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Abstract
The main purpose of the presented paper is to determine some lower bounds for the
quotient of the normalized hyper-Bessel function and its partial sum, as well as for the
quotient of the derivative of normalized hyper-Bessel function and its partial sum. In
addition, some applications related to the obtained results are given.

Mathematics Subject Classification (2010). 30C45, 30C15, 33C10

Keywords. analytic function, univalent function, partial sum, trigonometric function,
hyper-Bessel function

1. Introduction and preliminaries
There is a vivid interest on the theories of special and geometric functions due to their

some close relations. Actually, there are various developments regarding partial sums of
analytic univalent functions in the recent years. The readers may find these interesting
developments in the papers [1, 7, 10, 12–14]. Also, partial sums of some special functions
and their applications were considered by the authors in [2–4, 6, 9, 11, 16]. Especially, the
authors in [9] investigated partial sums of the generalized Bessel function in 2014. And
then, many authors discussed the same problem for other special functions such as Struve,
Lommel, Mittag-Leffler, q-Bessel and Dini functions. Motivated by the previous works on
analytic univalent and special functions our main aim is to determine some lower bounds
for the quotient of normalized hyper-Bessel function and its partial sum, as well as for
the quotient of the derivative of normalized hyper-Bessel function and its partial sum. In
addition, we give some applications regarding our main results.

Before starting our main results we would like to give some basic concepts concerning
geometric function theory and the definition of hyper-Bessel function which is a natural
extension of classical Bessel function of the first kind.

Let A denote the class of functions of the following form:

f(z) = z +
∑
n≥2

anzn, (1.1)

which are analytic in the open unit disk
U = {z : z ∈ C and |z| < 1}.
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We denote by S the class of all functions in A which are univalent in U.
The hyper-Bessel function is defined as follows: (see [5])

Jαd
(z) =

(
z

d+1

)α1+···+αd∏d
i=1 Γ (αi + 1)0Fd

(
−

(αd + 1); −
(

z

d + 1

)d+1
)

, (1.2)

where the notation

pFq

(
(βp)
(γq); x

)
=
∑
n≥0

(β1)n(β2)n · · · (βp)n

(γ1)n(γ2)n · · · (γq)n

xn

n!
(1.3)

denotes the generalized hypergeometric function, (β)n is the shifted factorial (or Pochham-
mer’s symbol) defined by (β)0 = 1, (β)n = β(β+1) · · · (β+n−1), n ≥ 1 and the contracted
notation αd is used to abbreviate the array of d parameters α1, . . . , αd.

By considering the equalities (1.2) and (1.3), it can be easily seen that the function
z 7→ Jαd

(z) has the following infinite sum representation:

Jαd
(z) =

∑
n≥0

(−1)n

n!
∏d

i=1 Γ (αi + 1 + n)

(
z

d + 1

)n(d+1)+α1+···+αd

. (1.4)

The normalized hyper-Bessel function Jαd
(z) is defined by

Jαd
(z) =

(
z

d+1

)α1+···+αd∏d
i=1 Γ (αi + 1)

Jαd
(z). (1.5)

By combining the equalities (1.4) and (1.5) we get the following series representation:

Jαd
(z) =

∑
n≥0

(−1)n

n!
∏d

i=1(αi + 1)n

(
z

d + 1

)n(d+1)
. (1.6)

Since the function Jαd
does not belong to the class A, we consider the following form

fαd
(z) = zJαd

(z) =
∑
n≥0

Anzn(d+1)+1, (1.7)

where An = (−1)n

n!(d+1)n(d+1)∏d

i=1(αi+1)n

. As consequence of this consideration we have that

the function fαd
∈ A. Here, we would like to mention that the following inequalities

n! ≥ 2n−1 (1.8)

and
(αi + 1)n ≥ (αi + 1)n (1.9)

hold true for n ∈ N = {1, 2, . . . } and i ∈ {1, 2, . . . , d}, which will be used in the proof
of our main results. Also, we will take adventage of the following well-known triangle
inequality

|z1 + z2| ≤ |z1| + |z2| (z1, z2 ∈ C) (1.10)
and the following known geometric series sums∑

n≥1
rn−1 = 1

1 − r
(1.11)

and ∑
n≥1

nrn−1 = 1
(1 − r)2 (1.12)

for r ∈ (0, 1) in the proof of our results.
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2. Main results
In this section, we first present the following lemma which will be required in order to

derive our main results.

