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Abstract

Newton–Cotes integration rules are the simplest methods in numerical integration. The main advantage
of using these rules in quadrature software is ease of programming. In practice, only the lower orders are
implemented or tested, because of the negative coefficients of higher orders. Most textbooks state it is
not necessary to go beyond Boole’s 5-point rule. Explicit coefficients and error terms for higher orders are
seldom given literature. Higher-order rules include negative coefficients therefore roundoff error increases
while truncation error decreases as we increase the number of points. But is the optimal one really Simpson
or Boole?

In this paper, we list coefficients up to 19-points for both open and closed rules, derive the error terms
using an elementary and intuitive method, and test the rules on a battery of functions to find the optimum
all-round one.
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1. Introduction

If we use polynomial interpolation on equally spaced points to integrate a function numerically, we obtain
Newton–Cotes rules. These are probably the easiest to apply in practice, if not the most efficient.

High order Newton–Cotes rules are not very popular, because they contain negative coefficients and
therefore cause roundoff errors. In practice, few implementations go beyond Simpson’s (n = 2) or Boole’s
(n = 4) rules.

In a previous paper [1] we have compared closed Newton–Cotes and Gaussian integration rules and
demonstrated the superiority of Gaussian rules. There, we tested Newton–Cotes rules up to n = 6 and
observed that higher orders gave better results. Yet it is well known that for some integrands, for example

f(x) =
1

1 + 25x2
, in the limit n→∞, the numerical results do not converge to the exact value. [2] In other

words, going to much higher orders is not always a good idea.
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Research on improvement, modification and analysis of Newton-Cotes methods continues. Mikkawy has
derived coefficients [3] and truncation errors [4] starting with the Lagrange interpolating polynomial. Here,
we use the alternative method of undetermined coefficients. Dehghan et. al. have improved these rules
considerably by treating the endpoints as variables. [5],[6]. A very interesting application on the integration
of some physical problems is done by Simos, [7] where trigonometrically–fitted symplectic methods based on
the closed Newton–Cotes formulae are constructed.

In this paper, we aim to determine the "best" Newton–Cotes rule, by considering both open and closed
rules up to 19 points. Truncation error decreases and roundoff error increases with increasing order, therefore
we expect an optimum order. Although this optimum may be dependent on the integrand, we may obtain
some general recommendations for programmers on which rule to use.

We need the weight coefficients beyond the ones supplied in standard reference works like [8], so we derive
necessary equations and list the coefficients in the next section. We also give an explicit formula for the
truncation error.

2. Coefficients of Newton–Cotes

The problem is to determine the coefficients wi in the formula∫ b

a
f(x) dx ≈ (b− a)

n∑
i=0

wif(a+ ih), (2.1)

where n is the number of subintervals and h = (b − a)/n is the step size. We stipulate the formula to be
exact for polynomials up to order n. It can easily be showed that if such a formula applies to an interval, it
applies to any interval, therefore we will prefer [−1, 1] for simplicity. Then,∫ 1

−1
xk dx = 2

n∑
i=0

wi

(
−1 + 2i

n

)k
, k = 0, 1, . . . , n. (2.2)

If k is odd, the result of the integral is zero, and this condition can be satisfied by choosing symmetric
coefficients wi = wn−i. This means that when n even, the resulting formula is exact for xn+1 too as a bonus.
As we have the same accuracy with smaller number of function evaluations, we will only work with even
number of intervals, or equivalently, odd number of points. In this case, n = 2m and we can rewrite equation
(2.2) in simpler terms for the interval [−mh, mh]:∫ mh

−mh
xk dx = 2mh

2m∑
i=0

wi (−mh+ ih)k , k = 0, 1, . . . , 2m. (2.3)

Using the symmetry condition wi = wn−i, we obtain:

m−1∑
i=0

(m− i)kwi =
mk

2(k + 1)
, k = 2, 4, 6, . . . , 2m,

wm + 2

m−1∑
i=0

wi = 1.

(2.4)

There are m + 1 linear equations for the unknowns wi in (2.4). An explicit solution is provided in [3]. We
prefer to solve this set on MATLAB, but care should be exercised. For high m values, the solution will not
be accurate due to roundoff errors. We have used a special code that uses integer arithmetic to solve these
systems.

