Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Volume 68, Number 2, Pages 1909–1921 (2019) DOI: 10.31801/cfsuasmas.505287 ISSN 1303-5991 E-ISSN 2618-6470

http://communications.science.ankara.edu.tr/index.php?series=A1

CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS RELATED TO k-FIBONACCI NUMBERS

H. ÖZLEM GÜNEY, G. MURUGUSUNDARAMOORTHY, AND J. SOKÓŁ

ABSTRACT. In this paper, we introduce and investigate new subclasses of biunivalent functions related to k-Fibonacci numbers. Furthermore, we find estimates of first two coefficients of functions in these classes. Also, we obtain the Fekete-Szegő inequalities for these function classes.

1. Introduction

Let $\mathbb{D}=\{z:|z|<1\}$ be the unit disc in the complex plane. The class of all analytic functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

in the open unit disc \mathbb{D} with normalization f(0) = 0, f'(0) = 1 is denoted by \mathcal{A} and the class $\mathcal{S} \subset \mathcal{A}$ is the class which consists of univalent functions in \mathbb{D} . We say that f is subordinate to F in \mathbb{D} , written as $f \prec F$, if and only if $f(z) = F(\omega(z))$ for some analytic function ω , $|\omega(z)| \leq |z|$, $z \in \mathbb{D}$.

The Koebe one quarter theorem [5] ensures that the image of \mathbb{D} under every univalent function $f \in \mathcal{A}$ contains a disk of radius 1/4. Thus every univalent function f has an inverse f^{-1} satisfying

$$f^{-1}(f(z)) = z, \ (z \in \mathbb{D}) \text{ and } f(f^{-1}(w)) = w, \ (|w| < r_0(f), \ r_0(f) \ge \frac{1}{4}).$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{D} if f is univalent in \mathbb{D} and f^{-1} has an univalent extension to \mathbb{D} . Let Σ denote the class of bi-univalent functions defined in the unit disk \mathbb{D} . Someone can see a short history and examples of functions in the class Σ in [14]. Since $f \in \Sigma$ has the Maclaurin series given by (1), a computation shows that its inverse $g = f^{-1}$ has the expansion

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 + \cdots$$
 (2)

Received by the editors: December 30, 2018; Accepted: January 14, 2019.

2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50.

 $Key\ words\ and\ phrases.$ Analytic functions, bi-univalent, k-Fibonacci numbers, starlike functions, convex functions.

The work of Srivastava et al. [14] essentially revived the investigation of various subclasses of the bi-univalent function class in recent years. In a considerably large number of sequels to the aforementioned work of Srivastava et al. [14], several different subclasses of the bi-univalent function class Σ were introduced and studied analogously by many authors (see, for example, [1, 2, 4, 8, 3, 15, 9]), but only non-sharp estimates on the initial coefficients $|a_2|$ and $|a_3|$ in the Taylor-Maclaurin expansion (1) were obtained in these recent papers.

The object of the present work is to introduce a new subclass of the function class Σ and find estimates on the coefficients $|a_2|$ and $|a_3|$ for functions in this new subclass of the function class Σ using the technique of Srivastava et al. [14]

Recently, Yilmaz Özgür and Sokół [10] introduced the class \mathcal{SL}^k of starlike functions connected with k- Fibonacci numbers as the set of functions $f \in \mathcal{A}$ which is described in the following definition.

Definition 1. Let k be any positive real number. The function $f \in \mathcal{A}$ belongs to the class \mathcal{SL}^k if it satisfies the condition that

$$\frac{zf'(z)}{f(z)} \prec \widetilde{p}_k(z), \quad z \in \mathbb{D},$$

where

$$\widetilde{p}_k(z) = \frac{1 + \tau_k^2 z^2}{1 - k \tau_k z - \tau_k^2 z^2}, \ \tau_k = \frac{k - \sqrt{k^2 + 4}}{2}, \quad z \in \mathbb{D}.$$
 (3)

Later in [7], Güney et al. defined the class \mathcal{KSL}^k as follows:

Definition 2. Let k be any positive real number. The function $f \in \mathcal{A}$ belongs to the class KSL^k if it satisfies the condition that

$$1 + \frac{zf''(z)}{f'(z)} \prec \widetilde{p}_k(z), \quad z \in \mathbb{D},$$

where the function \widetilde{p}_k is defined in (3).

For k = 1, the classes SL and KSL of shell-like functions were defined in [12] (see also [13]).

It was proved in [10] that functions in the class \mathcal{SL}^k are univalent in \mathbb{D} . Moreover, the class \mathcal{SL}^k is a subclass of the class of starlike functions \mathcal{S}^* , even more, starlike of order $k(k^2+4)^{-1/2}/2$. The name attributed to the class \mathcal{SL}^k is motivated by the shape of the curve

$$\mathcal{C} = \left\{ \widetilde{p}_k(e^{it}) : t \in [0, 2\pi) \setminus \{\pi\} \right\}.$$

Now we define the classes $\mathcal{SLM}_{\alpha}^{k}$ and $\mathcal{SLG}_{\gamma}^{k}$, as follows:

Definition 3. Let k be any positive real number. The function $f \in \mathcal{A}$ belongs to the class $\mathcal{SLM}_{\alpha}^{k}$, $(0 \leq \alpha \leq 1)$ if it satisfies the condition that

$$\alpha \left(1 + \frac{zf''(z)}{f'(z)}\right) + (1 - \alpha)\frac{zf'(z)}{f(z)} \prec \widetilde{p}_k(z), \quad z \in \mathbb{D},$$

where the function \widetilde{p}_k is defined in (3).