Lemma 2.1. Let i ∈ {1, 2, . . . , d}, αi > −1 and 2λµ > 1, where

λ = (d + 1)d+1 and µ =
d∏

i=1
(αi + 1) .

Then, the normalized hyper-Bessel function z 7→ fαd
(z) satisfies the next two inequalities:

|fαd
(z)| ≤ 2λµ + 1

2λµ − 1
(2.1)

and ∣∣∣f ′
αd

(z)
∣∣∣ ≤ 4λ2µ (µ + 1) − 1

(2λµ − 1)2 . (2.2)

Proof. By using the inequalities (1.8), (1.9) and (1.10) we can write that

|fαd
(z)| =

∣∣∣∣∣∣z +
∑
n≥1

(−1)n

n! (d + 1)n(d+1)∏d
i=1(αi + 1)n

zn(d+1)+1

∣∣∣∣∣∣
≤ 1 +

∑
n≥1

1
2n−1 (d + 1)n(d+1)∏d

i=1(αi + 1)n

= 1 + 1
λµ

∑
n≥1

[ 1
2λµ

]n−1

for z ∈ U. Here, using the geometric series sum which is given by (1.11) we deduce

|fαd
(z)| ≤ 2λµ + 1

2λµ − 1
.

Similarly, in order to prove the inequality (2.2) we can use the inequalities which are given
by (1.8), (1.9) and (1.10). Namely,∣∣∣f ′

αd
(z)
∣∣∣ =

∣∣∣∣∣∣1 +
∑
n≥1

(nd + n + 1)(−1)n

n! (d + 1)n(d+1)∏d
i=1(αi + 1)n

zn(d+1)

∣∣∣∣∣∣
≤ 1 +

∑
n≥1

nd + n + 1
2n−1 (d + 1)n(d+1)∏d

i=1(αi + 1)n

= 1 + 1
µ

∑
n≥1

n

(2λµ)n−1 + 1
λµ

∑
n≥1

( 1
2λµ

)n−1
.

Now, if we consider the geometric series sums which are given by (1.11) and (1.12), then
we have ∣∣∣f ′

αd
(z)
∣∣∣ ≤ 4λ2µ (µ + 1) − 1

(2λµ − 1)2 .

So, the proof is completed. �
Let w(z) denote an analytic function in U. It is important to mention here that the

following well-known result is very useful for our main results:

<
{

1 + w(z)
1 − w(z)

}
> 0, if and only if |w(z)| < 1, z ∈ U.

Now, we give our first main result related to the quotient of normalized hyper-Bessel
function and its partial sum.
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Theorem 2.2. Let n ∈ N = {1, 2, . . . }, i ∈ {1, 2, . . . , d}, αi > −1, the function fαd
: U →

C be defined by (1.7) and its sequence of partial sum defined by

(fαd
)m (z) = z +

m∑
n=1

Anzn(d+1)+1. (2.3)

If the inequality λµ > 3
2 is valid, then the following two inequalities are valid for z ∈ U :

<
(

fαd
(z)

(fαd
)m (z)

)
≥ 2λµ − 3

2
(2.4)

and

<
((fαd

)m (z)
fαd

(z)

)
≥ 2λµ − 1

2
(2.5)

Proof. From the inequality (2.1) in Lemma 2.1 we can write that

|fαd
(z)| =

∣∣∣∣∣∣z +
∑
n≥1

Anzn(d+1)+1

∣∣∣∣∣∣ ≤ 1 +
∑
n≥1

|An| ≤ 2λµ + 1
2λµ − 1

. (2.6)

The inequality (2.6) is equivalent to
2λµ − 1

2
∑
n≥1

|An| ≤ 1. (2.7)

In order to prove the inequality (2.4), we consider the function w(z) defined by

1 + w(z)
1 − w(z)

= 2λµ − 1
2

{
fαd

(z)
(fαd

)m (z)
− 2λµ − 3

2

}
.