For the open Newton–Cotes formulae, the analysis is very similar, therefore we only state the results.
The integration formula:
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∫ b

a
f(x) dx ≈ (b− a)

n−1∑
i=1

wif(a+ ih), h = (b− a)/n, (2.5)

is exact for polynomials up to degree n− 1 for n = 2m. Once again we choose wi = wn−i. The coefficients
for this case can be obtained from:

m−1∑
i=1

(m− i)kwi =
mk

2(k + 1)
, k = 2, 4, 6, . . . , 2m− 2,

wm + 2
m−1∑
i=1

wi = 1.

(2.6)

3. Truncation Error of Newton–Cotes

The error terms for the Newton-Cotes methods have been analyzed in detail in [9],[10]. While it is
customary to use the Lagrange interpolating polynomial to derive the truncation error for Newton–Cotes
formulas, here we give a simpler and more intuitive method based on Taylor series expansion. We obtain an
explicit formula at the end. Let us approximate the integral

I =

∫ xn

x0

f(x) dx, (3.1)

using closed Newton–Cotes rule of order n. The Taylor series of f around x0 together with the remainder
term is:

I =

∫ xn

x0

(
f(x0) + f ′(x0)(x− x0) + · · ·+

f (n+1)(x0)

(n+ 1)!
(x− x0)n+1

+
f (n+2)(ξ(x))

(n+ 2)!
(x− x0)n+2

)
dx.

(3.2)

Since our formula is exact up to polynomials of order n+ 1, the source of the error is the last term:

I1 =

∫ xn

x0

f (n+2)(ξ(x))

(n+ 2)!
(x− x0)n+2 dx. (3.3)

The factor (x− x0)n+2 does not change sign in the interval [x0, xn]. Therefore we can use the weighted
mean value theorem for integrals to obtain:

I1 =
f (n+2)(ξ)

(n+ 2)!

∫ xn

x0

(x− x0)n+2 dx, ξ ∈ [x0, xn]. (3.4)

The difference between this and our approximation will give the truncation error. So the main idea is,
for example, to approximate x10 using powers 1, x, . . . , x8.
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Error = Iexact − Iapproximate

=
f (n+2)(ξ)

(n+ 2)!

(∫ nh

0
un+2 du− nh ·

n∑
i=0

wi(ih)
n+2

)

=
hn+3f (n+2)(ξ)

(n+ 2)!

(
nn+3

n+ 3
− n ·

n∑
i=0

wi(i)
n+2

)

= −Knh
n+3f (n+2)(ξ).

(3.5)

We can summarize our results as:

∫ xn

x0

f(x) dx = nh
n∑
i=0

wif(x0 + ih)−Knh
n+3f (n+2)(ξ), (3.6)

where h = (xn − x0)/n, ξ ∈ [x0, xn] and

Kn =
1

(n+ 3)!

(
n(n+ 3)

n∑
i=0

wi i
n+2 − nn+3

)
. (3.7)

After similar steps for open Newton–Cotes formulas, we find:∫ xn

x0

f(x) dx = nh

n−1∑
i=1

wif(x0 + ih) + Lnh
n+1f (n)(ξ), (3.8)

where

Ln =
1

(n+ 1)!

(
n(n+ 1)

n−1∑
i=1

wi i
n − nn+1

)
. (3.9)

4. Coefficients

We list all coefficients and the truncation errors explicitly up to 19 points (n = 18 for closed and n = 20
for open Newton–Cotes rules) for easy reference in Tables (1-2):

A glance at the Figures (1-2) is enough to show that going to much higher orders is not a good idea
for numerical integration. We encounter negative coefficients after a certain point, and although the sum
of all coefficients is 1, their magnitude is increasing. We are subtracting numbers very close in magnitude,
therefore we expect to face problems due to roundoff error.
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2 w0 = 1/6, w1 = 4/6,K2=1/90