Definition 4. Let $0 \le \gamma \le 1$, and k be any positive real number. The function $f \in A$ belongs to the class SLG_{γ}^{k} if the following conditions are satisfied:

$$\left(\frac{zf'(z)}{f(z)}\right)^{\gamma} \left(1 + \frac{zf''(z)}{f'(z)}\right)^{1-\gamma} \prec \tilde{p}_k(z), \quad z \in \mathbb{D},$$

where the function \widetilde{p}_k is defined in (3).

For $k \leq 2$, note that we have

$$\widetilde{p}_k\left(e^{\pm i\arccos\left(k^2/4\right)}\right) = k(k^2+4)^{-1/2},$$

and so the curve C intersects itself on the real axis at the point $w_1 = k(k^2+4)^{-1/2}$. Thus \mathcal{C} has a loop intersecting the real axis also at the point $w_2 = (k^2 + 4)/(2k)$. For k > 2, the curve C has no loops and it is like a conchoid, see for details [10]. Moreover, the coefficients of \widetilde{p}_k are connected with k-Fibonacci numbers.

For any positive real number k, the k-Fibonacci number sequence $\{F_{k,n}\}_{n=0}^{\infty}$ is defined recursively by

$$F_{k,0} = 0$$
, $F_{k,1} = 1$ and $F_{k,n+1} = kF_{k,n} + F_{k,n-1}$ for $n \ge 1$.

When k = 1, we obtain the well-known Fibonacci numbers F_n . It is known that the n^{th} k-Fibonacci number is given by

$$F_{k,n} = \frac{(k - \tau_k)^n - \tau_k^n}{\sqrt{k^2 + 4}},$$

where $\tau_k = (k - \sqrt{k^2 + 4})/2$. If $\widetilde{p}_k(z) = 1 + \sum_{n=1}^{\infty} \widetilde{p}_{k,n} z^n$, then we have

$$\widetilde{p}_{k,n} = (F_{k,n-1} + F_{k,n+1})\tau_k^n, n = 1, 2, 3, \dots$$

Also, Özgür and Sokół showed in [10] that

$$\widetilde{p}_k(z) = \frac{1 + \tau_k^2 z^2}{1 - k \tau_k z - \tau_k^2 z^2} = 1 + \sum_{n=1}^{\infty} \widetilde{p}_{k,n} z^n$$

$$= 1 + (F_{k,0} + F_{k,2}) \tau_k z + (F_{k,1} + F_{k,3}) \tau_k^2 z^2 + \cdots$$

$$= 1 + k \tau_k z + (k^2 + 2) \tau_k^2 z^2 + (k^3 + 3k) \tau_k^3 z^3 + \cdots$$

where $\tau_k = \frac{k - \sqrt{k^2 + 4}}{2}$, $z \in \mathbb{D}$, (see [10]). Let $\mathcal{P}(\beta)$, $0 \le \beta < 1$, denote the class of analytic functions p in \mathbb{D} with p(0) = 1and $Re\{p(z)\} > \beta$. Especially, we use $\mathcal{P}(0) = \mathcal{P}$ as $\beta = 0$.

Now we give the following lemma which will use in proving.

Lemma 5. ([11]) Let
$$p \in \mathcal{P}$$
 with $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$, then $|c_n| \le 2$ for $n \ge 1$. (4)

2. BI-UNIVALENT FUNCTION CLASS $\mathcal{SLM}_{\alpha,\Sigma}^k(\widetilde{p}_k(z))$

In this section, we introduce three new subclasses of Σ associated with shell-like functions connected with Fibonacci numbers and obtain the initial Taylor coefficients $|a_2|$ and $|a_3|$ for the function classes by subordination.

Firstly, let $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$, and $p \prec \tilde{p}_k$. Then there exists an analytic function u such that |u(z)| < 1 in \mathbb{U} and $p(z) = \tilde{p}_k(u(z))$. Therefore, the function

$$h(z) = \frac{1 + u(z)}{1 - u(z)} = 1 + c_1 z + c_2 z^2 + \dots$$
 (5)

is in the class $\mathcal{P}(0)$. It follows that

$$u(z) = \frac{c_1 z}{2} + \left(c_2 - \frac{c_1^2}{2}\right) \frac{z^2}{2} + \left(c_3 - c_1 c_2 + \frac{c_1^3}{4}\right) \frac{z^3}{2} + \cdots$$
 (6)

