to be used 
in DVC architectures since it provides a 
lightweight encoding scheme, i.e. compressive 
measurements are acquired by a simple 
randomly sampling process at the encoder side 
fastly.  

The first DVC architectures employing CS 
technique are DCVS (Distributed Compressive 
Video Sensing) [18] and DISCOS (Distributed 
Compressed Video Sensing) [19]. In the DCVS 
architecture [18], merely global compressed 
measurements are computed on the whole 
region of each input video frame independently, 

whereas, in the DISCOS architecture [19] both 
block-based and globally frame-based 
compressed measurements are computed 
independently at the encoder side. The decoding 
is accomplished jointly in the decoder side at 
both architectures. Between these, DISCOS 
attracted considerable attention in the 
community, since the block-based 
measurements provide more accurate side 
information at the decoder side thanks to 
proposed interframe sparsity model and 
sparsity-constraint block prediction algorithms 
in [19]. A significant drawback of DISCOS is no 
rate-distortion analysis has been accomplished 
which is significant for practical use of the 
framework. 

The literature studies considering Rate-
Distortion problem in distributed compressive 
video sensing follow feedback-based [20-21] or 
non-feedback-based [22–24] approaches. 
Methods adopting feedback-based approach 
require a communication channel from decoder 
for the encoder to give decisions on the rate 
control adaptively. Specifically, rate-distortion 
optimization is accomplished by discarding 
some amount of coding measurements at the 
encoder side regarding to some decision metrics 
that measure redundancy. In [20], coding 
measurements of a block are discarded when the 
Mean Square Error (MSE) between that block 
and its co-located one at the previous key frame 
is below a threshold. In [21], target 
measurement rate of a particular block is 
determined regarding to degree of sparsity of the 
reconstruction coefficients of its co-located 
block on the previously reconstructed frame at 
the decoder side, i.e., the sparser reconstruction 
coefficient vector involves lower sampling rate, 
and vice versa. The reported PSNR results in [20] 
and [21] are far below the reported PSNR results 
obtained by DISCOS [19] for the same video data. 
One reason is that only local block-based 
information is processed in [20] and [21] 
whereas [19] employed frame-based 
measurements as well. 

Approaches that are not using feedback 
accomplish the whole control mechanism at the 
encoder side by employing some heuristics [22–
23]. The advantage of this approach is the 
encoder does not necessarily wait for decoder’s 
feedback where time-consuming optimization 
problems are solved at. In [22], the sampling rate 
to acquire block-based measurements is 
adjusted according to a deficiency factor, i.e 
higher degradation yields higher sampling rate 
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and vice versa. Deficiency factor is computed 
from the reconstructed compressively sensed 
edge image of the reference frames at the 
encoder side in [22] which results with high 
complexity at the encoder side that is not desired 
for DVC schemes. In [23], Mean Absolute 
Difference (MAD) of CS measurements for 
consecutive spatial blocks is computed and the 
CS measurement for the current block is reused 
if MAD value is small enough. It is reported that 
compression rate is improved 20%, but because 
of the temporal correlations of frames were not 
exploited, the PSNR results are not good enough 
compared to DISCOS framework [19]. In [24], 
adaptive sampling rates are applied by 
considering normalized l1-norm of residual 
measurements of consecutive temporal blocks. 
Rate gain is acceptable but PSNR gain was still 
marginal compared to DISCOS [19]. Differently 
from the studies in [20–24], DISCOS benefits 
from both global frame-based and local-block-
based information for an advanced video 
reconstruction. Although DISCOS has been 
appealing for DVC in terms of video 
reconstruction quality, no rate-distortion 
analysis has been explored for this scheme.  

In this paper, we developed a simple, and low-
cost rate control strategy for DISCOS framework. 
We propose to benefit from Euclidean distance 
between key-frames to infer the degree of 
temporal sparsity for compressed sensed 
frames. Lower euclidean distance between 
blocks of key-frames demonstrates that high 
temporal redudancy exists, so blocks of CS-
frames between these key frames are encoded 
by lower sampling rates. In order to determine 
the threshold values of Euclidean distances, we 
run Equal Frequency Binning (EFB)  technique 
on the training set of key frames. Our approach 
does not use a feedback channel and does not 
require the encoder to wait for solving high-
complexity optimization problem. 