w0 = 7/90, w1 = 32/90

4 w2 = 12/90

K4 = 8/945

w0 = 41/840

w1 = 216/840

6 w2 = 27/840

w3 = 272/840

K6 = 9/1400

w0 = 989/28350

w1 = 5888/28350

8 w2 = −928/28350
w3 = 10496/28350

w4 = −4540/28350
K8 = 2368/467775

w0 = 16067/598752

w1 = 106300/598752

w2 = −48525/598752
10 w3 = 272400/598752

w4 = −260550/598752
w5 = 427368/598752

K10 = 673175/163459296

w0 = 1364651/63063000

w1 = 9903168/63063000

w2 = −7587864/63063000
12 w3 = 35725120/63063000

w4 = −51491295/63063000
w5 = 87516288/63063000

w6 = −87797136/63063000
K12 = 3012/875875

w0 = 90241897/5003856000

w1 = 710986864/5003856000

w2 = −770720657/5003856000
w3 = 3501442784/5003856000

14 w4 = −6625093363/5003856000
w5 = 12630121616/5003856000

w6 = −16802270373/5003856000
w7 = 19534438464/5003856000

K14 = 3740727473/1275983280000

w0 = 15043611773/976924698750

w1 = 127626606592/976924698750

w2 = −179731134720/976924698750
w3 = 832211855360/976924698750

16 w4 = −1929498607520/976924698750
w5 = 4177588893696/976924698750

w6 = −6806534407936/976924698750
w7 = 9368875018240/976924698750

w8 = −10234238972220/976924698750
K16 = 99059365376/38979295480125

w0 = 203732352169/15209113920000

w1 = 1848730221900/15209113920000

w2 = −3212744374395/15209113920000
w3 = 15529830312096/15209113920000

w4 = −42368630685840/15209113920000
18 w5 = 103680563465808/15209113920000

w6 = −198648429867720/15209113920000
w7 = 319035784479840/15209113920000

w8 = −419127951114198/15209113920000
w9 = 461327344340680/15209113920000

K18 = 622720042317/278833755200000

Table 1: Coefficients for Closed Type Newton–Cotes Formulas, n = 2− 18
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4 w1 = 2/3, w2 = −1/3, L4=14/45

w1 = 11/20, w2 = −14/20
6 w3 = 26/20

L6 = 41/140

w1 = 460/945

w2 = −954/945
8 w3 = 2196/945

w4 = −2459/945
L8 = 3956/14175

w1 = 4045/9072

w2 = −11690/9072
10 w3 = 33340/9072

w4 = −55070/9072
w6 = 67822/9072

L10 = 80335/299376

w1 = 9626/23100

w2 = −35771/23100
w3 = 123058/23100

12 w4 = −266298/23100
w5 = 427956/23100

w6 = −494042/23100
L12 = 1364651/5255250

w1 = 329062237/833976000

w2 = −1497122214/833976000
w3 = 6058248882/833976000

14 w4 = −16159538710/833976000
w5 = 32215733235/833976000

w6 = −47966447844/833976000
w7 = 54874104828/833976000

L14 = 631693279/2501928000

w1 = 722204696/1915538625

w2 = −3892087348/1915538625
w3 = 18150263624/1915538625

w4 = −57468376538/1915538625
16 w5 = 137035461016/1915538625

w6 = −249560348012/1915538625
w7 = 355819203336/1915538625

w8 = −399697102923/1915538625
L16 = 120348894184/488462349375

w1 = 6912171129/19059040000

w2 = −43087461474/19059040000
w3 = 227788759000/19059040000

w4 = −834322842510/19059040000
18 w5 = 2317367615100/19059040000

w6 = −4988390746282/19059040000
w7 = 8524579147752/19059040000

w8 = −11696802277350/19059040000
w9 = 12990970309270/19059040000

L18 = 611197056507/2534852320000

w1 = 1749481500626/4989349821456

w2 = −12389954060697/4989349821456
w3 = 73278572831682/4989349821456

w4 = −304672055470086/4989349821456
20 w5 = 966316491145704/4989349821456

w6 = −2400158698258188/4989349821456
w7 = 4782407754794376/4989349821456

w8 = −7751977518223986/4989349821456
w9 = 10322815990097148/4989349821456

w10 = −11349750778891702/4989349821456

L20 = 1145302367137/4842604238472

Table 2: Coefficients for Open Type Newton–Cotes Formulas, n = 4− 20
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Figure 1: The weight coefficients of the closed Newton–Cotes method of order 6,10,14,18
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Figure 2: The weight coefficients of the open Newton–Cotes method of order 6,10,14,18
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1.
∫ 100π

0
x2 sinx dx 11.

∫ 1000

1

sinx

x
dx

2.
∫ 10

0
sinx dx 12.