The last equality is equivalent to

1 + w(z)
1 − w(z)

=
1 +

∑m
n=1 Anzn(d+1) + 2λµ−1

2
∑∞

n=m+1 Anzn(d+1)

1 +
∑m

n=1 Anzn(d+1) . (2.8)

Therefore, we obtain

w(z) =
2λµ−1

2
∑∞

n=m+1 Anzn(d+1)

2 + 2
∑m

n=1 Anzn(d+1) + 2λµ−1
2

∑∞
n=m+1 Anzn(d+1)

and

|w(z)| ≤
2λµ−1

2
∑∞

n=m+1 |An|
2 − 2

∑m
n=1 |An| − 2λµ−1

2
∑∞

n=m+1 |An|
.

The inequality
m∑

n=1
|An| + 2λµ − 1

2

∞∑
n=m+1

|An| ≤ 1 (2.9)

implies that |w(z)| ≤ 1. It suffices to show that the left hand side of (2.9) is bounded
above by

2λµ − 1
2

∞∑
n=1

|An| ,

which is equivalent to
2λµ − 3

2

m∑
n=1

|An| ≥ 0.

The last inequality holds true under the condition λµ > 3
2 .
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The proof of the result (2.5) would run parallel to those of the result (2.4). In order to
do this, consider the function p(z) defined by

1 + p(z)
1 − p(z)

=
(

1 + 2λµ − 1
2

){(fαd
)m (z)

fαd
(z)

− 2λµ − 1
2

}

=
1 +

∑m
n=1 Anzn(d+1) − 2λµ−1

2
∑∞

n=m+1 Anzn(d+1)

1 +
∑∞

n=1 Anzn(d+1) .

So, we get that

p(z) =
−2λµ+1

2
∑∞

n=m+1 Anzn(d+1)

2 + 2
∑m

n=1 Anzn(d+1) − 2λµ−3
2

∑∞
n=m+1 Anzn(d+1)

and

|p(z)| ≤
2λµ+1

2
∑∞

n=m+1 |An|
2 − 2

∑m
n=1 |An| − 2λµ−3

2
∑∞

n=m+1 |An|
.

The inequality (2.9) implies that |p(z)| ≤ 1. Since the left hand side of the inequality (2.9)
is bounded above by

2λµ − 1
2

∞∑
n=1

|An| ,

the proof is completed. �
Our second main result is the following:

Theorem 2.3. Let n ∈ N = {1, 2, . . . }, i ∈ {1, 2, . . . , d}, αi > −1, the function fαd
: U →

C be defined by (1.7) and its sequence of partial sum defined by (2.3). If the inequality
4λ2µ2−4λ2µ−8λµ+3

4λ2µ+4λµ−2 > 0 is valid, then the next two inequalities hold true for z ∈ U :

<
(

f ′
αd

(z)(
(fαd

)m (z)
)′
)

≥ 4λ2µ2 − 4λ2µ − 8λµ + 3
4λ2µ + 4λµ − 2

(2.10)

and

<
((

(fαd
)m (z)

)′
f ′

αd
(z)

)
≥ 4λ2µ2 − 4λµ + 1

4λ2µ + 4λµ − 2
. (2.11)

Proof. From the inequality (2.2) in Lemma 2.1 we can write that

1 +
∑
n≥1

(nd + n + 1) |An| ≤ 4λ2µ(µ + 1) − 1
(2λµ − 1)2 . (2.12)

The inequality (2.12) is equivalent to
(2λµ − 1)2

4λ2µ + 4λµ − 2
∑
n≥1

(nd + n + 1) |An| ≤ 1. (2.13)