and

$$\begin{split} \tilde{p}_k(u(z)) &= 1 + \tilde{p}_{k,1} \left\{ \frac{c_1 z}{2} + \left(c_2 - \frac{c_1^2}{2} \right) \frac{z^2}{2} + \left(c_3 - c_1 c_2 + \frac{c_1^3}{4} \right) \frac{z^3}{2} + \cdots \right\} \\ &+ \tilde{p}_{k,2} \left\{ \frac{c_1 z}{2} + \left(c_2 - \frac{c_1^2}{2} \right) \frac{z^2}{2} + \left(c_3 - c_1 c_2 + \frac{c_1^3}{4} \right) \frac{z^3}{2} + \cdots \right\}^2 \\ &+ \tilde{p}_{k,3} \left\{ \frac{c_1 z}{2} + \left(c_2 - \frac{c_1^2}{2} \right) \frac{z^2}{2} + \left(c_3 - c_1 c_2 + \frac{c_1^3}{4} \right) \frac{z^3}{2} + \cdots \right\}^3 + \cdots \\ &= 1 + \frac{\tilde{p}_{k,1} c_1 z}{2} + \left\{ \frac{1}{2} \left(c_2 - \frac{c_1^2}{2} \right) \tilde{p}_{k,1} + \frac{c_1^2}{4} \tilde{p}_{k,2} \right\} z^2 \\ &+ \left\{ \frac{1}{2} \left(c_3 - c_1 c_2 + \frac{c_1^3}{4} \right) \tilde{p}_{k,1} + \frac{1}{2} c_1 \left(c_2 - \frac{c_1^2}{2} \right) \tilde{p}_{k,2} + \frac{c_1^3}{8} \tilde{p}_{k,3} \right\} z^3 + \cdots \right\} \end{split}$$

And similarly, there exists an analytic function v such that |v(w)| < 1 in \mathbb{D} and $p(w) = \tilde{p}_k(v(w))$. Therefore, the function

$$k(w) = \frac{1 + v(w)}{1 - v(w)} = 1 + d_1 w + d_2 w^2 + \dots$$
 (8)

is in the class $\mathcal{P}(0)$. It follows that

$$v(w) = \frac{d_1 w}{2} + \left(d_2 - \frac{d_1^2}{2}\right) \frac{w^2}{2} + \left(d_3 - d_1 d_2 + \frac{d_1^3}{4}\right) \frac{w^3}{2} + \cdots$$
 (9)

and

$$\tilde{p}_{k}(v(w)) = 1 + \frac{\tilde{p}_{k,1}d_{1}w}{2} + \left\{ \frac{1}{2} \left(d_{2} - \frac{d_{1}^{2}}{2} \right) \tilde{p}_{k,1} + \frac{d_{1}^{2}}{4} \tilde{p}_{k,2} \right\} w^{2} \\
+ \left\{ \frac{1}{2} \left(d_{3} - d_{1}d_{2} + \frac{d_{1}^{3}}{4} \right) \tilde{p}_{k,1} + \frac{1}{2} d_{1} \left(d_{2} - \frac{d_{1}^{2}}{2} \right) \tilde{p}_{k,2} + \frac{d_{1}^{3}}{8} \tilde{p}_{k,3} \right\} w^{3} + \cdots \right\}$$
(10)

Definition 6. For $0 \le \alpha \le 1$, a function $f \in \Sigma$ of the form (1) is said to be in the class $\mathcal{SLM}_{\alpha,\Sigma}^k(\widetilde{p}_k(z))$ if the following subordination hold:

$$\alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) + (1 - \alpha) \left(\frac{zf'(z)}{f(z)} \right) \prec \widetilde{p}_k(z) = \frac{1 + \tau_k^2 z^2}{1 - k\tau_k z - \tau_k^2 z^2},\tag{11}$$

and

$$\alpha \left(1 + \frac{wg''(w)}{g'(w)} \right) + (1 - \alpha) \left(\frac{wg'(w)}{g(w)} \right) \prec \widetilde{p}_k(w) = \frac{1 + \tau_k^2 w^2}{1 - k\tau_k w - \tau_k^2 w^2}, \tag{12}$$

where $\tau_k = \frac{k - \sqrt{k^2 + 4}}{2}$ where $z, w \in \mathbb{D}$ and g is given by (2).

Specializing the parameter $\alpha = 0$ and $\alpha = 1$ we have the following:

Definition 7. A function $f \in \Sigma$ of the form (1) is said to be in the class $\mathcal{SL}^{k}_{\Sigma}(\tilde{p}_{k}(z))$ if the following subordination hold:

$$\frac{zf'(z)}{f(z)} \prec \widetilde{p}_k(z) = \frac{1 + \tau_k^2 z^2}{1 - k\tau_k z - \tau_k^2 z^2},\tag{13}$$

and

$$\frac{wg'(w)}{g(w)} \prec \widetilde{p}_k(w) = \frac{1 + \tau_k^2 w^2}{1 - k\tau_k w - \tau_k^2 w^2},\tag{14}$$

where $\tau_k = \frac{k - \sqrt{k^2 + 4}}{2}$, $z, w \in \mathbb{D}$ and g is given by (2).

Definition 8. A function $f \in \Sigma$ of the form (1) is said to be in the class $KSL^k_{\Sigma}(\tilde{p}_k(z))$ if the following subordination hold:

$$1 + \frac{zf''(z)}{f'(z)} \prec \widetilde{p}_k(z) = \frac{1 + \tau_k^2 z^2}{1 - k\tau_k z - \tau_k^2 z^2},\tag{15}$$

and

$$1 + \frac{wg''(w)}{g'(w)} \prec \widetilde{p}_k(w) = \frac{1 + \tau_k^2 w^2}{1 - k\tau_k w - \tau_k^2 w^2},\tag{16}$$

where $\tau_k = \frac{k - \sqrt{k^2 + 4}}{2}$, $z, w \in \mathbb{D}$ and g is given by (2).

In the following theorem we determine the initial Taylor coefficients $|a_2|$ and $|a_3|$ for the function class $\mathcal{SLM}_{\alpha,\Sigma}^k(\widetilde{p}_k(z))$. Later we state the bounds to other classes as a special cases.