In Section 2, we present preliminaries on 
compressive sensing, components of the DISCOS 
framework and we present rate-distortion 
analysis of the DISCOS framework. In Section 3 
we carry out a sensitivity analysis that explores 
performance of DISCOS under variety of reduced 
sampling rate scenarios and proposed adaptive 
sampling rate policy. Experimental works are 
presented in Section 4 and concluding remarks 
are made in Section 5.  

 

 

2. Preliminaries 

2.1. Compressive Sensing  

Compressive sensing theory [6–8] asserts that 
certain signals or images can be recovered from 
much fewer measurements than the traditional 
methods, which follow Shannon sampling 
theorem [25]. There are two conditions that 
make the recovery of a signal 𝑥 ∈ ℝ𝑁 possible 
according to CS theory: 

i. It must be possible to represent the signal 
𝑥 ∈ ℝ𝑁 sparsely under some sparsifying 
basis Ψ ∈ ℝ𝑁×𝑁 as 𝑥 =  Ψα where α ∈ ℝ𝑁 is 
named as reconstruction coefficients vector 
having K nonzero elements (K << N);  

ii. The sensing matrix, Φ ∈ ℝ𝑀×𝑁 , that is used 
to take M measurements linearly from the 
signal x must be incoherent to the sparsifying 
basis Ψ. 

Hence, at the encoder side of CS framework, the 
input signal x is linearly sensed by taking M 
measurements (K < M << N) as in Equation (1) 
where 𝐴 = ΦΨ and 𝑦 ∈ ℝ𝑀 is named as 
measurement vector. The sensed measurements 
or the measurement vector y is then sent to the 
decoder side [6–8]. 

𝑦 = ΦΨ = ΦΨα = 𝐴α (1) 

At the decoder side, the l1-minimization 
optimization problem in Equation (2) is solved 
to estimate the sparse reconstruction 
coefficients vector �̂�. Finally, the signal 𝑥 is 
recovered by 𝑥 = Ψ�̂� [6–8].  

�̂� = argmin ||α||
𝑙1

    

                  subject to Aα = y 
(2) 

2.2. DISCOS Framework 

Proposed by [19] and visualized in Figure 1, 
DISCOS framework is one of the first 
architectures employing compressive sensing 
for distributed video coding. The components of 
the architecture are briefly explained in this 
section.
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Encoder. Given an input video, i.e., sequence of 
frames, they are categorised into two categories, 
key frames and CS-frames at the encoder. Key 
frames are intra-coded by a conventional 
compression standard, i.e., MPEG/H.26x, and 
compressive sensing is applied to encode the CS-
frames. A key frame is sent periodically after a 
certain number of CS-frames that form a 
structure similar to well-known Group-of-
Pictures (GOP) [29]. 

Two type of measurements, frame-based and 
block-based, are computed for each CS-frame. 
The frame-based measurement vector, i.e., 𝑦𝐹 ∈
ℝ𝑀𝐹  where MF denotes the number of frame-
based measurements, is computed by projecting 
the frame region xF on a sensing basis Φ𝐹  as in 
Equation (3). Structurally Random Matrices 
(SRMs) [30] is used as the sensing matrix to 
acquire frame-based measurements at DISCOS.           

𝑦𝐹 = Φ𝐹x𝐹 (3) 

The block-based measurement vector for each 
non-overlapping block i of the frame is computed 
by projecting block region on a sensing basis Φ𝐵 

as in Equation (4). 𝑦𝐵
𝑖 ∈ ℝ𝑀𝑏  denotes the 

measurement vector of block i, Mb denotes 
number of block-based measurements obtained 
for a block, and nB denotes the number of non-
overlapping blocks that a frame includes in 
Equation (4). Orthonormal random matrix is 
used as the sensing matrix to acquire block-
based measurements at DISCOS.          

𝑦𝐵
𝑖 = Φ𝐵𝑥𝐵

𝑖 ,   i = 1,…, nB                          (4) 

Decoder. Key-frames are decoded by the 
conventional compression standards at the 
decoder side. At the decoding stage of a CS frame, 
non-overlapping blocks are recovered by 
estimating the sparse reconstruction 

coefficients, i.e. �̂�𝐵
𝑖 , i=1, …, nB, by solving the l1 

minimization problem in Equation (5).         