∫ 1

0
x sin(20πx) cos(2πx) dx

3.
∫ 4

0
x4e−x dx 13.

∫ π

0
cos(cosx+ 3 sinx+ 2 cos 2x+ 3 cos 3x) dx

4.
∫ 100

1

1

x
dx 14.

∫ 1

−1
(23/25) coshx− cosx dx

5.
∫ e2

e1

1

x lnx
dx 15.

∫ 1

−1

1

x4 + x2 + 0.9
dx

6.
∫ 500

0
cosx dx 16.

∫ 1

0
x3/2 dx

7.
∫ 10000

1
lnx dx 17.

∫ 1

0

1

1 + x4
dx

8.
∫ 300

0
e−0.1x sinx dx 18.

∫ 1

0

1

1 + x
dx

9.
∫ π/2

0

1

1 + cosx
dx 19.

∫ 1

0

1

1 + ex
dx

10.
∫ 1000

0
e−x/100 sinx dx 20.

∫ 1

0.1

sin(100πx)

πx
dx

21.
∫ 400

0
x3e−x dx

Table 3:

5. Tests

We have written a program newtoncotes in MATLAB to compare different orders. The user gives the
integrand and endpoints, the order, total number of points to be used and an option: open or closed. The
program then rounds the number of points above if necessary, and evaluates the integral using composite
Newton–Cotes integration.

For example, newtoncotes(’closed’,8,’x^2*sin(x)’,0,pi,100) calculates
∫ π
0 x

2 sin(x) dx using n = 8
closed Newton–Cotes rule and at least 100 points.
[res,pts]=newtoncotes(’closed’,8,’x^2*sin(x)’,0,pi,100) will do the same calculation, and also give
pts=105 which is the exact number of points used.

We have tested the methods extensively, using a variety of integrands given in Tables (3-5). For each
integrand, we have gradually increased the number of points until relative errors of 10−12 or less have been
obtained. We have plotted the logarithm of relative error with respect to number of points to compare
methods easily. Some typical graphs are given on Figures (3-4).

The results are dependent on the integrand. For those in Table 3,

• Closed rules are always better than open rules using same number of points

• Higher order closed rules are better than lower orders up to n = 10 or 12

• After n = 12, for computations using a small number of points (around 103), the advantage of still
higher orders is insignificant. If we use a large number of points, (around 106) higher order rules become
less reliable and results start to oscillate.
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1.
∫ 1

0

√
x dx 4.

∫ 1

10−10

x

ex − 1
dx

2.
∫ 100

0

√
xe−x dx 5.

∫ 1

10−10

1

x0.4
dx

3.
∫ 1

10−8

1√
x
dx 6.

∫ 1

10−10

− lnx dx

Table 4:

1.
∫ 1

−1

1

1.005 + x2
dx 5.

∫ 1

0

1

1 + (230x− 30)2
dx

2.
∫ 1

10−10

(
sin(50πx)

10x

)2

dx 6.
∫ 1

0

2

2 + sin(10πx)
dx

3.
∫ 10

−10

1

1 + x2
dx 7.

∫ 10

0
e−50πx

2
dx

4.
∫ 2π

0
cos(300 sinx) dx 8.

∫ 10

0

50

π(2500x2 + 1)
dx

Table 5:

All of these are expected on theoretical grounds.
The recommended rule is closed 10.
The integrands on Table 4 on the other hand, involve singularities or infinite derivatives at end points.

For these functions,

• Open rules are always better than closed rules using same number of points

• Higher order open rules have an almost invisible advantage

• If we use a large number of points, (around 106) higher order rules become less reliable and results
start to oscillate.

Taking all these into account, we recommend the rule open 6.
The integrals on Table 5 are more difficult in a numerical sense. They may involve rapid oscillations

or rational functions where approximating by polynomials may be inappropriate. For such functions, the
smaller orders give better results, so we recommend Simpson’s rule. (closed 2)

It is well known that fast oscillatory functions are among the most difficult to integrate numerically, and
specialized techniques are necessary. Some ideas and methods can be seen in: [11],[12],[13],[14].

The application of related ideas to differential equations can be found in: [15],[16],[17].

6. Conclusion

While Newton-Cotes rules are elementary, the application of these rules become cumbersome as we go to
higher orders. In this work, we have derived formulas and tabulated coefficients up to n = 18 for closed and
n = 20 for open rules.