Theorem 9. Let f given by (1) be in the class $\mathcal{SLM}_{\alpha,\Sigma}^k(\widetilde{p}_k(z))$. Then

$$|a_2| \le \frac{k\sqrt{k}|\tau_k|}{\sqrt{(1+\alpha)^2k - (1+\alpha)(2(1+\alpha) + \alpha k^2)\tau_k}}$$
 (17)

and

$$|a_3| \le \frac{k|\tau_k| \left\{ (1+\alpha)^2 k - \left[(k^2+2)\alpha^2 + (5k^2+4)\alpha + 2(k^2+1) \right] \tau_k \right\}}{2(1+2\alpha)(1+\alpha) \left[(1+\alpha)k - (2(1+\alpha) + \alpha k^2)\tau_k \right]}.$$
 (18)

Proof. Let $f \in \mathcal{SLM}_{\alpha,\Sigma}^k(\widetilde{p}_k(z))$ and $g = f^{-1}$. Considering (11) and (12), we have

$$\alpha \left(1 + \frac{zf''(z)}{f'(z)} \right) + (1 - \alpha) \left(\frac{zf'(z)}{f(z)} \right) = \tilde{p}_k(u(z))$$
(19)

and

$$\alpha \left(1 + \frac{wg''(w)}{g'(w)} \right) + (1 - \alpha) \left(\frac{wg'(w)}{g(w)} \right) = \tilde{p}_k(v(w)), \tag{20}$$

where $\tau_k = \frac{k - \sqrt{k^2 + 4}}{2}$, $z, w \in \mathbb{D}$ and g is given by (2). We have also

$$\alpha \left(1 + \frac{zf''(z)}{f'(z)}\right) + (1 - \alpha) \left(\frac{zf'(z)}{f(z)}\right)$$

$$= 1 + (1 + \alpha)a_2z + (2(1 + 2\alpha)a_3 - (1 + 3\alpha)a_2^2)z^2 + \dots$$

$$= 1 + \frac{\tilde{p}_{k,1}c_1z}{2} + \left[\frac{1}{2}\left(c_2 - \frac{c_1^2}{2}\right)\tilde{p}_{k,1} + \frac{c_1^2}{4}\tilde{p}_{k,2}\right]z^2$$

$$+ \left[\frac{1}{2}\left(c_3 - c_1c_2 + \frac{c_1^3}{4}\right)\tilde{p}_{k,1} + \frac{1}{2}c_1\left(c_2 - \frac{c_1^2}{2}\right)\tilde{p}_{k,2} + \frac{c_1^3}{8}\tilde{p}_{k,3}\right]z^3 + \dots (21)$$

and

$$\alpha \left(1 + \frac{wg''(w)}{g'(w)}\right) + (1 - \alpha) \left(\frac{wg'(w)}{g(w)}\right)$$

$$= 1 - (1 + \alpha)a_2w + ((3 + 5\alpha)a_2^2 - 2(1 + 2\alpha)a_3)w^2 + \dots$$

$$= 1 + \frac{\tilde{p}_{k,1}d_1w}{2} + \left[\frac{1}{2}\left(d_2 - \frac{d_1^2}{2}\right)\tilde{p}_{k,1} + \frac{d_1^2}{4}\tilde{p}_{k,2}\right]w^2$$

$$+ \left[\frac{1}{2}\left(d_3 - d_1d_2 + \frac{d_1^3}{4}\right)\tilde{p}_{k,1} + \frac{1}{2}d_1\left(d_2 - \frac{d_1^2}{2}\right)\tilde{p}_{k,2} + \frac{d_1^3}{8}\tilde{p}_{k,3}\right]w^3 + \dots (22)$$

It follows from (21) and (22) that

$$(1+\alpha)a_2 = \frac{c_1k\tau_k}{2},\tag{23}$$

$$2(1+2\alpha)a_3 - (1+3\alpha)a_2^2 = \frac{1}{2}\left(c_2 - \frac{c_1^2}{2}\right)k\tau_k + \frac{c_1^2}{4}(k^2+2)\tau_k^2,\tag{24}$$

and

$$-(1+\alpha)a_2 = \frac{d_1k\tau_k}{2},\tag{25}$$

$$(3+5\alpha)a_2^2 - 2(1+2\alpha)a_3 = \frac{1}{2}\left(d_2 - \frac{d_1^2}{2}\right)k\tau_k + \frac{d_1^2}{4}(k^2+2)\tau_k^2.$$
 (26)

From (23) and (25), we have

$$c_1 = -d_1, (27)$$

and

$$2a_2^2 = \frac{(c_1^2 + d_1^2)}{4(1+\alpha)^2} k^2 \tau_k^2. \tag{28}$$

Now, by summing (24) and (26), we obtain

$$2(1+\alpha)a_2^2 = \frac{1}{2}(c_2+d_2)k\tau_k - \frac{1}{4}(c_1^2+d_1^2)k\tau_k + \frac{1}{4}(c_1^2+d_1^2)(k^2+2)\tau_k^2.$$
 (29)

By putting (28) in (29), we have

$$2(1+\alpha)\left[\left(-2(1+\alpha) - \alpha k^2\right)\tau_k + (1+\alpha)k\right]a_2^2 = \frac{1}{2}(c_2+d_2)k^3\tau_k^2.$$
 (30)

Therefore, using Lemma 5 we obtain

$$|a_2| \le \frac{k\sqrt{k}|\tau_k|}{\sqrt{(1+\alpha)^2k - (1+\alpha)(2(1+\alpha) + \alpha k^2)\tau_k}}.$$
 (31)