�̂�𝐵
𝑖 = argmin ||α𝐵

𝑖 ||
𝑙1

  

             subject to 𝑦𝐵
𝑖 = Φ𝐵𝐷𝑖𝛼𝐵

𝑖                          

(5) 

Exploiting the preceding and following 
keyframes that were decoded, a model named as 
Interframe Sparsity Model is proposed in [19] in 
order to recover block-based CS measurements 
(illustrated in Figure 2). Interframe Sparsity 
Model employs the temporal sparsity of the 
blocks by referring to the assumption that a 
block can be sparsely represented by a linear 
combination of the temporal neighbour blocks 
within a correlated spatial region on the 
preceding and following key frames. Thus, the 
columns of the sparsifiying matrix Di are 
constructed by the vectorized overlapping 
blocks inside a specified area of a temporal 
neighbour frame of block i. Sparsity Adaptive 

Figure 1. DISCOS framework [19] 
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Matching Pursuit (SAMP) algorithm in [28] is 
used to solve the optimization problem that is 
given in Equation (5). 

Once the �̂�𝐵
𝑖  reconstruction coefficients are 

estimated, the block 𝑥𝐵
𝑖  recovered by 𝑥𝐵

𝑖 = 𝐷𝑖�̂�𝐵
𝑖 . 

After recovering each non-overlapping block 𝑥𝐵
𝑖 , 

i = 1, …, nB, the frame region, i.e., 𝑥𝐹
𝑖 , is 

constructed. Then, prediction of frame-based 
measurements is computed by  �̂�𝐹 = Φ𝐹𝑥𝐹 . 

Since the residual between the predicted and 
received frame-based measurements, i.e., �̂�𝐹 −
 𝑦𝐹 , would be sparse, it is recovered by the GPSR 
algorithm [29]. Finally, the recovered prediction 
error of intensity values are added on the values 
of the predicted frame  𝑥𝐹 . 

2.3. Rate Distortion Characteristics of 

DISCOS 

Number of block-based (MB) and frame-based 
(MF) measurements computed for a CS encoded 
frame at the DISCOS framework is given in 
Equations (6) and (7), respectively. In Equation 
(6), nB is the number of non-overlapping blocks 
that a frame consists of, N is the number of pixels 
in the frame, rB is the block-based sampling rate 
that is the ratio of number of acquired samples 
to the total possible samples of a block, i.e., the 
number of pixels of a block., and rF is the frame-
based sampling rate that is the ratio of number 
of acquired samples to the total possible samples 
of the frame, i.e., the number of pixels of the 
frame.  

𝑀𝐵  =  𝑛𝐵  ×  (𝑟𝐵 ×
𝑁

𝑛𝐵
) 

        = 𝑟𝐵 × 𝑁    

(6) 

𝑀𝐹 = 𝑟𝐹 × 𝑁              (7) 

The total number of measurements obtained 
from both block-based and frame-based 
measure- ments for a CS-frame is equal to N × (rB 
+ rF ) as shown in Equation (8). 

𝑀 =  𝑀𝐵 + 𝑀𝐹  

      =  𝑟𝐵 × 𝑁 + 𝑟𝐹 × 𝑁 

      = 𝑁 × (𝑟𝐵 + 𝑟𝐹)  

(8) 

It is claimed in [19] that the budget is divided 
equally between block-based and frame-based 
measurements, so rF = rB = 0.5. Thus, number of 
measurements acquired for each CS-frame is 
equal to the number of pixels that the frame 
consists of, i.e., M = N, in DISCOS. This means that 
the DISCOS encoder may send the frame region 
without employing any encoding procedure 
which, in turn, may yield extremely high traffic 
load. 