In order to prove the inequality (2.10), we consider the function h(z) defined by

1 + h(z)
1 − h(z)

= (2λµ − 1)2

4λ2µ + 4λµ − 2

{
f ′

αd
(z)(

(fαd
)m (z)

)′ − 4λ2µ2 − 4λ2µ − 8λµ + 3
4λ2µ + 4λµ − 2

}

=
1 +

∑m
n=1(nd + n + 1)Anzn(d+1) + (2λµ−1)2

4λ2µ+4λµ−2
∑∞

n=m+1(nd + n + 1)Anzn(d+1)

1 +
∑m

n=1(nd + n + 1)Anzn(d+1) .

As a result, we get

h(z) =
(2λµ−1)2

4λ2µ+4λµ−2
∑∞

n=m+1(nd + n + 1)Anzn(d+1)

2 + 2
∑m

n=1(nd + n + 1)Anzn(d+1) + (2λµ−1)2

4λ2µ+4λµ−2
∑∞

n=m+1(nd + n + 1)Anzn(d+1)
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and

|h(z)| ≤
(2λµ−1)2

4λ2µ+4λµ−2
∑∞

n=m+1(nd + n + 1) |An|

2 − 2
∑m

n=1(nd + n + 1) |An| − (2λµ−1)2

4λ2µ+4λµ−2
∑∞

n=m+1(nd + n + 1) |An|
.

The inequality
m∑

n=1
(nd + n + 1) |An| + (2λµ − 1)2

4λ2µ + 4λµ − 2

∞∑
n=m+1

(nd + n + 1) |An| ≤ 1 (2.14)

implies that |h(z)| ≤ 1. It suffices to show that the left hand side of (2.14) is bounded
above by

(2λµ − 1)2

4λ2µ + 4λµ − 2

∞∑
n=1

(nd + n + 1) |An| ,

which is equivalent to

4λ2µ2 − 4λ2µ − 8λµ + 3
4λ2µ + 4λµ − 2

m∑
n=1

(nd + n + 1) |An| ≥ 0

such that the last inequality is valid under hypothesis.
In order to prove the inequality(2.11), consider the function k(z) defined by

1 + k(z)
1 − k(z)

=
(

1 + (2λµ − 1)2

4λ2µ + 4λµ − 2

){(
(fαd

)m (z)
)′

f ′
αd

(z)
− 4λ2µ2 − 4λµ + 1

4λ2µ + 4λµ − 2

}

=
1 +

∑m
n=1(nd + n + 1)Anzn(d+1) − 4λ2µ2−4λµ+1

4λ2µ+4λµ−2
∑∞

n=m+1(nd + n + 1)Anzn(d+1)

1 +
∑∞

n=1(nd + n + 1)Anzn(d+1) .

Consequently, we have that

k(z) =
−4λ2µ2−4λµ+1

4λ2µ+4λµ−2
∑∞

n=m+1(nd + n + 1)Anzn(d+1)

2 + 2
∑m

n=1(nd + n + 1)Anzn(d+1) − 4λ2µ2−4λµ+1
4λ2µ+4λµ−2

∑∞
n=m+1(nd + n + 1)Anzn(d+1)

and

|k(z)| ≤
4λ2µ2−4λµ+1
4λ2µ+4λµ−2

∑∞
n=m+1(nd + n + 1) |An|

2 − 2
∑m

n=1(nd + n + 1) |An| − 4λ2µ2−4λµ+1
4λ2µ+4λµ−2

∑∞
n=m+1(nd + n + 1) |An|

.