Now, so as to find the bound on $|a_3|$, let's subtract from (24) and (26). So, we find

$$4(1+2\alpha)a_3 - 4(1+2\alpha)a_2^2 = \frac{1}{2}(c_2 - d_2)k\tau_k.$$
 (32)

Hence, we get

$$4(1+2\alpha)|a_3| \le 2k|\tau_k| + 4(1+2\alpha)|a_2|^2.$$

Then, in view of (31), we obtain

$$|a_3| \le \frac{k|\tau_k| \left\{ (1+\alpha)^2 k - \left[2(1+\alpha)^2 + (\alpha^2 + 5\alpha + 2)k^2 \right] \tau_k \right\}}{2(1+2\alpha)(1+\alpha) \left[(1+\alpha)k - (2(1+\alpha) + \alpha k^2)\tau_k \right]}.$$

If we can take the parameter $\alpha=0$ and $\alpha=1$ in the above theorem, we have the following the initial Taylor coefficients $|a_2|$ and $|a_3|$ for the function classes $\mathcal{SL}^k_{\Sigma}(\tilde{p}_k(z))$ and $\mathcal{KSL}^k_{\Sigma}(\tilde{p}_k(z))$, respectively.

Corollary 10. Let f given by (1) be in the class $\mathcal{SL}^k_{\Sigma}(\tilde{p}_k(z))$. Then

$$|a_2| \leq \frac{k\sqrt{k}|\tau_k|}{\sqrt{k-2\tau_k}}$$

and

$$|a_3| \le \frac{k|\tau_k| \left\{ k - 2(k^2 + 1)\tau_k \right\}}{2(k - 2\tau_k)}.$$

Corollary 11. Let f given by (1) be in the class $KSL^k_{\Sigma}(\tilde{p}_k(z))$. Then

$$|a_2| \le \frac{k\sqrt{k}|\tau_k|}{\sqrt{4k - 2(4 + k^2)\tau_k}}$$

and

$$|a_3| \le \frac{k|\tau_k| \left\{ k - 2(k^2 + 1)\tau_k \right\}}{3(2k - (4 + k^2)\tau_k)}.$$

1916

If we can take the parameter k=1 in the above corollaries, we have the following the initial Taylor coefficients $|a_2|$ and $|a_3|$ for the function classes $\mathcal{SL}_{\Sigma}(\tilde{p}(z))$ and $\mathcal{KSL}_{\Sigma}(\tilde{p}(z))$, respectively, which were obtained in [6] by Güney et.al.

Corollary 12. Let f given by (1) be in the class $\mathcal{SL}_{\Sigma}(\tilde{p}(z))$. Then

$$|a_2| \le \frac{|\tau|}{\sqrt{1 - 2\tau}}$$

and

$$|a_3| \le \frac{|\tau|(1-4\tau)}{2(1-2\tau)}.$$

Corollary 13. Let f given by (1) be in the class $KSL_{\Sigma}(\tilde{p}(z))$. Then

$$|a_2| \le \frac{|\tau|}{\sqrt{4 - 10\tau}}$$

and

$$|a_3| \le \frac{|\tau|(1-4\tau)}{3(2-5\tau)}.$$

3. BI-UNIVALENT FUNCTION CLASS $\mathcal{SLG}_{\gamma,\Sigma}^k(\widetilde{p}_k(z))$

In this section, we define a new class $\mathcal{SLG}_{\gamma,\Sigma}^k(\widetilde{p}_k(z))$ of $\gamma-$ bi-starlike functions associated with shell-like domain.

Definition 14. Let $0 \le \gamma \le 1$, and k be any positive real number. A function $f \in \Sigma$ of the form (1) is said to be in the class $SLG_{\gamma,\Sigma}^k(\widetilde{p}_k(z))$ if the following subordination hold:

$$\left(\frac{zf'(z)}{f(z)}\right)^{\gamma} \left(1 + \frac{zf''(z)}{f'(z)}\right)^{1-\gamma} \prec \tilde{p}_k(z) \tag{1}$$

and

$$\left(\frac{wg'(w)}{g(w)}\right)^{\gamma} \left(1 + \frac{wg''(w)}{g'(w)}\right)^{1-\gamma} \prec \tilde{p}_k(w), \tag{2}$$

where the function \widetilde{p}_k is defined in (3) and $z, w \in D$.

Remark 15. Taking $\gamma = 1$, we get $\mathcal{SLG}_{1,\Sigma}^k(\widetilde{p}_k(z)) \equiv \mathcal{SL}_{\Sigma}^k(\widetilde{p}_k(z))$ the class as given in Definition 7 satisfying the conditions given in (13) and (14).

Remark 16. Taking $\gamma = 0$, we get $\mathcal{SLG}_{0,\Sigma}^k(\widetilde{p}_k(z)) \equiv \mathcal{KSL}_{\Sigma}^k(\widetilde{p}_k(z))$ the class as given in Definition 8 satisfying the conditions given in (15) and (16).