By applying the default rF = rB = 0.5 sampling 
rates to encode the first 37 frames of six 
352×288 sized CIF videos by the DISCOS 
framework [19] we obtain the Video PSNR 
results presented in Table 1. In [19], the authors 
computed PSNR for each frame and present the 

Figure 2. Interframe Sparsity Model that is used to estimate block i, denoted by 𝑥𝐵
𝑖  on a CS-frame 

by using temporal neighbour blocks on the preceding and following keyframes at the DISCOS 
decoder. (u, v) denotes the location of the target block, red square denotes the correlated area in 

keyframes. Image credits to [19]. 
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average PSNR over all frames for each video. We 
prefer to present video PSNR computed over 
merged frames of the whole sequence rather 
than average PSNR of individual frames since 
this is accepted as a more reliable video quality 
assessment metric [1]. We use the default GOP 
structure employed in DISCOS, which consists of 
three compressed sensing frames with an I-
frame that is H.264 coded. We worked on the 
Luma channel and used 30 fps, 8 bit/pixels to 
compute the data rate for CS-frames. The 
average and standard deviation of video PSNR 
values obtained from six videos are presented to 
make an overall comparison in the following 
sections. We name the default coding scheme of 
DISCOS in Table 1 as the benchmark model.  

Table 1: Benchmark Model (rF = rB = 0.5) 

Video Name Video PSNR (dB) 

Coastguard 30.38 

Foreman 35.26 

Hall 35.66 

Highway 39.16 

Mother-Daughter 39.83 

News 35.16 

Video PSNR (dB) per video 35.91 ± 3.4 

Data Rate (kbps) per video 24330 

We reduced the block-based and frame-based 
sampling rates to observe their effect on the 
data-rate and video PSNR in Table 2. We also 
present the average PSNR and data rate of six 
videos in Table 3. Note that the average PSNR 
values in Table 3 are computed from Table 2. 

In Table 2, we see that decrease in rB has minor 
effect on Video PSNR for all of the videos, i.e., 
Coastguard, Foreman, Hall, Highway, Mother-
Daughter, and News, whereas decrease in rF has 
a more significant effect for all in terms of Video 
PSNR.  

Table 3 demonstrates that reducing rB by 80% 
(from 0.5 to 0.1) yields ~4% decrease in average 
Video PSNR (from 35.91 ± 3.4 to 34.51 ± 2.7), 
whereas reducing rF by 80% (from 0.5 to 0.1) 
yields ~10% decrease in average Video PSNR 
(from 35.91 ± 3.4 to 26.23 ± 3.1). Thus, it is 
plausible to apply adaptive sampling strategy to 
acquisition of merely block-based 

measurements by fixing the frame-based 
sampling rate to an acceptable value that 
provides adequate video quality.  

Table 3: Effect of reduction in block-based (rB) 
and frame-based (rF) sampling rates on the video 
reconstruction quality (video PSNR) and Data 
rate, both averaged over six videos. Benchmark 
model is presented in bolded fonts. 

rB rF 
Avr. Video PSNR 

(dB) 
Avr. Data Rate 

(kbps) 

0.5 0.5 35.91 ± 3.4 24330 

0.4 0.5 35.80 ± 3.3 21897 

0.3 0.5 35.63 ± 3.2 19464 

0.2 0.5 35.29 ± 3.0 17031 

0.1 0.5 34.51 ± 2.7 14598 

0.5 0.4 33.61 ± 3.4 21897 

0.5 0.3 31.23 ± 3.5 19464 

0.5 0.2 28.77 ± 3.3 17031 

0.5 0.1 26.23 ± 3.1 14598 

 

3. Proposed adaptive block-based sampling 

scheme for DISCOS 

According to CS theory, if the sparsity of the 
signal increases (which means that the number 
of nonzero elements (K) in the reconstruction 
vector becomes smaller), then less number of 
measurements (M) would be sufficient to 
reconstruct the sensed signal according to the 
constraint M ≥ cK logN [6–8]. The proposed 
Interframe Sparsity Model in the DISCOS decoder 
[19] (that is formalized in Equation (5) and 
visualized in Figure 2) can ensure to adjust the 
block-based sampling rate adaptively with 
respect to the degree of temporal sparsity. In a 
similar manner, some literature works 
adaptively adjust the sampling rate of the CS 
encoder regarding to the measured degree of 
sparsity of the signal [21–23]. However, at these 
works it is required to solve an optimization  
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problem previosuly either at the encoder or the 
decoder side and such a high- complexity 
operation slows down the speed of the encoder 
significantly. 