The inequality (2.14) implies that |k(z)| ≤ 1. Since the left hand side of the inequality
(2.14) is bounded above by

(2λµ − 1)2

4λ2µ + 4λµ − 2

∞∑
n=1

(nd + n + 1) |An| ,

the proof is completed. �

3. Applications
In this section, we present some applications concerning our main results. As we men-

tioned in Section 1, there is a relationship between hyper-Bessel function and classical
Bessel function Jν . Clearly, for d = 1 and α1 = ν, it is known that the hyper-Bessel
function Jαd

(z) reduces to the classical Bessel function of the first kind given by

Jν(z) =
∑
n≥0

(−1)n

n!Γ (ν + n + 1)

(
z

2

)2n+ν

.
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Also, putting d = 1 and α1 = ν in (1.7) we have the normalized classical Bessel function
ϕν(z) = 2νΓ(ν + 1)z1−νJν(z) which has the following infinite sum representation:

ϕν(z) =
∑
n≥0

(−1)n

4nn!(ν + 1)n
z2n+1. (3.1)

By using this relationship the following corollaries can be given. Setting d = 1 and α1 = ν
in Theorem 2.2 and Theorem 2.3, respectively, we get the followings:

Corollary 3.1. Let the function ϕν : U → C be defined by (3.1). The following assertions
are valid for z ∈ U. If ν > −5

8 , then

<
(

ϕν(z)
(ϕν)m(z)

)
≥ 8ν + 5

2
(3.2)

and
<
((ϕν)m(z)

ϕν(z)

)
≥ 8ν + 7

2
. (3.3)

Corollary 3.2. Let the function ϕν : U → C be defined by (3.1). The following assertions
are valid for z ∈ U. If ν > ν∗, then

<
(

ϕ′
ν(z)

((ϕν)m(z))′

)
≥ 64ν2 + 32ν − 29

80ν + 78
(3.4)

and

<
(

((ϕν)m(z))′

ϕ′
ν(z)

)
≥ 64ν2 + 112ν + 49

80ν + 78
, (3.5)

where ν∗ ≈ 0.46807.

It is well-known from [15] that there are the following relationships between elementary
trigonometric functions and classical Bessel function Jν for some special values of ν:

J 1
2
(z) =

√
2

πz
sin z and J 3

2
(z) =

√
2

πz

(sin z

z
− cos z

)
. (3.6)

As a result of the above relationships, one can easily obtain that

ϕ 1
2
(z) = sin z and ϕ 3

2
(z) = 3

(sin z

z2 − cos z

z

)
. (3.7)

Also, taking m = 0 in the partial sums of trigonometric functions given by (3.7) we have(
ϕ 1

2

)
0

(z) =
(
ϕ 3

2

)
0

(z) = z. (3.8)

Example 3.3. In view of the Corollary 3.1 we have
a. If we take ν = 1

2 and m = 0 in (3.2) and (3.3), respectively, then

<
(sin z

z

)
≥ 9

2
and

<
(

z

sin z

)
≥ 11

2
.

b. If we take ν = 3
2 and m = 0 in (3.2) and (3.3), respectively, then

<
(sin z − z cos z

z3

)
≥ 17

6
and

<
(

z3

sin z − z cos z

)
≥ 57

2
.
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Example 3.4. In view of the Corollary 3.2 we have
a. If we take ν = 1

2 and m = 0 in (3.4) and (3.5), respectively, then

<(cos z) ≥ 3
118

and
<
( 1

cos z

)
≥ 118

3
.

b. If we take ν = 3
2 and m = 0 in (3.4) and (3.5), respectively, then

<
(

2z2 cos z + (z3 − 2z) sin z

z4

)
≥ 163

198
and

<
(

z4

2z2 cos z + (z3 − 2z) sin z

)
≥ 361

198
.

Remark 3.5. If we consider m = 0 in the inequality (2.10), then we obtain <
(
f ′

αd
(z)
)

>

0. In view of the famous Noshiro-Warchawski Theorem (see [8]) we have that the normal-
ized hyper-Bessel function fαd

is univalent in U for 4λ2µ2−4λ2µ−8λµ+3
4λ2µ+4λµ−2 > 0.

Remark 3.6. If we consider m = 0 in the inequality (3.4), then we obtain < (ϕ′
ν(z)) > 0.

In view of the famous Noshiro-Warchawski Theorem (see [8]) we have that the normalized
Bessel function ϕν is univalent in U for ν > ν∗ ≈ 0.46807.
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