Theorem 17. Let f given by (1) be in the class $SLG_{\gamma,\Sigma}^k(\widetilde{p}_k(z))$. Then

$$|a_2| \le \frac{k\sqrt{2k}|\tau_k|}{\sqrt{2(2-\gamma)^2k - (4(2-\gamma)^2 + (\gamma^2 - 5\gamma + 4)k^2)\tau_k}}$$

and

$$|a_3| \le \frac{k|\tau_k| \left[2(2-\gamma)^2 k - (4(2-\gamma)^2 + (\gamma^2 - 13\gamma + 16)k^2)\tau_k \right]}{2(3-2\gamma) \left[2k(2-\gamma)^2 - (4(2-\gamma)^2 + (\gamma^2 - 5\gamma + 4)k^2)\tau_k \right]}.$$

Proof. Let $f \in \mathcal{SLG}_{\gamma,\Sigma}^k(\widetilde{p}_k(z))$ and $g = f^{-1}$ given by (2). Considering (1) and (2), we have

$$\left(\frac{zf'(z)}{f(z)}\right)^{\gamma} \left(1 + \frac{zf''(z)}{f'(z)}\right)^{1-\gamma} = \tilde{p}_k(u(z)) \tag{3}$$

and

$$\left(\frac{wg'(w)}{g(w)}\right)^{\gamma} \left(1 + \frac{wg''(w)}{g'(w)}\right)^{1-\gamma} = \tilde{p}_k(v(w)), \tag{4}$$

where the function \widetilde{p}_k is defined in (3), $z, w \in \mathbb{D}$ and g is given by (2). We also have

$$\left(\frac{zf'(z)}{f(z)}\right)^{\gamma} \left(1 + \frac{zf''(z)}{f'(z)}\right)^{1-\gamma}$$

$$= 1 + (2-\gamma)a_2z + \left(2(3-2\gamma)a_3 + \frac{1}{2}[(\gamma-2)^2 - 3(4-3\gamma)]a_2^2\right)z^2 + \dots$$
(5)

and

$$\left(\frac{wg'(w)}{g(w)}\right)^{\gamma} \left(1 + \frac{wg''(w)}{g'(w)}\right)^{1-\gamma}$$

$$= 1 - (2 - \gamma)a_2w + \left([8(1 - \gamma) + \frac{1}{2}\gamma(\gamma + 5)]a_2^2 - 2(3 - 2\gamma)a_3\right)w^2 + \dots$$
(6)

Equating the coefficients in (5) and (6), with (7)-(10), respectively, we get,

$$(2 - \gamma)a_2 = \frac{c_1k\tau_k}{2} \tag{7}$$

$$2(3-2\gamma)a_3 + \frac{1}{2}[(\gamma-2)^2 - 3(4-3\gamma)]a_2^2 = \frac{1}{2}\left(c_2 - \frac{c_1^2}{2}\right)k\tau_k + \frac{c_1^2}{4}(k^2+2)\tau_k^2, \quad (8)$$

and

$$-(2-\gamma)a_2 = \frac{d_1k\tau_k}{2} \tag{9}$$

$$-2(3-2\gamma)a_3 + \left[8(1-\gamma) + \frac{1}{2}\gamma(\gamma+5)\right]a_2^2 = \frac{1}{2}\left(d_2 - \frac{d_1^2}{2}\right)k\tau_k + \frac{d_1^2}{4}(k^2+2)\tau_k^2$$
(10)

From (7) and (9), we have

$$a_2 = \frac{c_1 k \tau_k}{2(2 - \gamma)} = -\frac{d_1 k \tau_k}{2(2 - \gamma)},$$

which implies

$$c_1 = -d_1$$

1918

$$a_2^2 = \frac{(c_1^2 + d_1^2)k^2\tau_k^2}{8(2-\gamma)^2}.$$

Now, by summing (8) and (10), we obtain

$$(\gamma^2 - 3\gamma + 4)a_2^2 = \frac{1}{2}(c_2 + d_2)k\tau_k - \frac{1}{4}(c_1^2 + d_1^2)k\tau_k + \frac{1}{4}(c_1^2 + d_1^2)(k^2 + 2)\tau_k^2.$$

Proceeding similarly as in the earlier proof of Theorem 9 and using Lemma 5, we obtain

$$|a_2| \le \frac{k\sqrt{2k}|\tau_k|}{\sqrt{2(2-\gamma)^2k - (4(2-\gamma)^2 + (\gamma^2 - 5\gamma + 4)k^2)\tau_k}}.$$
(11)

Now, so as to find the bound on $|a_3|$, let's subtract from (8) and (10). So, we find

$$4(3-2\gamma)a_3 - 4(3-2\gamma)a_2^2 = \frac{1}{2}(c_2 - d_2)k\tau_k.$$

Hence, we get

$$4(3-2\gamma)|a_3| \le 2k|\tau_k| + 4(3-2\gamma)|a_2|^2.$$

Then, in view of (11), we obtain

$$|a_3| \leq \frac{k|\tau_k| \left[2(2-\gamma)^2k - (4(2-\gamma)^2 + (\gamma^2 - 13\gamma + 16)k^2)\tau_k \right]}{2(3-2\gamma) \left[2k(2-\gamma)^2 - (4(2-\gamma)^2 + (\gamma^2 - 5\gamma + 4)k^2)\tau_k \right]}.$$

Remark 18. By taking $\gamma = 1$ and $\gamma = 0$ in the above theorem, we have the initial Taylor coefficients $|a_2|$ and $|a_3|$ for the function classes $\mathcal{SL}^k_{\Sigma}(\tilde{p}_k(z))$ and $\mathcal{KSL}^k_{\Sigma}(\tilde{p}_k(z))$, as stated in Corollary 10 and Corollary 11 respectively. Further note that by taking k = 1 we have the initial Taylor coefficients $|a_2|$ and $|a_3|$ for the function classes $\mathcal{SL}_{\Sigma}(\tilde{p}(z))$ and $\mathcal{KSL}_{\Sigma}(\tilde{p}(z))$, as stated in Corollary 12 and Corollary 13 respectively.