In this work, we bypass the reconstruction of the 
signal to give decisions on sampling rates and we 
propose to infer the degree of temporal sparsity 
at the encoder side via simple and low-
complexity heuristic and accordingly decide to 
the block based sampling rates. Thus, in our 
scheme encoding is performed fastly and with 
less overhead on the network traffic, since 
neither the encoder requires implementing a 
high complexity operation to arrange the 
sampling rates, nor waits for the decoder’s 
feedback to give decisions which would result 
with some delay at encoder response and 
additional overhead on network traffic.  

The basis of our scheme is on  investigating 
Euclidean similarity distance between co-
located blocks on the successive keyframes. 
More similar co-blocks on the successive 
keyframes demonstrate the existence of higher 
temporal sparsity. Thus, these blocks can be 
sensed by smaller sampling rates and vice versa.  
The proposed framework is presented in Figure 
3 and we present the implementational details at 
Algorithm 1. As mentioned in Algorithm 1, we 
use different sampling rates to sense 
measurements from a block on a CS-frame 
regarding to Euclidean distance between its co-

located blocks at the preceding and following 
key-frames I1 and I2. Two threshold values, i.e. T1 
and T2, of Euclidean distance are used to decide 
on the sampling rate (𝑟𝐵𝑢,𝑣

𝐼1−𝐼2) for a macro-block 

of a CS-frame in Algorithm 1 where 𝑑𝑢,𝑣
𝐼1−𝐼2  

denotes the Euclidean distance between its co-
located blocks at the preceding and following 
key-frames and (u,v) denote the coordinates of 
the center of the macro-block. One could use a 
single threshold value, e.g mean or median of the 
Euclidean distance range, and assign sampling 

Algorithm 1. Algorithm of Adaptive Block-based 
Sampling Rate Assignment 

Input: Coordinates of the center of the macro block 
(u,v), preceeding and following key frames I1, I2.  
Output: Sampling rate 𝑟𝐵𝑢,𝑣

𝐼1−𝐼2  

 Compute Euclidean distance (𝑑𝑢,𝑣
𝐼1−𝐼2) 

between macro-blocks at the position of (u, 
v) of the preceding and following 
keyframes. 

 Compute sampling rate for the blocks of CS-
frames between keyframes I1 and I2 and 
centered at (u,v) by following heuristic: 

𝑟𝐵𝑢,𝑣
𝐼1−𝐼2 =    {

𝑅1,     if    𝑑𝑢,𝑣
𝐼1−𝐼2 < 𝑇1                   

𝑅2,    elseif    𝑇1 ≤ 𝑑𝑢,𝑣
𝐼1−𝐼2 < 𝑇2

𝑅3,    otherwise                           

 

Output: 𝑟𝐵𝑢,𝑣
𝐼1−𝐼2 , the sampling rate for the blocks 

centered at (u,v). 

 Sampling rates Video PSNR (dB) 

rB rF 
Coastguard Foreman Hall Highway Mother-

Daughter 
News 

Benchmark model 
(equal budget) 

0.5 0.5 30.38 35.26 35.66 39.16 39.83 35.16 

Decrease in 𝑟𝐵  0.4 0.5 30.34 35.15 35.58 38.81 39.77 35.17 

0.3 0.5 30.28 35.04 35.49 38.33 39.54 35.07 

0.2 0.5 30.16 34.74 35.25 37.52 39.12 34.92 

0.1 0.5 29.87 33.99 34.56 35.84 38.01 34.81 

Decrease in 𝑟𝐹  0.5 0.4 28.74 32.88 32.59 37.84 37.38 32.23 

0.5 0.3 27.23 30.53 29.45 36.06 34.86 29.26 

0.5 0.2 25.78 28.03 26.58 33.68 32.18 26.40 

0.5 0.1 24.26 25.35 23.86 30.84 29.27 23.79 

Table 2. Effect of reduction in block-based (rB) and frame-based (rF) sampling rates on the video 
reconstruction quality (video PSNR) for six videos. 
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rates of two levels. However, that would be 
coarser decision and we intended to make a finer 
analysis. We decide on the threshold values of T1 
and T2 by getting clues from data with the 
techniques that will be explained in Section 4.1. 
While we arrange the block-based sampling 
rates adaptively as described in Algorithm 1, we 
use 0.5 for frame based sampling rate, i.e., rF = 0.5 
since the video reconstruction quality was too 
sensitive to changes in frame-based sampling 
rate. 