The conventional wisdom is to use the lowest orders n = 2 or n = 4. After extensive testing, we have
confirmed that for high orders (n > 12) increasing roundoff errors make the application unfeasible. But the
best overall rule is closed rule of n = 10 for most proper integrals. The existence of negative coefficients
does not necessarily make this rule unreliable. For integrals with singularities or infinite derivatives at the
endpoints, open rule of n = 6 is recommended, and going to higher orders makes almost no difference.
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The Simpson rule should still exist on the arsenal of numerical integrator, but it gives better results for
exceptionally troublesome integrals only.

Figure 3: Test Results for
∫ e2

e1

1

x lnx
dx and

∫ 1

10−10

1

x0.4
dx
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Figure 4: Test Results for
∫ 1

0.1

sin(100πx)

πx
dx and

∫ 1

0

1

1 + (230x− 30)2
dx



Emre Sermutlu, Results in Nonlinear Anal. 2 (2019), 48–60 60

References

[1] E. Sermutlu, Comparison of Newton–Cotes and Gaussian methods of quadrature, Applied Mathematics and Computation,
171 (2005), 1048–1057.

[2] T.H.Fay and P.G.Webster, Lagrange interpolation and Runge’s example, International Journal of Mathematical Education
in Science and Technology, 27(6) (1996), 785–795.

[3] M. El-Mikkawy, A unified approach to Newton–Cotes quadrature formulae, Applied Mathematics and Computation, 138
(2003), 403–413.

[4] M. El-Mikkawy, On the error analysis associated with the Newton–Cotes formulae, International Journal of Computer
Mathematics, 79(9) (2002), 1043–1047.

[5] M. Dehghan, M. Masjed-Jamei, M.R. Eslahchi, On numerical improvement of closed Newton–Cotes quadrature rules,
Applied Mathematics and Computation, 165 (2005), 251–260.

[6] M. Dehghan, M. Masjed-Jamei, M.R. Eslahchi, On numerical improvement of open Newton–Cotes quadrature rules, Applied
Mathematics and Computation, 175 (2006), 618–627.

[7] T.E.Simos, High–order closed Newton–Cotes trigonometrically - fitted formulae for long-time integration of orbital prob-
lems, Computer Physics Communications, 178 (2008), 199–207.

[8] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965.
[9] D.R. Hayes and L. Rubin, A proof of the Newton–Cotes quadrature formulas with error term, The American Mathematical

Monthly, 77(10) (1970), 1065–1072.
[10] G.A. Evans, The estimation of errors in numerical quadrature, International Journal of Mathematical Education in Science

and Technology, 25(10) (1994), 727–744.
[11] K.N. Melnik, R.V.N. Melnik, Optimal-by-order quadrature formulae for fast oscillatory functions with inaccurately given

a priori information, Journal of Computational and Applied Mathematics, 110 (1999), 45–72.
[12] K.N. Melnik, R.V.N. Melnik, Optimal cubature formulae and recovery of fast-oscillating functions from an interpolational

class, BIT, 41(4) (2001), 748–775.
[13] K.N. Melnik, R.V.N. Melnik, Optimal-by-accuracy and optimal-by-order cubature formulae in interpolational classes,

Journal of Computational and Applied Mathematics, 147 (2002), 233–262.
[14] E. Sermutlu, H.T. Eyyubog̃lu, A new quadrature routine for improper and oscillatory integrals, Applied Mathematics and

Computation, 189 (2007), 452–461.
[15] A.Ullah and K.Shah, Numerical analysis of Lane EmdenâĂŞ-Fowler equations, Journal of Taibah University for Science,

12(2) (2018), 180–185.
[16] W.Kumam, M.B.Zada, K.Shah and R.A.Khan, Investigating a Coupled Hybrid System of Nonlinear Fractional Differential

Equations, Discrete Dynamics in Nature and Society, (2018). doi: 10.1155/2018/5937572.
[17] K. Shah and J.Wang, A numerical scheme based on non-discretization of data for boundary value problems of fractional

order differential equations, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas,
(2018). doi:10.1007/s13398-018-0616-7.


	1 Introduction
	2 Coefficients of Newton–Cotes
	3 Truncation Error of Newton–Cotes
	4 Coefficients
	5 Tests
	6 Conclusion