4. Fekete-Szegő inequalities for the above function classes

Due to Zaprawa [16], we will give Fekete-Szegö inequalities for the above function classes in this section. The first theorem is the solution of the Fekete-Szegö problem in $\mathcal{SLM}_{\alpha,\Sigma}^k(\widetilde{p}_k(z))$ and it looks like the following:

Theorem 19. Let f given by (1) be in the class $\mathcal{SLM}_{\alpha,\Sigma}^k(\widetilde{p}_k(z))$ and $\mu \in \mathbb{R}$. Then we have

$$|a_3 - \mu a_2^2| \leq \begin{cases} \frac{k|\tau_k|}{2(1+2\alpha)}, & |\mu - 1| \leq \frac{4(1+\alpha)\left[(1+\alpha)k - (2(1+\alpha)+\alpha k^2)\tau_k\right]}{8(1+2\alpha)k^2|\tau_k|}, \\ \frac{|1-\mu|k^3\tau_k^2}{(1+\alpha)\left[(1+\alpha)k - (2(1+\alpha)+\alpha k^2)\tau_k\right]}, & |\mu - 1| \geq \frac{4(1+\alpha)\left[(1+\alpha)k - (2(1+\alpha)+\alpha k^2)\tau_k\right]}{8(1+2\alpha)k^2|\tau_k|}. \end{cases}$$

Proof. From (30) and (32)we obtain

$$a_3 - \mu a_2^2 = (1 - \mu) \frac{k^3 \tau_k^2 (c_2 + d_2)}{4(1 + \alpha) \left[(1 + \alpha)k - (2(1 + \alpha) + \alpha k^2) \tau_k \right]} + \frac{k \tau_k (c_2 - d_2)}{8(1 + 2\alpha)}$$
 (1)

$$= \left(\frac{(1-\mu)k^3\tau_k^2}{4(1+\alpha)\left[(1+\alpha)k - (2(1+\alpha) + \alpha k^2)\tau_k\right]} + \frac{k\tau_k}{8(1+2\alpha)}\right)c_2$$

$$+ \left(\frac{(1-\mu)k^3\tau_k^2}{4(1+\alpha)\left[(1+\alpha)k - (2(1+\alpha) + \alpha k^2)\tau_k \right]} - \frac{k\tau_k}{8(1+2\alpha)} \right) d_2.$$

So we have

$$a_3 - \mu a_2^2 = \left(h(\mu) - \frac{k|\tau_k|}{8(1+2\alpha)}\right)c_2 + \left(h(\mu) + \frac{k|\tau_k|}{8(1+2\alpha)}\right)d_2,\tag{2}$$

where

$$h(\mu) = \frac{(1-\mu)k^3\tau_k^2}{4(1+\alpha)\left[(1+\alpha)k - (2(1+\alpha) + \alpha k^2)\tau_k\right]}.$$
 (3)

Then, by taking modulus of (2), we conclude that

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{k|\tau_k|}{2(1+2\alpha)}, & 0 \le |h(\mu)| \le \frac{k|\tau_k|}{8(1+2\alpha)}, \\ 4|h(\mu)|, & |h(\mu)| \ge \frac{k|\tau_k|}{8(1+2\alpha)}. \end{cases}$$

Taking $\mu = 1$, we have the following corollary

Corollary 20. If $f \in \mathcal{SLM}_{\alpha,\Sigma}^k(\widetilde{p}_k(z))$, then

$$|a_3 - a_2^2| \le \frac{k|\tau_k|}{2(1+2\alpha)}. (4)$$

The second theorem is the solution of the Fekete-Szegö problem in $\mathcal{SLG}_{\gamma,\Sigma}^k(\widetilde{p}_k(z))$ and it looks like the following:

Theorem 21. Let f given by (1) be in the class $\mathcal{SLG}_{\gamma,\Sigma}^k(\widetilde{p}_k(z))$ and $\mu \in \mathbb{R}$. Then we have

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{k|\tau_k|}{2(3-2\gamma)}, & |\mu - 1| \le \frac{2(2-\gamma)^2k - (4(2-\gamma)^2 + (\gamma^2 - 5\gamma + 4)k^2)\tau_k}{4(3-2\gamma)k^2|\tau_k|}, \\ \frac{2|1-\mu|k^3\tau_k^2}{2(2-\gamma)^2k - (4(2-\gamma)^2 + (\gamma^2 - 5\gamma + 4)k^2)\tau_k}, & |\mu - 1| \ge \frac{2(2-\gamma)^2k - (4(2-\gamma)^2 + (\gamma^2 - 5\gamma + 4)k^2)\tau_k}{4(3-2\gamma)k^2|\tau_k|}. \end{cases}$$

Taking $\mu = 1$, we have the following corollary.