4. Experiments 

4.1. Rate Distortion Characteristics of 

DISCOS 

Various techniques of feature discretization in 
the literature [30–33] can be used to decide on 
the threshold values of T1 and T2. We chose the 
unsupervised methods called Equal Frequency 
Binning (EFB) and Equal Width Binning (EWB) 
described in [30, 31] that do not make use of 
class membership information which is suitable 
for our case. EFB computes threshold values so 
that approximately equal number of samples fall 

in each threshold interval, while EWB divides the 
Euclidean distance range into equal intervals. 
We benefit from training data in order to decide 
on the technique, i.e., either EFB or EWB, to be 
used in T1 and T2 decision. 

We randomly chose five key frames from each of 
the six video sequences to form the training set, 
and used the key frames and the CS frames at the 
remaining GOPs as the testing set. By fixing the 
block-based sampling rates at R1 = 0.02, R2 = 
0.06, R3 = 0.1 in Algorithm 1, we observed the 
video reconstruction quality obtained by each 
method, i.e., EFB and EWB, on the testing set. The 
T1 and T2 values determined by EWB were same 
for all videos, that are T1 = 5.32 and T2 = 10.65. 
The T1 and T2 values determined by EFB are as  

 

 

 

 

 

Figure 3. Proposed scheme for adaptive block-based sampling rate assignment. 
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Table 4: T1 and T2 values that are determined 
by Equal Frequency Binning (EFB) technique on 
the training set of each video sequences. 

Video Name T1 T2 

Coastguard 8.94 12.95 

Foreman 8.70 12.79 

Hall 9.10 13.06 

Highway 8.48 12.68 

Mother-Daughter 9.74 13.78 

News 9.74 13.78 

in Table 4. The performance of average Video 

PSNR obtained by T1 and T2 determined by EFB 

was slightly better, i.e., ~0.05, than EWB 
implementation, thus we continued by the T1 
and T2 values in Table 4 that are determined by 
EFB. 

4.2. Results 

Once we decided on the method to determine T1 
and T2 values, we investigated the video 
reconstruction quality and data rate obtained by 
all sampling rate combinations from the set of rB 
= 0.02, 0.04, 0.06, 0.08, 0.1 by brute force search 
presented in Tables 5 and 6. From Table 3, we 
observe that decreasing rB to 0.1 provides 40% 
gain in data rate with a slightly decrease, i.e., 4%, 
in Video PSNR. We aimed to provide more data 
rate gain with an acceptable decrease in Video 
PSNR, thus we chose 0.1 as the upper bound for 

rB in these experiments.   

BENCHMARK MODEL 

 

rB 

Data Rate (kbps)  

Mean 
Coastguard Foreman Hall Highway Mother-

Daughter 
News 

0.5  24330  24330  24330  24330  24330  24330  24330 

ADAPTIVE STRATEGY 

rB Data Rate (kbps) 

Mean 

R1 R2 R3 Coastguard Foreman Hall Highway 
Mother-

Daughter 
News 

0.06 0.08 0.1 14324 14307 14314 14288 14349 14108 14282±  87 

0.04 0.08 0.1 14268 14240 14250 14210 14289 13924 14197±  136 

0.04 0.06 0.1 14106 14082 14092 14054 14161 13801 14049 ± 127 

0.04 0.06 0.08 13837 13820 13827 13801 13863 13621 13795 ± 88 

0.02 0.08 0.1 14212 14173 14187 14133 14228 13741 14112 ± 185 

0.02 0.06 0.1 14050 14015 14029 13977 14100 13618 13965 ± 175 

0.02 0.06 0.08 13782 13753 13764 13724 13802 13438 13711 ± 136 

0.02 0.04 0.1 13887 13858 13871 13821 13972 13494 13817 ± 166 

0.02 0.04 0.08 13619 13596 13606 13567 13674 13314 13563 ± 127 

0.02 0.04 0.06 13351 13334 13340 13314 13376 13135 13308 ± 87 

Table 5. Data rate resulted of a variety of block based sampling rate values assigned to the blocks 
adaptively. The frame-based sampling rate employed in the experiments are rF = 0.5. 
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We ran the experiments for the parameter 
settings that are mentioned in Table 5 and 6 on 
the whole sequences of videos. In Table 5, we 
present the data rate averaged over CS- frames 
for videos. The values presented in Table 5 also 
include the data load of frame-based 
measurements that is resulted when we use rF = 
0.5. In Table 6 we present the video 
reconstruction quality obtained with each 
parameter setting. When we observe the 
averaged video PSNR quality at Table 6, we see 
that it changes from 34.21 to 32.85 dB while the 
benchmark model gives 35.91 dB. So, at the 
worst case scenario in terms of video 
reconstruction quality, the PSNR loss of 3db 
(~10%) is obtained when the setting of R1 = 
0.02, R2 = 0.04, and R3 = 0.06 was used. When 
we check the data rate resulted with the same 

setting (R1 = 0.02, R2 = 0.04, and R3 = 0.06) of 
worst case on Table 5, we see that the data rate 
gain is 11022 kbps (~45%) regarding to the 
benchmark model that yielded to 24330 kbps. 
While the Tables 5 and 6 can be used as lookup 
tables to give decision on the block based 
sampling rate, we suggest that the setting of R1 
= 0.04, R2 = 0.06, and R3 = 0.08, which yields 
~2db (~6%) decrease in Video PSNR and 10535 
kbps (~43%) gain in data rate would be a good 
decision. 

5. Conclusions 

In this paper, we demonstrate the data-rate 
deficiencies of a distributed compressive video 
sensing architecture reported as an efficient 
system in terms of video reconstruction quality. 
We analysed the rate-distortion characteristics 

Table 6. Video reconstruction quality obtained by a variety of block based sampling rate values 
assigned to the blocks adaptively. The frame-based sampling rate employed in the experiments are 
rF = 0.5 

BENCHMARK MODEL 

 

rB 

Data Rate (kbps)  

Mean 
Coastguard Foreman Hall Highway Mother-

Daughter 
News 

0.5  30.38 35.26 35.66  39.16 39.83  35.16 35.91±3.4 

ADAPTIVE STRATEGY 

rB Video PSNR (dB) 

Mean 

R1 R2 R3 Coastguard Foreman Hall Highway 
Mother-

Daughter 
News 

0.06 0.08 0.1 29.77 33.78 34.41 35.32 37.36 34.66 34.21±2.5 

0.04 0.08 0.1 29.74 33.55 34.22 34.98 37.43 34.58 34.08±2.5 

0.04 0.06 0.1 29.67 33.36 34.07 34.68 37.22 34.57 33.93±2.5 

0.04 0.06 0.08 29.58 33.12 33.90 34.33 36.87 34.48 33.71±2.4 

0.02 0.08 0.1 29.62 33.33 33.98 34.39 37.07 34.33 33.79±2.4 

0.02 0.06 0.1 29.54 33.10 33.81 31.11 36.90 34.28 33.62±2.4 

0.02 0.06 0.08 29.45 32.85 33.58 33.74 36.52 34.23 33.40±2.3 

0.02 0.04 0.1 29.42 32.83 33.61 33.61 36.34 34.23 33.34±2.3 

0.02 0.04 0.08 29.33 32.59 33.37 33.23 35.97 34.17 33.11±2.2 

0.02 0.04 0.06 29.21 32.24 33.15 32.81 35.56 34.12 32.85±2.1 
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of the current system and then we embedded an 
adaptive block-based sampling scheme at the 
encoder in order to obtain data-rate gain with an 
acceptable video quality. Accomplishing the 
whole process at the encoder side without 
decoder’s feedback provides fast encoding and 
avoids extra overhead on the network traffic. 
The proposed scheme benefits from a simple 
strategy that is based on inferring sparsity of 
blocks regarding to Euclidean distances between 
co-located blocks on the key-frames. We 
obtained encouraging results, i.e., ~43% gain in 
data rate with 2 dB decrease in Video PSNR. 
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