Corollary 22. If $f \in \mathcal{SLG}_{\gamma,\Sigma}^k(\widetilde{p}_k(z))$, then

$$|a_3 - a_2^2| \le \frac{k|\tau_k|}{2(3 - 2\gamma)}. (5)$$

If we can take the parameter $\alpha = 0$ and $\alpha = 1$ in the Theorem 19 or $\gamma = 1$ and $\gamma = 0$ in the Theorem 21, we have the following the Fekete-Szegö inequalities for the function classes $\mathcal{SL}^k_{\Sigma}(\tilde{p}_k(z))$ and $\mathcal{KSL}^k_{\Sigma}(\tilde{p}_k(z))$, respectively.

Corollary 23. Let f given by (1) be in the class $\mathcal{SL}^k_{\Sigma}(\tilde{p}_k(z))$ and $\mu \in \mathbb{R}$. Then we have

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{k|\tau_k|}{2}, & |\mu - 1| \le \frac{k - 2\tau_k}{2k^2|\tau_k|}, \\ \frac{|1 - \mu|k^3\tau_k^2}{k - 2\tau_k}, & |\mu - 1| \ge \frac{k - 2\tau_k}{2k^2|\tau_k|}. \end{cases}$$

Corollary 24. Let f given by (1) be in the class $KSL_{\Sigma}^{k}(\tilde{p}_{k}(z))$ and $\mu \in \mathbb{R}$. Then we have

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{k|\tau_k|}{6}, & |\mu - 1| \le \frac{2k - (k^2 + 4)\tau_k}{3k^2|\tau_k|}, \\ \frac{|1 - \mu|k^3\tau_k^2}{2(2k - (k^2 + 4)\tau_k)}, & |\mu - 1| \ge \frac{2k - (k^2 + 4)\tau_k}{3k^2|\tau_k|}. \end{cases}$$

5. Concluding Remarks and Observations

In our present investigation, we have introduced new classes $\mathcal{SLM}_{\alpha,\Sigma}^k(\widetilde{p}_k(z))$ and $\mathcal{SLG}_{\gamma,\Sigma}^k(\widetilde{p}_k(z))$ of bi-univalent functions in the open unit disk U. For the initial Taylor- Maclaurin coefficients of functions belonging to these classes, we have studied the problem of finding the upper bound associated with the Fekete-Szegö inequality. We have also considered several results which are closely related to our investigation in this paper.

ACKNOWLEDGEMENT

The authors would like to thank the referees for the helpful suggestions.

References

- Brannan D.A., Clunie J. and Kirwan W.E., Coefficient estimates for a class of star-like functions, Canad. J. Math., Vol.22 (1970), 476–485.
- [2] Brannan D.A. and Taha T.S., On some classes of bi-univalent functions, Studia Univ. Babes-Bolyai Math., Vol. 31, No.2 (1986), 70-77.
- [3] Bulut S., Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator, Commun. Fac. Sci. Univ. Ank. SA@r. A1 Math. Stat., Vol.66 (2017), 108-114.
- [4] Çağlar M. and Deniz E., Initial coefficients for a subclass of bi-univalent functions defined by Salagean differential operator, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat., Vol.66 (2017), 85–91.
- [5] Duren P.L., Univalent Functions, in: Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo, Springer-Verlag, 1983.
- [6] Güney H.Ö., Murugusundaramoorthy G. and Sokół J., Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Acta Univers. Sapientiae, Mathematica, Vol.10, No.1 (2018), 70–84.
- [7] Güney H.Ö., Sokół J. and İlhan S., Second Hankel determinant problem for some analytic function classes connected with k-Fibonacci numbers, Acta Univers. Apulensis, Vol.54 (2018), 161–174.

- [8] Lewin M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Vol.18 (1967), 63–68.
- [9] Li X-F. and Wang A-P., Two new subclasses of bi-univalent functions, Inter. Math. Forum, Vol.7, No.30 (2012), 1495—1504.
- [10] Özgür N.Y. and Sokół J., On starlike functions connected with k-Fibonacci numbers, Bull. Malaysian Math. Sci. Soc., Vol.38, No.1 (2015), 249–258.
- [11] Pommerenke, Ch., Univalent Functions, in: Studia Mathematica Mathematische Lehrbucher, Vanderhoeck and Ruprecht, Göttingen, 1975.
- [12] Sokół J., On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis, Vol.175, No.23 (1999), 111–116.
- [13] Sokół J., Remarks on shell-like functions, Folia Scient. Univ. Tech. Resoviensis, Vol.181, No.24 (2000), 111-115.
- [14] Srivastava H.M., Mishra A.K. and Gochhayat P., Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett., Vol.23, No.10 (2010), 1188–1192.
- [15] Xu Q.-H., Gui Y.-C. and Srivastava H.M., Coefficinet estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., Vol.25 (2012), 990–994.
- [16] Zaprawa P., On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, Vol.21, No.1 (2014), 169–178.

Current address: H. Özlem Güney: Dicle University, Faculty of Science, Department of Mathematics, Diyarbakır- Turkey.

E-mail address: ozlemg@dicle.edu.tr

 ${\rm ORCID~Address:}~~ \texttt{http://orcid.org/0000-0002-3010-7795}$

 $\label{lem:current} \textit{Current address} : \text{ G. Murugusundaramoorthy: School of Advanced Sciences, VIT University, Vellore -632014, India.}$

E-mail address: gmsmoorthy@yahoo.com

ORCID Address: http://orcid.org/0000-0001-8285-6619

Current address: J. Sokół: University of Rzeszów, Faculty of Mathematics and Natural Sciences, ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland.

E-mail address: jsokol@ur.edu.pl

ORCID Address: http://orcid.org/0000-0003-1204-2286